OREILLY" G

Fluent
Python

Clear, Concise, and
Effective Programming

Luciano Ramalho

O'REILLY"

Fluent Python

Don't waste time bending Python to fit patterns you've
learned in other languages. Python's simplicity lets you
become productive quickly, but often this means you aren’t
using everything the language has to offer. With the updated
edition of this hands-on guide, you'll learn how to write

effective, modern Python 3 code by leveraging its best ideas.

Discover and apply idiomatic Python 3 features beyond your

past experience. Author Luciano Ramalho guides you through
Python's core language features and libraries and teaches you

how to make your code shorter, faster, and more readable.

Complete with major updates throughout, this new edition
features five parts that work as five short books within the
book:

» Data structures: Sequences, dicts, sets, Unicode, and
data classes

¢ Functions as objects: First-class functions, related design
patterns, and type hints in function declarations

e Object-oriented idioms: Composition, inheritance, mixins,
interfaces, operator overloading, protocols, and more
static types

e Control flow: Context managers, generators, coroutines,
async/await, and thread/process pools

* Metaprogramming: Properties, attribute descriptors, class
decorators, and new class metaprogramming hooks that
replace or simplify metaclasses

Luciano Ramalho is a principal consultant at Thoughtworks and a
Python Software Foundation fellow.

"My ‘go to' book when
looking for detailed
explanations and uses
of a Python feature.
Luciano's teaching
and presentation are
excellent. A great book
for advanced beginners
looking to build their
knowledge."

—Carol Willing
Python Steering Council member
(2020-2021)

“This is not the usual dry
coding book, but full of
useful, tested examples,
and just enough humor.
My colleagues and |
have used this amazing,
well-written book to
take our Python coding
to the next level.”

—Maria McKinley

Senior Software Engineer

PROGRAMMING / PYTHON

US $6999 CAN $8799
ISBN: 978-1-492-05635-5

VAN i

781492056355

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

SECOND EDITION

Fluent Python

Clear, Concise, and
Effective Programming

Luciano Ramalho

Beijing + Boston - Farnham - Sebastopol - Tokyo QY RI=[ANY

Fluent Python
by Luciano Ramalho

Copyright © 2022 Luciano Ramalho. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: Judith McConville
Development Editor: Jeff Bleiel Interior Designer: David Futato
Production Editor: Daniel Elfanbaum Cover Designer: Karen Montgomery
Copyeditor: Sonia Saruba lllustrator: Kate Dullea

Proofreader: Kim Cofer
April 2022: Second Edition

Revision History for the Second Edition
2022-03-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056355 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fluent Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-05635-5
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056355

Para Marta, com todo o meu amor.

Table of Contents

o] <] [Xix

Partl. Data Structures

1. ThePythonDataModel..........ccuvirriiiiiiiii ittt iiiiiiieeeeeenns 3
What’s New in This Chapter 4
A Pythonic Card Deck 5
How Special Methods Are Used 8

Emulating Numeric Types 9
String Representation 12
Boolean Value of a Custom Type 13
Collection API 14
Overview of Special Methods 15
Why len Is Not a Method 17
Chapter Summary 18
Further Reading 18

2. AN Array of SEqUENCES. ...t vvet et ettt et et etiesterenerenneennesnnns 21
What’s New in This Chapter 22
Overview of Built-In Sequences 22
List Comprehensions and Generator Expressions 25

List Comprehensions and Readability 25
Listcomps Versus map and filter 27
Cartesian Products 27
Generator Expressions 29
Tuples Are Not Just Immutable Lists 30

Tuples as Records 30

Tuples as Immutable Lists
Comparing Tuple and List Methods
Unpacking Sequences and Iterables
Using * to Grab Excess Items
Unpacking with * in Function Calls and Sequence Literals
Nested Unpacking
Pattern Matching with Sequences
Pattern Matching Sequences in an Interpreter
Slicing
Why Slices and Ranges Exclude the Last Item
Slice Objects
Multidimensional Slicing and Ellipsis
Assigning to Slices
Using + and * with Sequences
Building Lists of Lists
Augmented Assignment with Sequences
A += Assignment Puzzler
list.sort Versus the sorted Built-In
When a List Is Not the Answer
Arrays
Memory Views
NumPy
Deques and Other Queues
Chapter Summary
Further Reading

. Dictionaries and Sets.vvviritirii it e

What’s New in This Chapter
Modern dict Syntax
dict Comprehensions
Unpacking Mappings
Merging Mappings with |
Pattern Matching with Mappings
Standard API of Mapping Types
What Is Hashable
Overview of Common Mapping Methods
Inserting or Updating Mutable Values
Automatic Handling of Missing Keys
defaultdict: Another Take on Missing Keys
The __missing_ Method
Inconsistent Usage of __missing__ in the Standard Library
Variations of dict

32
34
35
36
37
37
38
43
47
47
48
49
50
50
51
53
54
56
59
59
62
64
67
70
71

77
78
78
79
80
80
81
83
84
85
87
90
90
91
94
95

vi

Table of Contents

collections.OrderedDict
collections.ChainMap
collections.Counter
shelve.Shelf
Subclassing UserDict Instead of dict
Immutable Mappings
Dictionary Views
Practical Consequences of How dict Works
Set Theory
Set Literals
Set Comprehensions
Practical Consequences of How Sets Work
Set Operations
Set Operations on dict Views
Chapter Summary
Further Reading

. Unicode Text Versus Bytes.oouuveuniiiiiinnienniriineenneenneennnss
What’s New in This Chapter
Character Issues
Byte Essentials
Basic Encoders/Decoders
Understanding Encode/Decode Problems
Coping with UnicodeEncodeError
Coping with UnicodeDecodeError
SyntaxError When Loading Modules with Unexpected Encoding
How to Discover the Encoding of a Byte Sequence
BOM: A Useful Gremlin
Handling Text Files
Beware of Encoding Defaults
Normalizing Unicode for Reliable Comparisons
Case Folding
Utility Functions for Normalized Text Matching
Extreme “Normalization”: Taking Out Diacritics
Sorting Unicode Text
Sorting with the Unicode Collation Algorithm
The Unicode Database
Finding Characters by Name
Numeric Meaning of Characters
Dual-Mode str and bytes APIs
str Versus bytes in Regular Expressions
str Versus bytes in os Functions

95
95
96
97
97
99
101
102
103
105
106
107
107
110
112
113

117
118
118
120
123
125
125
126
128
128
129
131
134
140
142
143
144
148
150
150
151
153
155
155
156

Table of Contents

vii

. Object References, Mutability, and Recycling

Chapter Summary
Further Reading

Data Class Builders.coovvvvninii ittt iiiiiiiiiienennnnes

What’s New in This Chapter
Overview of Data Class Builders
Main Features
Classic Named Tuples
Typed Named Tuples
Type Hints 101
No Runtime Effect
Variable Annotation Syntax
The Meaning of Variable Annotations
More About @dataclass
Field Options
Post-init Processing
Typed Class Attributes
Initialization Variables That Are Not Fields
@dataclass Example: Dublin Core Resource Record
Data Class as a Code Smell
Data Class as Scaffolding
Data Class as Intermediate Representation
Pattern Matching Class Instances
Simple Class Patterns
Keyword Class Patterns
Positional Class Patterns
Chapter Summary
Further Reading

What’s New in This Chapter
Variables Are Not Boxes
Identity, Equality, and Aliases
Choosing Between == and is
The Relative Immutability of Tuples
Copies Are Shallow by Default
Deep and Shallow Copies of Arbitrary Objects
Function Parameters as References
Mutable Types as Parameter Defaults: Bad Idea
Defensive Programming with Mutable Parameters
del and Garbage Collection
Tricks Python Plays with Immutables

157
158

163
164
164
167
169
172
173
173
174
175
179
180
183
185
186
187
190
191
191
192
192
193
194
195
196

201
202
202
204
206
207
208
211
213
214
216
219
221

viii

Table of Contents

Chapter Summary 223
Further Reading 224

Partll. Functions as Objects

7. Functions as First-Class Objects.coooiiiriiiiiiiiiiiiii i 231
What’s New in This Chapter 232
Treating a Function Like an Object 232
Higher-Order Functions 234

Modern Replacements for map, filter, and reduce 235
Anonymous Functions 236
The Nine Flavors of Callable Objects 237
User-Defined Callable Types 239
From Positional to Keyword-Only Parameters 240

Positional-Only Parameters 242
Packages for Functional Programming 243

The operator Module 243

Freezing Arguments with functools.partial 247
Chapter Summary 249
Further Reading 250

8. TypeHintsinFunctions...........ocoiiiiiiiiiiiiiiiiiiiiiiiiiiiiineenes 253
What’s New in This Chapter 254
About Gradual Typing 254
Gradual Typing in Practice 255

Starting with Mypy 256
Making Mypy More Strict 257
A Default Parameter Value 258
Using None as a Default 260
Types Are Defined by Supported Operations 260
Types Usable in Annotations 266

The Any Type 266

Simple Types and Classes 269

Optional and Union Types 270

Generic Collections 271

Tuple Types 274

Generic Mappings 276

Abstract Base Classes 278

Iterable 280

Parameterized Generics and TypeVar 282

Static Protocols 286

Table of Contents | ix

10.

Callable
NoReturn

Annotating Positional Only and Variadic Parameters

Imperfect Typing and Strong Testing
Chapter Summary
Further Reading

Decorators and CloSUNeS. ... vvvevvrvr i i eirenenennenenns

What’s New in This Chapter
Decorators 101
When Python Executes Decorators
Registration Decorators
Variable Scope Rules
Closures
The nonlocal Declaration
Variable Lookup Logic
Implementing a Simple Decorator
How It Works
Decorators in the Standard Library
Memoization with functools.cache
Using Iru_cache
Single Dispatch Generic Functions
Parameterized Decorators
A Parameterized Registration Decorator
The Parameterized Clock Decorator
A Class-Based Clock Decorator
Chapter Summary
Further Reading

Design Patterns with First-Class Functions......................

What’s New in This Chapter
Case Study: Refactoring Strategy
Classic Strategy
Function-Oriented Strategy
Choosing the Best Strategy: Simple Approach
Finding Strategies in a Module
Decorator-Enhanced Strategy Pattern
The Command Pattern
Chapter Summary
Further Reading

291
294
295
296
297
298

303
304
304
306
308
308
311
315
316
317
318
320
320
323
324
329
329
332
335
336
336

34
342
342
342
347
350
351
353
355
357
358

X

Table of Contents

Partlll. Classes and Protocols

1.

12.

13.

APythonicObject.ovuiriiiiii ittt ittt i aas
What’s New in This Chapter
Object Representations
Vector Class Redux
An Alternative Constructor
classmethod Versus staticmethod
Formatted Displays
A Hashable Vector2d
Supporting Positional Pattern Matching
Complete Listing of Vector2d, Version 3
Private and “Protected” Attributes in Python
Saving Memory with __slots__
Simple Measure of __slot__ Savings
Summarizing the Issues with __slots__
Overriding Class Attributes
Chapter Summary
Further Reading

Special Methods for Sequences.c.oovuiiiiiiiiiiiiiiiiiiiiiiiiiennas
What’s New in This Chapter
Vector: A User-Defined Sequence Type
Vector Take #1: Vector2d Compatible
Protocols and Duck Typing
Vector Take #2: A Sliceable Sequence
How Slicing Works
A Slice-Aware __getitem__
Vector Take #3: Dynamic Attribute Access
Vector Take #4: Hashing and a Faster ==
Vector Take #5: Formatting
Chapter Summary
Further Reading

Interfaces, Protocols, and ABCS. ..o vvvvrvninii i it iieieeneenenennenes
The Typing Map
What’s New in This Chapter
Two Kinds of Protocols
Programming Ducks
Python Digs Sequences
Monkey Patching: Implementing a Protocol at Runtime
Defensive Programming and “Fail Fast”

364
364
365
368
369
370
374
377
378
382
384
387
388
389
391
392

397
398
398
399
402
403
404
406
407
411
418
425
426

431
432
433
434
435
436
438
440

Table of Contents

| xi

14.

Goose Typing
Subclassing an ABC
ABCs in the Standard Library
Defining and Using an ABC
ABC Syntax Details
Subclassing an ABC
A Virtual Subclass of an ABC
Usage of register in Practice
Structural Typing with ABCs
Static Protocols
The Typed double Function
Runtime Checkable Static Protocols
Limitations of Runtime Protocol Checks
Supporting a Static Protocol
Designing a Static Protocol
Best Practices for Protocol Design
Extending a Protocol
The numbers ABCs and Numeric Protocols
Chapter Summary
Further Reading

Inheritance: For Better orforWorse.ovvvvvrveinieinnnennnns

What’s New in This Chapter
The super() Function
Subclassing Built-In Types Is Tricky
Multiple Inheritance and Method Resolution Order
Mixin Classes
Case-Insensitive Mappings
Multiple Inheritance in the Real World
ABCs Are Mixins Too
ThreadingMixIn and ForkingMixIn
Django Generic Views Mixins
Multiple Inheritance in Tkinter
Coping with Inheritance
Favor Object Composition over Class Inheritance
Understand Why Inheritance Is Used in Each Case
Make Interfaces Explicit with ABCs
Use Explicit Mixins for Code Reuse
Provide Aggregate Classes to Users
Subclass Only Classes Designed for Subclassing
Avoid Subclassing from Concrete Classes
Tkinter: The Good, the Bad, and the Ugly

442
447
449
451
457
458
460
463
464
466
466
468
471
472
474
476
477
478
481
482

487
488
488
490
494
500
500
502
502
503
504
507
510
510
510
511
511
511
512
513
513

Xii

Table of Contents

Chapter Summary 514

Further Reading 515
15. More About Type Hints.oovvniinniiiiiiiiii it iii i e eannns 519
What’s New in This Chapter 519
Overloaded Signatures 520
Max Overload 521
Takeaways from Overloading max 525
TypedDict 526
Type Casting 534
Reading Type Hints at Runtime 537
Problems with Annotations at Runtime 538
Dealing with the Problem 540
Implementing a Generic Class 541
Basic Jargon for Generic Types 544
Variance 544
An Invariant Dispenser 545
A Covariant Dispenser 546
A Contravariant Trash Can 547
Variance Review 549
Implementing a Generic Static Protocol 552
Chapter Summary 554
Further Reading 555
16. OperatorOverloading.ovvuieeriieiiereneeenneenneeenerenaeennnns 561
What’s New in This Chapter 562
Operator Overloading 101 562
Unary Operators 563
Overloading + for Vector Addition 566
Overloading * for Scalar Multiplication 572
Using @ as an Infix Operator 574
Wrapping-Up Arithmetic Operators 576
Rich Comparison Operators 577
Augmented Assignment Operators 580
Chapter Summary 585
Further Reading 587

PartIV. Control Flow

17. Iterators, Generators, and Classic COroutines.oovvvevrenrnnenenennenenns 593
What’s New in This Chapter 594

Table of Contents | xiii

18.

A Sequence of Words
Why Sequences Are Iterable: The iter Function
Using iter with a Callable
Iterables Versus Iterators
Sentence Classes with __iter
Sentence Take #2: A Classic Iterator
Don’t Make the Iterable an Iterator for Itself
Sentence Take #3: A Generator Function
How a Generator Works
Lazy Sentences
Sentence Take #4: Lazy Generator
Sentence Take #5: Lazy Generator Expression
When to Use Generator Expressions
An Arithmetic Progression Generator
Arithmetic Progression with itertools
Generator Functions in the Standard Library
Iterable Reducing Functions
Subgenerators with yield from
Reinventing chain
Traversing a Tree
Generic Iterable Types
Classic Coroutines
Example: Coroutine to Compute a Running Average
Returning a Value from a Coroutine
Generic Type Hints for Classic Coroutines
Chapter Summary
Further Reading

with, match, and elseBlocks.ccovvviveiiiiiiiiiiinins.

What’s New in This Chapter
Context Managers and with Blocks
The contextlib Utilities
Using @contextmanager
Pattern Matching in lis.py: A Case Study
Scheme Syntax
Imports and Types
The Parser
The Environment
The REPL
The Evaluator
Procedure: A Class Implementing a Closure
Using OR-patterns

594
596
598
599
603
603
605
606
607
610
610
611
613
615
618
619
630
632
633
634
639
641
643
646
650
652
652

657
658
658
663
664
669
669
671
671
673
675
676
685
686

Xiv

Table of Contents

19.

20.

Do This, Then That: else Blocks Beyond if
Chapter Summary
Further Reading

Concurrency ModelsinPython.ccovviiiiiiiiiii it iiieenns,
What’s New in This Chapter
The Big Picture
A Bit of Jargon
Processes, Threads, and Python’s Infamous GIL
A Concurrent Hello World
Spinner with Threads
Spinner with Processes
Spinner with Coroutines
Supervisors Side-by-Side
The Real Impact of the GIL
Quick Quiz
A Homegrown Process Pool
Process-Based Solution
Understanding the Elapsed Times
Code for the Multicore Prime Checker
Experimenting with More or Fewer Processes
Thread-Based Nonsolution
Python in the Multicore World
System Administration
Data Science
Server-Side Web/Mobile Development
WSGI Application Servers
Distributed Task Queues
Chapter Summary
Further Reading
Concurrency with Threads and Processes
The GIL
Concurrency Beyond the Standard Library
Concurrency and Scalability Beyond Python

ConCUIreNt EXeCULONS. . .o vovv ettt ittt ie i ie e eneeneennennaas
What’s New in This Chapter
Concurrent Web Downloads
A Sequential Download Script
Downloading with concurrent.futures
Where Are the Futures?
Launching Processes with concurrent.futures

687
689
690

695
696
696
697
699
701
701
704
706
711
713
713
716
718
718
719
723
724
725
726
727
728
730
732
733
734
734
736
736
738

743
743
744
746
749
751
754

Table of Contents

21.

Multicore Prime Checker Redux

Experimenting with Executor.map

Downloads with Progress Display and Error Handling
Error Handling in the flags2 Examples
Using futures.as_completed

Chapter Summary

Further Reading

Asynchronous Programming............cevveinirenerenneennnenns.

What’s New in This Chapter
A Few Definitions
An asyncio Example: Probing Domains
Guido’s Trick to Read Asynchronous Code
New Concept: Awaitable
Downloading with asyncio and HTTPX
The Secret of Native Coroutines: Humble Generators
The All-or-Nothing Problem
Asynchronous Context Managers
Enhancing the asyncio Downloader
Using asyncio.as_completed and a Thread
Throttling Requests with a Semaphore
Making Multiple Requests for Each Download
Delegating Tasks to Executors
Writing asyncio Servers
A FastAPI Web Service
An asyncio TCP Server
Asynchronous Iteration and Asynchronous Iterables
Asynchronous Generator Functions

Async Comprehensions and Async Generator Expressions

async Beyond asyncio: Curio

Type Hinting Asynchronous Objects

How Async Works and How It Doesn’t
Running Circles Around Blocking Calls
The Myth of I/O-Bound Systems
Avoiding CPU-Bound Traps

Chapter Summary

Further Reading

755
758
762
766
769
772
772

775
776
777
778
780
781
782
784
785
786
787
788
790
794
797
799
800
804
811
812
818
821
824
825
825
826
826
827
828

Xvi

Table of Contents

PartV. Metaprogramming

22. Dynamic Attributes and Properties.c.covvuiiiiiiiiiiieiiiiiiirennnes 835
What’s New in This Chapter 836
Data Wrangling with Dynamic Attributes 836

Exploring JSON-Like Data with Dynamic Attributes 838
The Invalid Attribute Name Problem 842
Flexible Object Creation with __new__ 843
Computed Properties 845
Step 1: Data-Driven Attribute Creation 846
Step 2: Property to Retrieve a Linked Record 848
Step 3: Property Overriding an Existing Attribute 852
Step 4: Bespoke Property Cache 853
Step 5: Caching Properties with functools 855
Using a Property for Attribute Validation 857
Lineltem Take #1: Class for an Item in an Order 857
Lineltem Take #2: A Validating Property 858
A Proper Look at Properties 860
Properties Override Instance Attributes 861
Property Documentation 864
Coding a Property Factory 865
Handling Attribute Deletion 868
Essential Attributes and Functions for Attribute Handling 869
Special Attributes that Affect Attribute Handling 870
Built-In Functions for Attribute Handling 870
Special Methods for Attribute Handling 871
Chapter Summary 873
Further Reading 873

23. Attribute Descriptors.ooveerie it it i i e aaes 879
What’s New in This Chapter 880
Descriptor Example: Attribute Validation 880

Lineltem Take #3: A Simple Descriptor 880
Lineltem Take #4: Automatic Naming of Storage Attributes 887
Lineltem Take #5: A New Descriptor Type 889
Overriding Versus Nonoverriding Descriptors 892
Overriding Descriptors 894
Overriding Descriptor Without __get 895
Nonoverriding Descriptor 896
Overwriting a Descriptor in the Class 897
Methods Are Descriptors 898
Descriptor Usage Tips 900

Table of Contents | xvii

Descriptor Docstring and Overriding Deletion 902

Chapter Summary 903
Further Reading 904

24, (lass Metaprogramming.........c.oeeueerneeenereneeenneenneeenesennaens 907
What’s New in This Chapter 908
Classes as Objects 908
type: The Built-In Class Factory 909

A Class Factory Function 911
Introducing __init_subclass__ 914
Why __init_subclass__ Cannot Configure __slots__ 921
Enhancing Classes with a Class Decorator 922
What Happens When: Import Time Versus Runtime 925
Evaluation Time Experiments 926
Metaclasses 101 931
How a Metaclass Customizes a Class 933

A Nice Metaclass Example 934
Metaclass Evaluation Time Experiment 937

A Metaclass Solution for Checked 942
Metaclasses in the Real World 947
Modern Features Simplify or Replace Metaclasses 947
Metaclasses Are Stable Language Features 948

A Class Can Only Have One Metaclass 948
Metaclasses Should Be Implementation Details 949

A Metaclass Hack with __prepare__ 950
Wrapping Up 952
Chapter Summary 953
Further Reading 954
AFterWOrd. . ..o 959
INdeX. ...t 963

xvii | Table of Contents

Preface

Here’s the plan: when someone uses a feature you don’t understand, simply shoot
them. This is easier than learning something new, and before too long the only living
coders will be writing in an easily understood, tiny subset of Python 0.9.6 <wink>.!

—Tim Peters, legendary core developer and author of The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are the first
words of the official Python 3.10 tutorial. That is true, but there is a catch: because
the language is easy to learn and put to use, many practicing Python programmers
leverage only a fraction of its powerful features.

An experienced programmer may start writing useful Python code in a matter of
hours. As the first productive hours become weeks and months, a lot of developers go
on writing Python code with a very strong accent carried from languages learned
before. Even if Python is your first language, often in academia and in introductory
books it is presented while carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other languages, I
see another problem that this book tries to address: we only miss stuff we know
about. Coming from another language, anyone may guess that Python supports regu-
lar expressions, and look that up in the docs. But if you've never seen tuple unpacking
or descriptors before, you will probably not search for them, and you may end up not
using those features just because they are specific to Python.

This book is not an A-to-Z exhaustive reference of Python. Its emphasis is on the lan-
guage features that are either unique to Python or not found in many other popular
languages. This is also mostly a book about the core language and some of its libra-
ries. I will rarely talk about packages that are not in the standard library, even though
the Python package index now lists more than 60,000 libraries, and many of them are
incredibly useful.

1 Message to the comp.lang.python Usenet group, Dec. 23, 2002: “Acrimony in c.l.p”.

Xix

https://fpy.li/p-1
https://fpy.li/p-2

Who This Book Is For

This book was written for practicing Python programmers who want to become pro-
ficient in Python 3. I tested the examples in Python 3.10—most of them also in
Python 3.9 and 3.8. When an example requires Python 3.10, it should be clearly
marked.

If you are not sure whether you know enough Python to follow along, review the top-
ics of the official Python tutorial. Topics covered in the tutorial will not be explained
here, except for some features that are new.

Who This Book Is Not For

If you are just learning Python, this book is going to be hard to follow. Not only that,
if you read it too early in your Python journey, it may give you the impression that
every Python script should leverage special methods and metaprogramming tricks.
Premature abstraction is as bad as premature optimization.

Five Books in One

I recommend that everyone read Chapter 1, “The Python Data Model”. The core
audience for this book should not have trouble jumping directly to any part in this
book after Chapter 1, but often I assume you've read preceding chapters in each spe-
cific part. Think of Parts I through V as books within the book.

I tried to emphasize using what is available before discussing how to build your own.
For example, in Part I, Chapter 2 covers sequence types that are ready to use, includ-
ing some that don’t get a lot of attention, like collections.deque. Building user-
defined sequences is only addressed in Part III, where we also see how to leverage the
abstract base classes (ABCs) from collections.abc. Creating your own ABCs is dis-
cussed even later in Part III, because I believe it’s important to be comfortable using
an ABC before writing your own.

This approach has a few advantages. First, knowing what is ready to use can save you
from reinventing the wheel. We use existing collection classes more often than we
implement our own, and we can give more attention to the advanced usage of avail-
able tools by deferring the discussion on how to create new ones. We are also more
likely to inherit from existing ABCs than to create a new ABC from scratch. And
finally, I believe it is easier to understand the abstractions after you've seen them in
action.

The downside of this strategy is the forward references scattered throughout the
chapters. I hope these will be easier to tolerate now that you know why I chose this
path.

xx | Preface

https://fpy.li/p-3

How the Book Is Organized
Here are the main topics in each part of the book:

Part I, “Data Structures”

Chapter 1 introduces the Python Data Model and explains why the special meth-
ods (e.g., __repr__) are the key to the consistent behavior of objects of all types.
Special methods are covered in more detail throughout the book. The remaining
chapters in this part cover the use of collection types: sequences, mappings, and
sets, as well as the str versus bytes split—the cause of much celebration among
Python 3 users and much pain for Python 2 users migrating their codebases. Also
covered are the high-level class builders in the standard library: named tuple fac-
tories and the @dataclass decorator. Pattern matching—new in Python 3.10—is
covered in sections in Chapters 2, 3, and 5, which discuss sequence patterns,
mapping patterns, and class patterns. The last chapter in Part I is about the life
cycle of objects: references, mutability, and garbage collection.

Part II, “Functions as Objects”
Here we talk about functions as first-class objects in the language: what that
means, how it affects some popular design patterns, and how to implement func-
tion decorators by leveraging closures. Also covered here is the general concept
of callables in Python, function attributes, introspection, parameter annotations,
and the new nonlocal declaration in Python 3. Chapter 8 introduces the major
new topic of type hints in function signatures.

Part III, “Classes and Protocols”
Now the focus is on building classes “by hand”—as opposed to using the class
builders covered in Chapter 5. Like any Object-Oriented (OO) language, Python
has its particular set of features that may or may not be present in the language in
which you and I learned class-based programming. The chapters explain how
to build your own collections, abstract base classes (ABCs), and protocols, as well
as how to cope with multiple inheritance, and how to implement operator
overloading—when that makes sense. Chapter 15 continues the coverage of

type hints.

Part IV, “Control Flow”
Covered in this part are the language constructs and libraries that go beyond tra-
ditional control flow with conditionals, loops, and subroutines. We start with
generators, then visit context managers and coroutines, including the challenging
but powerful new yield from syntax. Chapter 18 includes a significant example
using pattern matching in a simple but functional language interpreter. Chap-
ter 19, “Concurrency Models in Python” is a new chapter presenting an overview
of alternatives for concurrent and parallel processing in Python, their limitations,
and how software architecture allows Python to operate at web scale. I rewrote

Preface | xxi

the chapter about asynchronous programming to emphasize core language fea-
tures—e.g., await, async dev, async for, and async with, and show how they
are used with asyncio and other frameworks.

Part V, “Metaprogramming”

This part starts with a review of techniques for building classes with attributes
created dynamically to handle semi-structured data, such as JSON datasets. Next,
we cover the familiar properties mechanism, before diving into how object
attribute access works at a lower level in Python using descriptors. The relation-
ship among functions, methods, and descriptors is explained. Throughout
Part V, the step-by-step implementation of a field validation library uncovers
subtle issues that lead to the advanced tools of the final chapter: class decorators
and metaclasses.

Hands-On Approach

Often we’ll use the interactive Python console to explore the language and libraries. I
feel it is important to emphasize the power of this learning tool, particularly for those
readers who’ve had more experience with static, compiled languages that don’t pro-
vide a read-eval-print loop (REPL).

One of the standard Python testing packages, doctest, works by simulating console
sessions and verifying that the expressions evaluate to the responses shown. I used
doctest to check most of the code in this book, including the console listings. You
don’t need to use or even know about doctest to follow along: the key feature of
doctests is that they look like transcripts of interactive Python console sessions, so
you can easily try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest before the
code that makes it pass. Firmly establishing what is to be done before thinking about
how to do it helps focus our coding effort. Writing tests first is the basis of test-driven
development (TDD), and I've also found it helpful when teaching. If you are unfami-
liar with doctest, take a look at its documentation and this book’s example code
repository.

I also wrote unit tests for some of the larger examples using pytest—which I find eas-
ier to use and more powerful than the unittest module in the standard library. You’ll
find that you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py or pytest in the command shell of your
OS. The pytest.ini configuration at the root of the example code repository ensures
that doctests are collected and executed by the pytest command.

xxii | Preface

https://fpy.li/doctest
https://fpy.li/doctest
https://fpy.li/code
https://fpy.li/code
https://fpy.li/code

Soapbox: My Personal Perspective

I have been using, teaching, and debating Python since 1998, and I enjoy studying
and comparing programming languages, their design, and the theory behind them.
At the end of some chapters, I have added “Soapbox™ sidebars with my own perspec-
tive about Python and other languages. Feel free to skip these if you are not into such
discussions. Their content is completely optional.

Companion Website: fluentpython.com

Covering new features—like type hints, data classes, and pattern matching—made
this second edition almost 30% larger than the first. To keep the book luggable,
I moved some content to fluentpython.com. You will find links to articles I published
there in several chapters. Some sample chapters are also in the companion website.
The full text is available online at the O’Reilly Learning subscription service. The
example code repository is on GitHub.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Note that when a line break falls within a constant_width term, a hyphen is not
added—it could be misunderstood as part of the term.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xxiii

http://fluentpython.com
https://fpy.li/p-4
https://fpy.li/p-5
https://fpy.li/code

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Every script and most code snippets that appear in the book are available in the Flu-
ent Python code repository on GitHub at https://fpy.li/code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN, e.g., “Fluent Python, 2nd ed., by
Luciano Ramalho (O’Reilly). Copyright 2022 Luciano Ramalho, 978-1-492-05635-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xxiv | Preface

https://fpy.li/code
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

. . For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information.