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Preface

Here’s the plan: when someone uses a feature you don’t understand, simply shoot
them. This is easier than learning something new, and before too long the only living
coders will be writing in an easily understood, tiny subset of Python 0.9.6 <wink>.!

—Tim Peters, legendary core developer and author of The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are the first
words of the official Python 3.10 tutorial. That is true, but there is a catch: because
the language is easy to learn and put to use, many practicing Python programmers
leverage only a fraction of its powerful features.

An experienced programmer may start writing useful Python code in a matter of
hours. As the first productive hours become weeks and months, a lot of developers go
on writing Python code with a very strong accent carried from languages learned
before. Even if Python is your first language, often in academia and in introductory
books it is presented while carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other languages, I
see another problem that this book tries to address: we only miss stuff we know
about. Coming from another language, anyone may guess that Python supports regu-
lar expressions, and look that up in the docs. But if you've never seen tuple unpacking
or descriptors before, you will probably not search for them, and you may end up not
using those features just because they are specific to Python.

This book is not an A-to-Z exhaustive reference of Python. Its emphasis is on the lan-
guage features that are either unique to Python or not found in many other popular
languages. This is also mostly a book about the core language and some of its libra-
ries. I will rarely talk about packages that are not in the standard library, even though
the Python package index now lists more than 60,000 libraries, and many of them are
incredibly useful.

1 Message to the comp.lang.python Usenet group, Dec. 23, 2002: “Acrimony in c.l.p”.
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Who This Book Is For

This book was written for practicing Python programmers who want to become pro-
ficient in Python 3. I tested the examples in Python 3.10—most of them also in
Python 3.9 and 3.8. When an example requires Python 3.10, it should be clearly
marked.

If you are not sure whether you know enough Python to follow along, review the top-
ics of the official Python tutorial. Topics covered in the tutorial will not be explained
here, except for some features that are new.

Who This Book Is Not For

If you are just learning Python, this book is going to be hard to follow. Not only that,
if you read it too early in your Python journey, it may give you the impression that
every Python script should leverage special methods and metaprogramming tricks.
Premature abstraction is as bad as premature optimization.

Five Books in One

I recommend that everyone read Chapter 1, “The Python Data Model”. The core
audience for this book should not have trouble jumping directly to any part in this
book after Chapter 1, but often I assume you've read preceding chapters in each spe-
cific part. Think of Parts I through V as books within the book.

I tried to emphasize using what is available before discussing how to build your own.
For example, in Part I, Chapter 2 covers sequence types that are ready to use, includ-
ing some that don’t get a lot of attention, like collections.deque. Building user-
defined sequences is only addressed in Part III, where we also see how to leverage the
abstract base classes (ABCs) from collections.abc. Creating your own ABCs is dis-
cussed even later in Part III, because I believe it’s important to be comfortable using
an ABC before writing your own.

This approach has a few advantages. First, knowing what is ready to use can save you
from reinventing the wheel. We use existing collection classes more often than we
implement our own, and we can give more attention to the advanced usage of avail-
able tools by deferring the discussion on how to create new ones. We are also more
likely to inherit from existing ABCs than to create a new ABC from scratch. And
finally, I believe it is easier to understand the abstractions after you've seen them in
action.

The downside of this strategy is the forward references scattered throughout the
chapters. I hope these will be easier to tolerate now that you know why I chose this
path.

xx | Preface
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How the Book Is Organized
Here are the main topics in each part of the book:

Part I, “Data Structures”

Chapter 1 introduces the Python Data Model and explains why the special meth-
ods (e.g., __repr__) are the key to the consistent behavior of objects of all types.
Special methods are covered in more detail throughout the book. The remaining
chapters in this part cover the use of collection types: sequences, mappings, and
sets, as well as the str versus bytes split—the cause of much celebration among
Python 3 users and much pain for Python 2 users migrating their codebases. Also
covered are the high-level class builders in the standard library: named tuple fac-
tories and the @dataclass decorator. Pattern matching—new in Python 3.10—is
covered in sections in Chapters 2, 3, and 5, which discuss sequence patterns,
mapping patterns, and class patterns. The last chapter in Part I is about the life
cycle of objects: references, mutability, and garbage collection.

Part II, “Functions as Objects”
Here we talk about functions as first-class objects in the language: what that
means, how it affects some popular design patterns, and how to implement func-
tion decorators by leveraging closures. Also covered here is the general concept
of callables in Python, function attributes, introspection, parameter annotations,
and the new nonlocal declaration in Python 3. Chapter 8 introduces the major
new topic of type hints in function signatures.

Part III, “Classes and Protocols”
Now the focus is on building classes “by hand”—as opposed to using the class
builders covered in Chapter 5. Like any Object-Oriented (OO) language, Python
has its particular set of features that may or may not be present in the language in
which you and I learned class-based programming. The chapters explain how
to build your own collections, abstract base classes (ABCs), and protocols, as well
as how to cope with multiple inheritance, and how to implement operator
overloading—when that makes sense. Chapter 15 continues the coverage of

type hints.

Part IV, “Control Flow”
Covered in this part are the language constructs and libraries that go beyond tra-
ditional control flow with conditionals, loops, and subroutines. We start with
generators, then visit context managers and coroutines, including the challenging
but powerful new yield from syntax. Chapter 18 includes a significant example
using pattern matching in a simple but functional language interpreter. Chap-
ter 19, “Concurrency Models in Python” is a new chapter presenting an overview
of alternatives for concurrent and parallel processing in Python, their limitations,
and how software architecture allows Python to operate at web scale. I rewrote
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the chapter about asynchronous programming to emphasize core language fea-
tures—e.g., await, async dev, async for, and async with, and show how they
are used with asyncio and other frameworks.

Part V, “Metaprogramming”

This part starts with a review of techniques for building classes with attributes
created dynamically to handle semi-structured data, such as JSON datasets. Next,
we cover the familiar properties mechanism, before diving into how object
attribute access works at a lower level in Python using descriptors. The relation-
ship among functions, methods, and descriptors is explained. Throughout
Part V, the step-by-step implementation of a field validation library uncovers
subtle issues that lead to the advanced tools of the final chapter: class decorators
and metaclasses.

Hands-On Approach

Often we’ll use the interactive Python console to explore the language and libraries. I
feel it is important to emphasize the power of this learning tool, particularly for those
readers who’ve had more experience with static, compiled languages that don’t pro-
vide a read-eval-print loop (REPL).

One of the standard Python testing packages, doctest, works by simulating console
sessions and verifying that the expressions evaluate to the responses shown. I used
doctest to check most of the code in this book, including the console listings. You
don’t need to use or even know about doctest to follow along: the key feature of
doctests is that they look like transcripts of interactive Python console sessions, so
you can easily try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest before the
code that makes it pass. Firmly establishing what is to be done before thinking about
how to do it helps focus our coding effort. Writing tests first is the basis of test-driven
development (TDD), and I've also found it helpful when teaching. If you are unfami-
liar with doctest, take a look at its documentation and this book’s example code
repository.

I also wrote unit tests for some of the larger examples using pytest—which I find eas-
ier to use and more powerful than the unittest module in the standard library. You’ll
find that you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py or pytest in the command shell of your
OS. The pytest.ini configuration at the root of the example code repository ensures
that doctests are collected and executed by the pytest command.
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Soapbox: My Personal Perspective

I have been using, teaching, and debating Python since 1998, and I enjoy studying
and comparing programming languages, their design, and the theory behind them.
At the end of some chapters, I have added “Soapbox™ sidebars with my own perspec-
tive about Python and other languages. Feel free to skip these if you are not into such
discussions. Their content is completely optional.

Companion Website: fluentpython.com

Covering new features—like type hints, data classes, and pattern matching—made
this second edition almost 30% larger than the first. To keep the book luggable,
I moved some content to fluentpython.com. You will find links to articles I published
there in several chapters. Some sample chapters are also in the companion website.
The full text is available online at the O’Reilly Learning subscription service. The
example code repository is on GitHub.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Note that when a line break falls within a constant_width term, a hyphen is not
added—it could be misunderstood as part of the term.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Every script and most code snippets that appear in the book are available in the Flu-
ent Python code repository on GitHub at https://fpy.li/code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN, e.g., “Fluent Python, 2nd ed., by
Luciano Ramalho (O’Reilly). Copyright 2022 Luciano Ramalho, 978-1-492-05635-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
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We have a web page for this book, where we list errata, examples, and any additional
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