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Reader feedback

“Astonishingly insightful examples. This book is a lot like
having a good teacher — it never fails to provide the low-end
information even though I have already moved on. So just
like a good teacher isn’t presumptuous in what I’m supposed
to know (which might force me to try and save face in case I
do not, yet), information conveniently resurfaces.” – David
Deutsch

“When @haskellbook is done, it will be an unexpected mile-
stone for #haskell. There will forever be Haskell before, and
Haskell after.” – Jason Kuhrt

“I feel safe recommending Haskell to beginners now that
@haskellbook is available, which is very beginner friendly” –
Gabriel Gonzalez

“”Structure and Interpretation of Computer Programs” has
its credit, but @haskellbook is now my #1 recommendation
for FP beginners.” – Irio Musskopf

“The book is long, but not slow — a large fraction of it is
made up of examples and exercises. You can tell it’s written
by someone who’s taught Haskell to programmers before.” –
Christopher Jones
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“I already have a lot of experience with Haskell, but I’ve
never felt confident in it the way this book has made me feel.”
– Alain O’Dea

“Real deal with @haskellbook is that you don’t just learn
Haskell; you get a hands on experience as to why functional
programming works.” – George Makrydakis

“One of my goals this year is to evangelize @haskellbook
and @HaskellForMac. I think these tools will make anyone
who uses them better. I want to get comfortable with it so that
I can shift how I think about Swift.” – Janie Clayton
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Authors’ preface

Chris’s story

I’ve been programming for over 15 years, 8 of them profes-
sionally. I’ve worked primarily in Common Lisp, Clojure, and
Python. I became interested in Haskell about 6 years ago.
Haskell was the language that made me aware that progress
is being made in programming language research and that
there are benefits to using a language with a design informed
by knowledge of those advancements.

I’ve had type errors in Clojure that multiple professional
Clojure devs (including myself) couldn’t resolve in less than
2 hours because of the source-to-sink distance caused by dy-
namic typing. We had copious tests. We added printlns ev-
erywhere. We tested individual functions from the REPL. It
still took ages. It was only 250 lines of Clojure. I did finally
fix it and found it was due to vectors in Clojure implementing
IFn. The crazy values that propagated from the IFn usage of
the vector allowed malformed data to propagate downward
far away from the origin of the problem. I’ve had similar hap-
pen in Python and Common Lisp as well. The same issue
in Haskell would be trivially resolved in a minute or less be-
cause the typechecker will identify precisely where you were
inconsistent.

I use Haskell because I want to be able to refactor without
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fear, because I want maintenance to be something I don’t re-
sent, so I can reuse code freely. This doesn’t come without
learning new things. The difference between people that are
“good at math” who “do it in their head” and professional math-
ematicians is that the latter show their work and use tools that
help them get the job done. When you’re using a dynamically
typed language, you’re forcing yourself unnecessarily to do it
“in your head.” As a human with limited working memory, I
want all the help I can get to reason about and write correct
code. Haskell provides that help.

Haskell is not a difficult language to use — quite the opposite.
I’m now able to tackle problems that I couldn’t have tackled
when I was primarily a Clojure, Common Lisp, or Python
user. Haskell is difficult to teach effectively, and the ineffective
pedagogy has made it hard for many people to learn.

It doesn’t have to be that way.
I’ve spent the last two years actively teaching Haskell on-

line and in person. Along the way, I started keeping notes
on exercises and methods of teaching specific concepts and
techniques that worked. Those notes eventually turned into
my guide for learning Haskell. I’m still learning how to teach
Haskell better by working with people locally in Austin, Texas,
as well as online in the IRC channel I made for beginners to
get help with learning Haskell.

I wrote this book because I had a hard time learning Haskell,
and I don’t want others to struggle the way I did.
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Julie’s story

I met Chris Allen in spring 2014. We met on Twitter and
quickly became friends. As anyone who has encountered
Chris — probably in any medium, but certainly on Twitter —
knows, it doesn’t take long before he starts urging you to learn
Haskell.

I told him I had no interest in programming. I told him
nothing and nobody had ever been able to interest me in pro-
gramming before. When Chris learned of my background
in linguistics, he thought I might be interested in natural lan-
guage processing and exhorted me to learn Haskell for that
purpose. I remained unconvinced.

Then he tried a different approach. He was spending a lot of
time gathering and evaluating resources for teaching Haskell
and refining his pedagogical techniques, and he convinced me
to try to learn Haskell so that he could gain the experience
of teaching a code-neophyte. Finally, with an “anything for
science” attitude, I gave in.

Chris had already known that the available Haskell learning
materials each had problems, but I don’t think even he realized
just how frustrating they would be to me. All of the materials
I ran across relied on a background with other programming
languages and left many terms undefined or explained fea-
tures of Haskell by analogy (often faulty) to features of other
languages — features I had no experience with.
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When I say I had no programming experience, I really, truly
mean it. I had to start from learning what a compiler does,
what version control means, what constitutes side effects, what
is a library, what is a module, what on earth is a stack overflow.
At the time of this writing, that is where I was less than a year
ago; by the time we finish writing this book and it is published,
it will be a little over two years.

Eventually, as he realized that a new type of book for learn-
ing Haskell was necessary, he decided to write one. I agreed at
the time to be his guinea pig. He would send me chapters and
I would learn Haskell from them and send feedback. Through
the fall, we worked like this, on and off, in short bursts. Even-
tually we found it more efficient for me to take on authorship
duties. We developed a writing process where Chris made
the first pass at a chapter, scaffolding the material it needed to
cover. Then I filled in the parts that I understood and came
up with questions that would elaborate and clarify the parts I
didn’t already know. He answered my questions until I under-
stood, and I continued adding to and refining what was there.
We each wrote exercises — I write much easier ones than he
does, but the variety is beneficial.

I have tried, throughout the process, to keep thinking from
the perspective of the absolute beginner. For one thing, I
wanted my own understanding of Haskell to deepen as I wrote
so I kept questioning the things I thought I knew. Also, I wanted
this book to be accessible to everyone.
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In interacting with other Haskell learners I often hear that
other materials leave them feeling like Haskell is difficult and
mysterious, a programming language best left to wizards.

It doesn’t have to be that way.



CONTENTS xxv

Acknowledgements

This book developed out of many efforts to teach and learn
Haskell, online and off. We could not have done this without
the help of the growing community of friendly Haskellers as
well as the Haskell learners who have graciously offered time
to help us make the book better.

First and foremost, we owe a huge debt of gratitude to our
first-round reviewers, Angela May O’Connor and Martin Vlk,
for their tremendous patience. We have sent them each some
very rough material, and they have been willing to work with
it and send detailed feedback about what worked and what
didn’t. Their reviews helped ensure the book is suitable for
both beginners and comprehensive. Also, they’re both just
wonderful people all around.

Martin DeMello, Daniel Gee, and Simon Yang have each
sent us (many) smart criticisms and helpful suggestions. The
book would have been shorter without their help, we think,
but it’s much more thorough and clear now.

A number of people have contributed feedback and tech-
nical review for limited parts of the book. Thanks to Sean
Chalmers, Erik de Castro Lopo, Alp Mestanogullari, Juan Al-
berto Sanchez, Jonathan Ferguson, Deborah Newton, Matt
Parsons, Peter Harpending, Josh Cartwright, Eric Mertens,
and George Makrydakis, who have all offered critiques of our
writing and our technical coverage of different topics.



CONTENTS xxvi

We have some very active early access readers who send us
a stream of feedback, everything from minor typographical
errors they find to questions about exercises, and we’re pleased
and grateful to have their input. The book would be messier
and the exercises less useful if not for their help. Julien Baley
and Jason Kuhrt have been particularly outstanding on this
front, not only representing a nontrivial portion of our reader
feedback over the course of several releases of the book, but
also catching things nobody else noticed.

The book cover was designed by David Deutsch (skore_de
on Twitter). He took pity on the state of our previous, original,
super special early access cover, and took it upon himself to
redesign it. We liked it so much we asked him to redo the book
web site as well. He’s a talented designer, and we’re grateful
for all the work he’s done for us.

A special thank-you is owed to Soryu Moronuki, Julie’s son,
who agreed to try to use the book to teach himself Haskell and
allowed us to use his feedback and occasionally blog about his
progress.

A warm hello to all the reading groups, both online and
in meatspace, that have formed to work through the book
together. We’ve had some great feedback from these groups
and hope to visit with you all someday. We’re delighted to see
the Haskell community growing.

We would also like to thank Michael Neale for being funny
and letting us use something he said on Twitter as an epigraph.



CONTENTS xxvii

Some day we hope to buy the gentleman a beer.
Thank you as well to Steven Proctor for having hosted us on

his Functional Geekery podcast, and to Adam Stacoviak and
Jerod Santo for inviting us onto their podcast, The Changelog
— and to Zaki Manian for bringing us to Adam and Jerod’s
attention.

Chris I would like to thank the participants in the #haskell-

beginners IRC channel, the teachers and the students, who have
helped me practice and refine my teaching techniques. Many
of the exercises and approaches in the book would’ve never
happened without the wonderful Haskell IRC community to
learn from.

I owe Alex Kurilin, Carter Schonwald, Aidan Coyne, and
Mark Wotton thanks for being there when I was really bad at
teaching, being kind and patient friends, and for giving me
advice when I needed it. I wouldn’t have scratched this itch
without y’all.

Julie I would like to send a special shout-out to the Austin
Haskell meetup group, especially Sukant Hajra and Austin
Seipp for giving me the opportunity to teach the meetup.

The list of Haskellers who have responded to the kvetches
and confusions of a Haskell beginner with assistance, humor,
and advice would be very long indeed, but I owe special grati-
tude to Sooraj Bhat, Reid McKenzie, Dan Lien, Zaki Manian,



CONTENTS xxviii

and Alex Feldman-Crough for their help and encouragement.
I wouldn’t have made it through the last few months of fin-
ishing this thing without the patient advice and friendship of
Chris Martin.

My husband and children have tolerated me spending un-
countable hours immersed in the dark arts of thunkery. I am
grateful for their love, patience, and support and hope that
my kids will remember this: that it’s never too late to learn
something new. Besos, mijos.

Finally, a warm thank you to George Makrydakis for the
ongoing discussion on matters to do with math, programming,
and the weirding way.

Any errors in the book, of course, remain the sole responsi-
bility of the authors.



CONTENTS xxix

Introduction

Welcome to a new way to learn Haskell. Perhaps you are
coming to this book frustrated by previous attempts to learn
Haskell. Perhaps you have only the faintest notion of what
Haskell is. Perhaps you are coming here because you are not
convinced that anything will ever be better than Common
Lisp/Scala/Ruby/whatever language you love, and you want
to argue with us. Perhaps you were just looking for the 18
billionth (n.b.: this number may be inaccurate) monad tutorial,
certain that this time around you will understand monads
once and for all. Whatever your situation, welcome and read
on! It is our goal here to make Haskell as clear, painless, and
practical as we can, no matter what prior experiences you’re
bringing to the table.

Why This Book

If you are new to programming entirely, Haskell is a great
first language. Haskell is a general purpose, functional pro-
gramming1 language. It’s applicable virtually anywhere one
would use a program to solve a problem, save for some specific
embedded applications. If you could write software to solve a

1 Functional programming is a style of programming in which function calls, rather
than a series of instructions for the computer to execute, are the primary constructs of
your program. What it is doesn’t matter much right now; Haskell completely embodies
the functional style, so it will become clear over the course of the book.
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problem, you could probably use Haskell.
If you are already a programmer, you may be looking to

enrich your skills by learning Haskell for a variety of reasons
— from love of pure functional programming itself to wanting
to write functional Scala code to finding a bridge to PureScript
or Idris. Languages such as Java are gradually adopting func-
tional concepts, but most were not designed to be functional
languages. Because Haskell is a pure functional language, it is
a fertile environment for mastering functional programming.
That way of thinking and problem solving is useful, no matter
what other languages you might know or learn. We’ve heard
from readers who are finding this book useful to their work in
diverse languages such as Scala, F#, Frege, Swift, PureScript,
Idris, and Elm.

Haskell has a bit of a reputation for being difficult. Writing
Haskellmay seem to bemore difficult up front, not just because
of the hassle of learning a language that is syntactically and
conceptually different from a language you already know, but
also because of features such as strong typing that enforce
some discipline in how you write your code. But what seems
like a bug is a feature. Humans, unfortunately, have relatively
limited abilities of short-term memory and concentration,
even if we don’t like to admit it. We cannot track all relevant
metadata about our programs in our heads. Using up working
memory for anything a computer can do for us is counter-
productive, and computers are very good at keeping track of
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data for us, including metadata such as types.
We don’t write Haskell because we’re geniuses — we use

tools like Haskell because they help us. Good tools like Haskell
enable us to work faster, make fewer mistakes, and have more
information about what our code is supposed to do as we read
it.
We use Haskell because it is easier (over the long run) and enables

us to do a better job. That’s it. There’s a ramp-up required in
order to get started, but that can be ameliorated with patience
and a willingness to work through exercises.

OK, but I was just looking for a monad tutorial...

The bad news is looking for an easy route into Haskell and
functional programming is how a lot of people end up think-
ing it’s “too hard” for them. The good news is we have a lot
of experience teaching and we don’t want that to happen to
anyone, but especially not you, gentle reader.

We encourage you to forget what you might already know
about programming and come at this course in Haskell with a
beginner’s mindset. Make yourself an empty vessel, ready to
let the types flow through you.

If you are an experienced programmer, learning Haskell is
more like learning to program all over again. Learning Haskell
imposes new ways of thinking about and structuring programs
on most people already comfortable with an imperative or
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untyped programming language. This makes it harder to
learn not because it is intrinsically harder, but because most
people who have learned at least a couple of programming
languages are accustomed to the process being trivial, and
their expectations have been set in a way that lends itself to
burnout and failure.

If Haskell is your first language, or even if it is not, you may
have noticed a specific problem with many Haskell learning
resources: they assume a certain level of background with
programming, so they frequently explain Haskell concepts in
terms, by analogy or by contrast, of programming concepts
from other languages. This is confusing for the student who
doesn’t know those other languages, but we posit that it is just
as unhelpful for experienced programmers. Most attempts to
compare Haskell with other languages only lead to a superficial
understanding of Haskell, and making analogies to loops and
other such constructs can lead to bad intuitions about how
Haskell code works. For all of these reasons, we have tried to
avoid relying on knowledge of other programming languages.
Just as you can’t achieve fluency in a human language so long
as you are still attempting direct translations of concepts and
structures from your native language to the target language,
it’s best to learn to understand Haskell on its own terms.
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But I’ve heard Haskell is hard...

There’s a wild rumor that goes around the internet from time
to time about needing a Ph.D. in mathematics and an under-
standing of monads just to write “hello, world”2 in Haskell.

We will write “hello, world” in Chapter 3. We’re going to do
some arithmetic before that to get you used to function syntax
and application in Haskell, but you will not need a Ph.D. in
monadology to write it.

In truth, therewill be a monad underlying our “hello, world,”
and by the end of the book, you will understand monads,
but you’ll be interacting with monadic code long before you
understand how it all works. You’ll find, at times, this book
goes into more detail than you strictly need to be able to write
Haskell successfully. There is no problem with that. You do
not need to understand everything in here perfectly on the
first try.

You are not a Spartan warrior who must come back with
your shield or on it. Returning later to investigate things more
deeply is an efficient technique, not a failure.

2Writing “hello, world” in a new programming language is a standard sort of “baby’s
first program,” so the idea here is that if it’s difficult to write a “hello, world” program,
then the language must be impossible. There are languages that have purposely made it
inhumanly difficult to write such programs, but Haskell is not one of them.
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A few words to new programmers

We’ve tried very hard to make this book as accessible as possi-
ble, no matter your level of previous experience. We have kept
comparisons and mentions of other languages to a minimum,
and we promise that if we compare something in Haskell to
something in another language, that comparison is not itself
crucial to understanding the Haskell — it’s just a little extra for
those who do know the other language.

However, especially as the book progresses and the exercises
and projects get more “real,” there are going to be terms and
concepts that we do not have the space to explain fully but
that are relatively well known among programmers. You may
have to do internet searches for terms like JSON. The next
section of this introduction references things that you may not
know about but programmers will — don’t panic. We think
you’ll still get something out of reading it, but if not, it’s not
something to worry about. The fact that you don’t know every
term in this book before you come to it is not a sign that you
can’t learn Haskell or aren’t ready for this: it’s only a sign that
you don’t know everything yet, and since no one does, you’re in
fine company.

Along those same lines, this book does not offer much in-
struction on using the terminal and text editor. The instruc-
tions provided assume you know how to find your way around
your terminal and understand how to do simple tasks like
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make a directory or open a file. Due to the number of text
editors available, we do not provide specific instructions for
any of them.3

If you need help or would like to start getting to know the
communities of functional programmers, there are several
options. The Freenode IRC channel #haskell-beginners has
teachers who will be glad to help you, and they especially
welcome questions regarding specific problems that you are
trying to solve.4 There are also Slack channels and subreddits
where Haskellers congregate, along with a plethora of Haskell-
oriented blogs, many of which are mentioned in footnotes
and recommended readings throughout the book. Many of
our readers also program in languages like Swift and Scala, so
you may want to investigate those communities as well.

Haskevangelism

The rest of this introduction will give some background of
Haskell and will make reference to other programming lan-

3If you’re quite new and unsure what to do about text editors, you might consider
Atom. It’s free, open-source, and configurable. Sublime Text has served Julie well through-
out the writing of the book, but is not free. Chris uses Emacs most of the time; Emacs
is very popular among programmers, but has its own learning curve. Vim is another
popular text editor with its own learning curve. If you have no experience with Emacs or
Vim, we’d really recommend sticking with something like Sublime or Atom for now.

4 Freenode IRC (Internet Relay Chat) is a network of channels for textual chat. There
are other IRC networks around, as well as other group chat platforms, but the Freenode
IRC channels for Haskell are popular meeting places for the Haskell community. There
are several ways to access Freenode IRC, including Irssi and HexChat, if you’re interested
in getting to know the community in their natural habitat.
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guages and styles. If you’re a new programmer, it is possible
not all of this will make sense, and that’s okay. The rest of the
book is written with beginners in mind, and the features we’re
outlining will make more sense as you work through the book.

We’re going to compare Haskell a bit with other languages
to demonstrate why we think using Haskell is valuable. Haskell
is a language in a progression of languages dating back to 1973,
when ML was invented by Robin Milner and others at the
University of Edinburgh. ML was itself influenced by ISWIM,
which was in turn influenced by ALGOL 60 and Lisp. We
mention this lineage because Haskell isn’t new. The most pop-
ular implementation of Haskell, the Glasgow Haskell Compiler
(GHC), is mature and well-made. Haskell brings together some
nice design choices that make for a language that offers more
expressiveness than Ruby, but more type safety than any lan-
guage presently in wide use commercially.

In 1968, the ALGOL68 dialect had the following features
built into the language:

1. User-defined record types.

2. User-defined sum types (unions not limited to simple
enumerations).

3. Switch/case expressions supporting the sum types.

4. Compile-time enforced constant values, declared with =

rather than :=.
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5. Unified syntax for using value and reference types — no
manual pointer dereferencing.

6. Closures with lexical scoping (without this, many func-
tional patterns fall apart).

7. Implementation-agnostic parallelized execution of pro-
cedures.

8. Multi-pass compilation — you can declare stuff after you
use it.

As of the early 21st century, many popular languages used
commercially don’t have anything equivalent to or better than
what ALGOL68 had. We mention this because we believe
technological progress in computer science, programming,
and programming languages is possible, desirable, and critical
to software becoming a true engineering discipline. By that,
we mean that while the phrase “software engineering” is in
common use, engineering disciplines involve the application
of both scientific and practical knowledge to the creation and
maintenance of better systems. As the available materials
change and as knowledge grows, so must engineers.

Haskell leverages more of the developments in program-
ming languages invented since ALGOL68 than most languages
in popular use, but with the added benefit of a mature imple-
mentation and sound design. Sometimes we hear Haskell be-
ing dismissed as “academic” because it is relatively up-to-date
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with the current state of mathematics and computer science
research. In our view, that progress is good and helps us solve
practical problems in modern computing and software design.

Progress is possible and desirable, but it is not monotonic or
inevitable. The history of the world is riddled with examples
of uneven progress. For example, it is estimated that scurvy
killed two million sailors between the years 1500 and 1800.
Western culture has forgotten the cure for scurvy multiple
times. As early as 1614, the Surgeon General of the East In-
dia Company recommended bringing citrus on voyages for
scurvy. It saved lives, but the understanding of why citrus
cured scurvy was incorrect. This led to the use of limes, which
have a lower vitamin C content than lemons, and scurvy re-
turned until ascorbic acid was discovered in 1932. Indiscipline
and stubbornness (the British Navy stuck with limes despite
sailors continuing to die from scurvy) can hold back progress.
We’d rather have a doctor who is willing to understand that
he makes mistakes, will be responsive to new information,
and even actively seek to expand his understanding rather
than one that hunkers down with a pet theory informed by
anecdote.

There are other ways to prevent scurvy, just as there are
other programming languages you can use to write software.
Or perhaps you are an explorer who doesn’t believe scurvy
can happen to you. But packing lemons provides some in-
surance on those long voyages. Similarly, having Haskell in



CONTENTS xxxix

your toolkit, even when it’s not your only tool, provides type
safety and predictability that can improve your software devel-
opment. Buggy software might not literally make your teeth
fall out, but software problems are far from trivial, and when
there are better ways to solve those problems — not perfect,
but better — it’s worth your time to investigate them.

Set your limes aside for now, and join us at the lemonade
stand.

What’s in this book?

This book is more of a course than a book, something to
be worked through. There are exercises sprinkled liberally
throughout the book; we encourage you to do them, even
when they seem simple. Those exercises are where the major-
ity of your epiphanies will come from. No amount of chatter-
ing, no matter how well structured and suited to your temper-
ament, will be as effective as doing the work. If you do get to
a later chapter and find you did not understand a concept or
structure well enough, you may want to return to an earlier
chapter and do more exercises until you understand it.

We believe that spaced repetition and iterative deepening
are effective strategies for learning, and the structure of the
book reflects this. You may notice we mention something
only briefly at first, then return to it over and over. As your
experience with Haskell deepens, you have a base from which
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to move to a deeper level of understanding. Try not to worry
that you don’t understand something completely the first time
we mention it. By moving through the exercises and returning
to concepts, you can develop a solid intuition for functional
programming.

The exercises in the first few chapters are designed to rapidly
familiarize you with basic Haskell syntax and type signatures,
but you should expect exercises to grow more challenging
in each successive chapter. Where possible, reason through
the code samples and exercises in your head first, then type
them out — either into the REPL5 or into a source file — and
check to see if you were right. This will maximize your ability
to understand and reason about programs and about Haskell.
Later exercises may be difficult. If you get stuck on an exercise
for an extended period of time, proceed and return to it at a
later date.

We cover a mix of practical and abstract matters required
to use Haskell for a wide variety of projects. Chris’s experience
is principally with production backend systems and frontend
web applications. Julie is a linguist and teacher by training
and education, and learning Haskell was her first experience
with computer programming. The educational priorities of
this book are biased by those experiences. Our goal is to help

5 This is short for read-eval-print loop, an interactive programming shell that evaluates
expressions and returns results in the same environment. The REPL we’ll be using is
called GHCi — ‘i’ for “interactive.”
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you not just write typesafe functional code but to understand
it on a deep enough level that you can go from here to more
advanced Haskell projects in a variety of ways, depending on
your own interests and priorities.

Each chapter focuses on different aspects of a particular
topic. We start with a short introduction to the lambda calcu-
lus. What does this have to do with programming? All modern
functional languages are based on the lambda calculus, and a
passing familiarity with it will help you down the road with
Haskell. If you’ve understood the lambda calculus, under-
standing the feature known as currying will be a breeze, for
example.

The next few chapters cover basic expressions and functions
in Haskell, some simple operations with strings (text), and a few
essential types. You may feel a strong temptation, especially if
you have programmed previously, to skim or skip those first
chapters. Please do not do this. Even if those first chapters are
covering concepts you’re familiar with, it’s important to spend
time getting comfortable with Haskell’s terse syntax, making
sure you understand the difference between working in the
REPL and working in source files, and becoming familiar with
the compiler’s sometimes quirky error messages. Certainly
you may work quickly through those chapters — just don’t
skip them.

From there, we build both outward and upward so that your
understanding of Haskell both broadens and deepens. When
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you finish this book, you will not just know what monads
are, you will know how to use them effectively in your own
programs and understand the underlying algebra involved.
We promise — you will. We only ask that you do not go on to
write a monad tutorial on your blog that explains how monads
are really just like jalapeno poppers.

In each chapter you can expect:

• additions to your vocabulary of standard functions;

• syntactic patterns that build on each other;

• theoretical foundations so you understand how Haskell
works;

• illustrative examples of how to read Haskell code;

• step-by-step demonstrations of how to write your own
functions;

• explanations of how to read common error messages and
how to avoid those errors;

• exercises of varying difficulty sprinkled throughout;

• definitions of important terms.

We have put definitions at the end of most chapters. Each
term is, of course, defined within the body of the chapter, but
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we added separate definitions at the end as a point of review.
If you’ve taken some time off between one chapter and the
next, the definitions can remind you of what you have already
learned, and, of course, they may be referred to any time you
need a refresher.

There are also recommendations at the end of most chap-
ters for followup reading. They are certainly not required but
are resources we personally found accessible and helpful that
may help you learn more about topics covered in the chapter.

Best practices for examples and exercises

We have tried to include a variety of examples and exercises in
each chapter. While we have made every effort to include only
exercises that serve a clear pedagogical purpose, we recognize
that not all individuals enjoy or learn as much from every
type of demonstration or exercise. Also, since our readers
will necessarily come to the book with different backgrounds,
some exercises may seem too easy or difficult to you but be
just right for someone else. Do your best to work through
as many exercises as seems practical for you. But if you skip
all the types and typeclasses exercises and then find yourself
confused when we get to Monoid, by all means, come back
and do more exercises until you understand.

Here are a few things to keep in mind to get the most out
of them:
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• Examples are usually designed to demonstrate, with real
code, what we’ve just talked or are about to talk about in
further detail.

• You are intended to type all of the examples into the REPL
or a file and load them. We strongly encourage you to
attempt to modify the example and play with the code af-
ter you’ve made it work. Forming hypotheses about what
effect changes will have and verifying them is critical! It
is better to type the code examples and exercises yourself
rather than copy and paste because typing makes you pay
more attention to it.

• Sometimes the examples are designed intentionally to be
broken. Check surrounding prose if you’re confused by
an unexpected error as we will not show you code that
doesn’t work without commenting on the breakage. If it’s
still broken and it’s not supposed to be, you should start
checking your syntax and formatting for errors.

• Not every example is designed to be entered into the
REPL; not every example is designed to be entered into
a file. Once we have explained the syntactic differences
between files and REPL expressions, you are expected to
perform the translation between the two yourself. You
should be accustomed to working with code in an interac-
tive manner by the time you finish the book. You’ll want
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to gradually move away from typing code examples and
exercises, except in limited cases, directly into GHCi and
develop the habit of working in source files. Editing and
modifying code, as you will be doing a lot as you rework
exercises, is easier and more practical in a source file. You
will still load your code into GHCi to run it.

• You may want to keep exercises, especially longer ones, as
named modules. There are several exercises, especially
later in the book, that we return to several times and being
able to reload the work you’ve already done and add only
the new parts will save you a lot of time and grief. We
have tried to note some of the exercises where this will
be especially helpful.

• Exercises at the end of the chapter may include some re-
view questions covering material from previous chapters
and are more or less ordered from least to most challeng-
ing. Your mileage may vary.

• Even exercises that seem easy can increase your fluency
in a topic. We do not fetishize difficulty for difficulty’s
sake. We just want you to understand the topics as well
as possible. That can mean coming at the same problem
from different angles.

• We ask you to write and then rewrite (using different
syntax) a lot of functions. Few problems have only one
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possible solution, and solving the same problem in dif-
ferent ways increases your fluency and comfort with the
way Haskell works (its syntax, its semantics, and in some
cases, its evaluation order).

• Do not feel obligated to do all the exercises in a single
sitting or even in a first pass through the chapter. In fact,
spaced repetition is generally a more effective strategy.

• Some exercises, particularly in the earlier chapters, may
seem very contrived. Well, they are. But they are con-
trived to pinpoint certain lessons. As the book goes on
and you have more Haskell under your belt, the exercises
become less contrived and more like “real Haskell.”

• Another benefit to writing code in a source file and then
loading it into the REPL is that you can write comments
about the process you went through in solving a problem.
Writing out your own thought process can clarify your
thoughts and make the solving of similar problems easier.
At the very least, you can refer back to your comments
and learn from yourself.

• Sometimes we intentionally underspecify function def-
initions. You’ll commonly see things like:

f = undefined
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Even when 𝑓 will probably take named arguments in your
implementation, we’re not going to name them for you.
Nobody will scaffold your code for you in your future
projects, so don’t expect this book to either.



Chapter 1

All You Need is Lambda

Even the greatest
mathematicians, the ones
that we would put into
our mythology of great
mathematicians, had to
do a great deal of leg
work in order to get to
the solution in the end.

Daniel Tammett

1
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1.1 All You Need is Lambda

This chapter provides a very brief introduction to the lambda
calculus, a model of computation devised in the 1930s by
Alonzo Church. A calculus is a method of calculation or rea-
soning; the lambda calculus is one process for formalizing a
method. Like Turing machines, the lambda calculus formal-
izes the concept of effective computability, thus determining
which problems, or classes of problems, can be solved.

You may be wondering where the Haskell is. You may be
contemplating skipping this chapter. You may feel tempted
to skip ahead to the fun stuff when we build a project.
DON’T.
We’re starting from first principles here so that when we

get around to building projects you know what you’re doing.
You don’t start building a house from the attic down; you start
from the foundation. Lambda calculus is your foundation,
because Haskell is a lambda calculus.

1.2 What is functional programming?

Functional programming is a computer programmingparadigm
that relies on functions modeled on mathematical functions.
The essence of functional programming is that programs are
a combination of expressions. Expressions include concrete
values, variables, and also functions. Functions have a more
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specific definition: they are expressions that are applied to
an argument or input, and once applied, can be reduced or
evaluated. In Haskell, and in functional programming more
generally, functions are first-class: they can be used as values
or passed as arguments, or inputs, to yet more functions. We’ll
define these terms more carefully as we progress through the
chapter.

Functional programming languages are all based on the
lambda calculus. Some languages in this general category
incorporate features into the language that aren’t translatable
into lambda expressions. Haskell is a pure functional language,
because it does not. We’ll address this notion of purity more
later in the book, but it isn’t a judgment of the moral worth of
other languages.

The word purity in functional programming is sometimes
also used to mean what is more properly called referential
transparency. Referential transparency means that the same
function, given the same values to evaluate, will always return
the same result in pure functional programming, as they do
in math.

Haskell’s pure functional basis also lends it a high degree
of abstraction and composability. Abstraction allows you to
write shorter, more concise programs by factoring common,
repeated structures into more generic code that can be reused.
Haskell programs are built from separate, independent func-
tions, kind of like LEGO®: the functions are bricks that can be
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assembled and reassembled.
These features also make Haskell’s syntax rather minimalist,

as you’ll soon see.

1.3 What is a function?

If we step back from using the word “lambda,” you most likely
already know what a function is. A function is a relation be-
tween a set of possible inputs and a set of possible outputs. The
function itself defines and represents the relationship. When
you apply a function such as addition to two inputs, it maps
those two inputs to an output — the sum of those numbers.

For example, let’s imagine a function named 𝑓 that defines
the following relations where the first value is the input and
the second is the output:

𝑓(1) = 𝐴
𝑓(2) = 𝐵
𝑓(3) = 𝐶

The input set is {1, 2, 3} and the output set is {𝐴, 𝐵, 𝐶}.1 A
crucial point about how these relations are defined: our hypo-
thetical function will always return the value 𝐴 given the input
1 — no exceptions!

1 For those who would like precise terminology, the input set is known as the domain.
The set of possible outputs for the function is called the codomain. All domains and
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In contrast, the following is not a valid function:

𝑓(1) = 𝑋
𝑓(1) = 𝑌
𝑓(2) = 𝑍

This gets back to the referential transparency we mentioned
earlier: given the same input, the output should be predictable.

Is the following function valid?

𝑓(1) = 𝐴
𝑓(2) = 𝐴
𝑓(3) = 𝐴

Yes, having the same output for more than one input is valid.
Imagine, for example, that you need a function that tests a
positive integer for being less than 10. You’d want it to return
True when the input was less than 10 and False for all other
cases. In that case, several different inputs will result in the
output True; many more will give a result of False. Different
inputs can lead to the same output.

codomains are sets of unique values. The subset of the codomain that contains possible
outputs related to different inputs is known as the image. The mapping between the
domain and the image or codomain need not be one-to-one; in some cases, multiple
input values will map to the same value in the image, as when a function returns either
‘true’ or ‘false’ so that many different inputs map to each of those output values. However,
a given input should not map to multiple outputs.
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What matters here is that the relationship of inputs and
outputs is defined by the function, and that the output is pre-
dictable when you know the input and the function definition.

In the above examples, we didn’t demonstrate a relationship
between the inputs and outputs. Let’s look at an example that
does define the relationship. This function is again named 𝑓 :

𝑓(𝑥) = 𝑥 + 1

This function takes one argument, which we have named
𝑥. The relationship between the input, 𝑥, and the output is
described in the function body. It will add 1 to whatever value
𝑥 is and return that result. When we apply this function to a
value, such as 1, we substitute the value in for 𝑥:

𝑓(1) = 1 + 1

𝑓 applied to 1 equals 1 + 1. That tells us how to map the input
to an output: 1 added to 1 becomes 2:

𝑓(1) = 2

Understanding functions in this way — as a mapping of a
set of inputs to a set of outputs — is crucial to understanding
functional programming.
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1.4 The structure of lambda terms

The lambda calculus has three basic components, or lambda
terms: expressions, variables, and abstractions. The word ex-
pression refers to a superset of all those things: an expression
can be a variable name, an abstraction, or a combination of
those things. The simplest expression is a single variable. Vari-
ables here have no meaning or value; they are only names for
potential inputs to functions.

An abstraction is a function. It is a lambda term that has a
head (a lambda) and a body and is applied to an argument. An
argument is an input value.

Abstractions consist of two parts: the head and the body.
The head of the function is a 𝜆 (lambda) followed by a variable
name. The body of the function is another expression. So, a
simple function might look like this:

𝜆𝑥.𝑥

The variable named in the head is the parameter and binds
all instances of that same variable in the body of the function.
That means, when we apply this function to an argument,
each 𝑥 in the body of the function will have the value of that
argument. We’ll demonstrate this in the next section.

In the previous section, we were talking about functions
called 𝑓 , but the lambda abstraction 𝜆𝑥.𝑥 has no name. It is an
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anonymous function. A named function can be called by name
by another function; an anonymous function cannot.

Let’s break down the basic structure:

λ x . x

^─┬─^

└────── extent of the head of the lambda.

λ x . x

^────── the single parameter of the

function. This binds any

variables with the same name

in the body of the function.

λ x . x

^── body, the expression the lambda

returns when applied. This is a

bound variable.

The dot (.) separates the parameters of the lambda from
the function body.

The abstraction as a whole has no name, but the reason
we call it an abstraction is that it is a generalization, or abstrac-
tion, from a concrete instance of a problem, and it abstracts
through the introduction of names. The names stand for con-
crete values, but by using named variables, we allow for the
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possibility of applying the general function to different values
(or, perhaps even values of different types, as we’ll see later).
When we apply the abstraction to arguments, we replace the
names with values, making it concrete.

Alpha equivalence

Often when people express this function in lambda calculus
you’ll see something like

𝜆𝑥.𝑥

The variable 𝑥 here is not semantically meaningful except in
its role in that single expression. Because of this, there’s a form
of equivalence between lambda terms called alpha equivalence.
This is a way of saying that:

𝜆𝑥.𝑥
𝜆𝑑.𝑑
𝜆𝑧.𝑧

all mean the same thing. They’re all the same function.
Let’s look next at what happens when we apply this abstrac-

tion to a value.
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1.5 Beta reduction

When we apply a function to an argument, we substitute the
input expression for all instances of bound variables within
the body of the abstraction. You also eliminate the head of the
abstraction, since its only purpose was to bind a variable. This
process is called beta reduction.

Let’s use the function we had above:

𝜆𝑥.𝑥

We’ll do our first beta reduction using a number.2 We apply
the function above to 2, substitute 2 for each bound variable
in the body of the function, and eliminate the head:

(𝜆𝑥.𝑥) 2
2

The only bound variable is the single 𝑥, so applying this
function to 2 returns 2. This function is the identity function.3

All it does is accept a single argument 𝑥 and return that same
argument. The 𝑥 has no inherent meaning, but, because it
is bound in the head of this function, when the function is

2The lambda calculus can derive numbers from lambda abstractions, rather than using
the numerals we are familiar with, but the applications can become quite cumbersome
and difficult to read.
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applied to an argument, all instances of 𝑥 within the function
body must have the same value.

Let’s use an example that mixes some arithmetic into our
lambda calculus. We use the parentheses here to clarify that
the body expression is 𝑥+1. In otherwords, we are not applying
the function to the 1:

(𝜆𝑥.𝑥 + 1)

What is the result if we apply this abstraction to 2? How
about to 10?

Beta reduction is this process of applying a lambda term
to an argument, replacing the bound variables with the value
of the argument, and eliminating the head. Eliminating the
head tells you the function has been applied.

We can also apply our identity function to another lambda
abstraction:

(𝜆𝑥.𝑥)(𝜆𝑦.𝑦)

In this case, we’d substitute the entire abstraction in for 𝑥.
We’ll use a new syntax here, [𝑥 ∶= 𝑧], to indicate that 𝑧 will be
substituted for all occurrences of 𝑥 (here 𝑧 is the function 𝜆𝑦.𝑦).
We reduce this application like this:

3 Note that this is the same as the identity function in mathematical notation: u�(u�) = u�.
One difference is that u�(u�) = u� is a declaration involving a function named u� while the
above lambda abstraction is a function.



CHAPTER 1. ANYTHING FROM ALMOST NOTHING 12

(𝜆𝑥.𝑥)(𝜆𝑦.𝑦)
[𝑥 ∶= (𝜆𝑦.𝑦)]

𝜆𝑦.𝑦

Our final result is another identity function. There is no
argument to apply it to, so we have nothing to reduce.

Once more, but this time we’ll add another argument:

(𝜆𝑥.𝑥)(𝜆𝑦.𝑦)𝑧

Applications in the lambda calculus are left associative. That
is, unless specific parentheses suggest otherwise, they associate,
or group, to the left. So, this:

(𝜆𝑥.𝑥)(𝜆𝑦.𝑦)𝑧

can be rewritten as:

((𝜆𝑥.𝑥)(𝜆𝑦.𝑦))𝑧

Onward with the reduction:

((𝜆𝑥.𝑥)(𝜆𝑦.𝑦))𝑧
[𝑥 ∶= (𝜆𝑦.𝑦)]

(𝜆𝑦.𝑦)𝑧
[𝑦 ∶= 𝑧]

𝑧
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We can’t reduce this any further as there is nothing left to
apply, and we know nothing about 𝑧.

We’ll look at functions below that have multiple heads and
also free variables (that is, variables in the body that are not
bound by the head), but the basic process will remain the same.
The process of beta reduction stops when there are either no
more heads, or lambdas, left to apply or no more arguments
to apply functions to. A computation therefore consists of an
initial lambda expression (or two, if you want to separate the
function and its input) plus a finite sequence of lambda terms,
each deduced from the preceding term by one application of
beta reduction. We keep following the rules of application,
substituting arguments in for bound variables until there are
no more heads left to evaluate or no more arguments to apply
them to.

Free variables

The purpose of the head of the function is to tell us which
variables to replace when we apply our function, that is, to
bind the variables. A bound variable must have the same value
throughout the expression.

But sometimes the body expression has variables that are
not named in the head. We call those variables free variables.
In the following expression:
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𝜆𝑥.𝑥𝑦

The 𝑥 in the body is a bound variable because it is named in
the head of the function, while the 𝑦 is a free variable because
it is not. When we apply this function to an argument, nothing
can be done with the 𝑦. It remains irreducible.

That whole abstraction can be applied to an argument, 𝑧,
like this: (𝜆𝑥.𝑥𝑦)𝑧. We’ll show an intermediate step, using the
:= syntax we introduced above, that most lambda calculus
literature does not show:

1. (𝜆𝑥.𝑥𝑦)𝑧
We apply the lambda to the argument 𝑧.

2. (𝜆[𝑥 ∶= 𝑧].𝑥𝑦)
Since 𝑥 is the bound variable, all instances of 𝑥 in the body
of the function will be replaced with 𝑧. The head will be
eliminated, and we replace any 𝑥 in the body with a 𝑧.

3. 𝑧𝑦
The head has been applied away, and there are no more
heads or bound variables. Since we know nothing about
𝑧 or 𝑦, we can reduce this no further.

Note that alpha equivalence does not apply to free vari-
ables. That is, 𝜆𝑥.𝑥𝑧 and 𝜆𝑥.𝑥𝑦 are not equivalent because 𝑧
and 𝑦 might be different things. However, 𝜆𝑥𝑦.𝑦𝑥 and 𝜆𝑎𝑏.𝑏𝑎
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are equivalent due to alpha equivalence, as are 𝜆𝑥.𝑥𝑧 and 𝜆𝑦.𝑦𝑧
because the free variable is left alone.

1.6 Multiple arguments

Each lambda can only bind one parameter and can only accept
one argument. Functions that require multiple arguments
have multiple, nested heads. When you apply it once and
eliminate the first (leftmost) head, the next one is applied and
so on. This formulation was originally discovered by Moses
Schönfinkel in the 1920s but was later rediscovered and named
after Haskell Curry and is commonly called currying.

What we mean by this description is that the following:

𝜆𝑥𝑦.𝑥𝑦

is a convenient shorthand for two nested lambdas (one for
each argument, 𝑥 and 𝑦):

𝜆𝑥.(𝜆𝑦.𝑥𝑦)

When you apply the first argument, you’re binding 𝑥, elimi-
nating the outer lambda, and have 𝜆𝑦.𝑥𝑦 with x being whatever
the outer lambda was bound to.

To try to make this a little more concrete, let’s suppose
that we apply these lambdas to specific values. First, a simple
example with the identity function:
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1. 𝜆𝑥.𝑥

2. (𝜆𝑥.𝑥) 1

3. [𝑥 ∶= 1]

4. 1

Now let’s look at a “multiple” argument lambda:

1. 𝜆𝑥𝑦.𝑥𝑦

2. (𝜆𝑥𝑦.𝑥𝑦) 1 2

3. (𝜆𝑥.(𝜆𝑦.𝑥𝑦)) 1 2

4. [𝑥 ∶= 1]

5. (𝜆𝑦.1𝑦) 2

6. [𝑦 ∶= 2]

7. 1 2

That wasn’t too interesting because it’s like nested identity
functions! We can’t meaningfully apply a 1 to a 2. Let’s try
something different:

1. 𝜆𝑥𝑦.𝑥𝑦

2. (𝜆𝑥𝑦.𝑥𝑦)(𝜆𝑧.𝑎) 1
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3. (𝜆𝑥.(𝜆𝑦.𝑥𝑦))(𝜆𝑧.𝑎) 1

4. [𝑥 ∶= (𝜆𝑧.𝑎)]

5. (𝜆𝑦.(𝜆𝑧.𝑎)𝑦) 1

6. [𝑦 ∶= 1]

7. (𝜆𝑧.𝑎) 1 We still can apply this one more time.

8. [𝑧 ∶= 1] But there is no 𝑧 in the body of the function, so
there is nowhere to put a 1. We eliminate the head, and
the final result is

9. 𝑎

It’s more common in academic lambda calculus materi-
als to refer to abstract variables rather than concrete values.
The process of beta reduction is the same, regardless. The
lambda calculus is a process or method, like a game with a few
simple rules for transforming lambdas, but no specific mean-
ing. We’ve introduced concrete values to make the reduction
somewhat easier to see.

The next example uses only abstract variables. Due to al-
pha equivalence, you sometimes see expressions in lambda
calculus literature such as:

(𝜆𝑥𝑦.𝑥𝑥𝑦)(𝜆𝑥.𝑥𝑦)(𝜆𝑥.𝑥𝑧)



CHAPTER 1. ANYTHING FROM ALMOST NOTHING 18

The substitution process can become a tangle of 𝑥s that are
not the same 𝑥 because each was bound by a different head. To
help make the reduction easier to read we’re going to use dif-
ferent variables in each abstraction, but it’s worth emphasizing
that the name of the variable (the letter) has no meaning or
significance:

1. (𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧))(𝜆𝑚𝑛.𝑚)(𝜆𝑝.𝑝)

2. (𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥𝑧(𝑦𝑧))(𝜆𝑚.𝜆𝑛.𝑚)(𝜆𝑝.𝑝)
We’ve not reduced or applied anything here, but made
the currying explicit.

3. (𝜆𝑦.𝜆𝑧.(𝜆𝑚.𝜆𝑛.𝑚)𝑧(𝑦𝑧))(𝜆𝑝.𝑝)
Our first reduction stepwas to apply the outermost lambda,
which was binding the 𝑥, to the first argument, (𝜆𝑚.𝜆𝑛.𝑚).

4. 𝜆𝑧.(𝜆𝑚.𝜆𝑛.𝑚)(𝑧)((𝜆𝑝.𝑝)𝑧)
We applied the 𝑦 and replaced the single occurrence of
𝑦 with the next argument, the term 𝜆𝑝.𝑝. The outermost
lambda binding 𝑧 is, at this point, irreducible because it
has no argument to apply to. What remains is to go inside
the terms one layer at a time until we find something
reducible.

5. 𝜆𝑧.(𝜆𝑛.𝑧)((𝜆𝑝.𝑝)𝑧)
We can apply the lambda binding 𝑚 to the argument 𝑧.
We keep searching for terms we can apply. The next thing
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we can apply is the lambda binding 𝑛 to the lambda term
((𝜆𝑝.𝑝)𝑧).

6. 𝜆𝑧.𝑧
In the final step, the reduction takes a turn that might look
slightly odd. Here the outermost, leftmost reducible term
is 𝜆𝑛.𝑧 applied to the entirety of ((𝜆𝑝.𝑝)𝑧). As we saw in
an example above, it doesn’t matter what 𝑛 got bound to,
𝜆𝑛.𝑧 unconditionally tosses the argument and returns 𝑧.
So, we are left with an irreducible lambda expression.

Intermission: Equivalence Exercises

We’ll give you a lambda expression. Keeping in mind both
alpha equivalence and how multiple heads are nested, choose
an answer that is equivalent to the listed lambda term.

1. 𝜆𝑥𝑦.𝑥𝑧

a) 𝜆𝑥𝑧.𝑥𝑧

b) 𝜆𝑚𝑛.𝑚𝑧

c) 𝜆𝑧.(𝜆𝑥.𝑥𝑧)

2. 𝜆𝑥𝑦.𝑥𝑥𝑦

a) 𝜆𝑚𝑛.𝑚𝑛𝑝

b) 𝜆𝑥.(𝜆𝑦.𝑥𝑦)
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c) 𝜆𝑎.(𝜆𝑏.𝑎𝑎𝑏)

3. 𝜆𝑥𝑦𝑧.𝑧𝑥

a) 𝜆𝑥.(𝜆𝑦.(𝜆𝑧.𝑧))

b) 𝜆𝑡𝑜𝑠.𝑠𝑡

c) 𝜆𝑚𝑛𝑝.𝑚𝑛

1.7 Evaluation is simplification

There are multiple normal forms in lambda calculus, but here
when we refer to normal form we mean beta normal form. Beta
normal form iswhen you cannot beta reduce (apply lambdas to
arguments) the terms any further. This corresponds to a fully
evaluated expression, or, in programming, a fully executed
program. This is important to know so that you know when
you’re done evaluating an expression. It’s also valuable to have
an appreciation for evaluation as a form of simplification when
you get to the Haskell code as well.

Don’t be intimidated by calling the reduced form of an
expression its normal form. When you want to say “2,” do
you say 2000/1000 each time or do you say 2? The expression
2000/1000 is not fully evaluated because the division function
has been fully applied (two arguments), so it could be reduced,
or evaluated. In other words, there’s a simpler form it can be
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reduced to — the number two. The normal form, therefore,
is 2.

The point is that if you have a function, such as (/), satu-
rated (all arguments applied) but you haven’t yet simplified it
to the final result then it is not fully evaluated, only applied.
Application is what makes evaluation/simplification possible.

Similarly, the normal form of the following is 600:

(10 + 2) ∗ 100/2

We cannot reduce the number 600 any further. There are
no more functions that we can beta reduce. Normal form
means there is nothing left that can be reduced.

The identity function, 𝜆𝑥.𝑥, is fully reduced (that is, in nor-
mal form) because it hasn’t yet been applied to anything. How-
ever, (𝜆𝑥.𝑥)𝑧 is not in beta normal form because the identity
function hasn’t been applied to a free variable 𝑧 and hasn’t
been reduced. If we did reduce it, the final result, in beta
normal form, would be 𝑧.

1.8 Combinators

A combinator is a lambda term with no free variables. Combi-
nators, as the name suggests, serve only to combine the argu-
ments they are given.
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So the following are combinators because every term in the
body occurs in the head:

1. 𝜆𝑥.𝑥
𝑥 is the only variable and is bound because it is bound by
the enclosing lambda.

2. 𝜆𝑥𝑦.𝑥

3. 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧)

And the following are not because there’s one or more free
variables:

1. 𝜆𝑦.𝑥
Here 𝑦 is bound (it occurs in the head of the lambda) but
𝑥 is free.

2. 𝜆𝑥.𝑥𝑧
𝑥 is bound and is used in the body, but 𝑧 is free.

We won’t have a lot to say about combinators per se. The
point is to call out a special class of lambda expressions that
can only combine the arguments it is given, without injecting
any new values or random data.
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1.9 Divergence

Not all reducible lambda terms reduce neatly to a beta normal
form. This isn’t because they’re already fully reduced, but
rather because they diverge. Divergence here means that the
reduction process never terminates or ends. Reducing terms
should ordinarily converge to beta normal form, and diver-
gence is the opposite of convergence, or normal form. Here’s
an example of a lambda term called omega that diverges:

1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
𝑥 in the first lambda’s head becomes the second lambda

2. ([𝑥 ∶= (𝜆𝑥.𝑥𝑥)]𝑥𝑥)
Using [𝑣𝑎𝑟 ∶= 𝑒𝑥𝑝𝑟] to denote what 𝑥 has been bound to.

3. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
Substituting (𝜆𝑥.𝑥𝑥) for each occurence of 𝑥. We’re back
to where we started and this reduction process never ends
— we can say omega diverges.

This matters in programming because terms that diverge
are terms that don’t produce an answer or meaningful result.
Understanding what will terminate means understanding what
programs will do useful work and return the answer we want.
We’ll cover this idea more later.
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1.10 Summary

The main points you should take away from this chapter are:

• Functional programming is based on expressions that in-
clude variables or constant values, expressions combined
with other expressions, and functions.

• Functions have a head and a body and are those expres-
sions that can be applied to arguments and reduced, or
evaluated, to a result.

• Variables may be bound in the function declaration, and
every time a bound variable shows up in a function, it has
the same value.

• All functions take one argument and return one result.

• Functions are a mapping of a set of inputs to a set of
outputs. Given the same input, they always return the
same result.

These things all apply to Haskell, as they do to any pure
functional languages, because semantically Haskell is a lambda
calculus. Haskell is a typed lambda calculus — more on types
later — with a lot of surface-level decoration sprinkled on top,
to make it easier for humans to write, but the semantics of the
core language are the same as the lambda calculus. That is,
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the meaning of Haskell programs is centered around evaluat-
ing expressions rather than executing instructions, although
Haskell has a way to execute instructions, too. We will still
be making reference to the lambda calculus when we write
about all the later, apparently very complex topics: function
composition, monads, parser combinators. Don’t worry if you
don’t know those words yet. If you understood this chapter,
you have the foundation you need to understand them all.

1.11 Chapter Exercises

We’re going to do the following exercises a bit differently than
what you’ll see in the rest of the book, as we will be providing
some answers and explanations for the questions below.

Combinators Determine if each of the following are combi-
nators or not.

1. 𝜆𝑥.𝑥𝑥𝑥

2. 𝜆𝑥𝑦.𝑧𝑥

3. 𝜆𝑥𝑦𝑧.𝑥𝑦(𝑧𝑥)

4. 𝜆𝑥𝑦𝑧.𝑥𝑦(𝑧𝑥𝑦)

5. 𝜆𝑥𝑦.𝑥𝑦(𝑧𝑥𝑦)
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Normal form or diverge? Determine if each of the following
can be reduced to a normal form or if they diverge.

1. 𝜆𝑥.𝑥𝑥𝑥

2. (𝜆𝑧.𝑧𝑧)(𝜆𝑦.𝑦𝑦)

3. (𝜆𝑥.𝑥𝑥𝑥)𝑧

Beta reduce Evaluate (that is, beta reduce) each of the fol-
lowing expressions to normal form. We strongly recommend
writing out the steps on paper with a pencil or pen.

1. (𝜆𝑎𝑏𝑐.𝑐𝑏𝑎)𝑧𝑧(𝜆𝑤𝑣.𝑤)

2. (𝜆𝑥.𝜆𝑦.𝑥𝑦𝑦)(𝜆𝑎.𝑎)𝑏

3. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧𝑞)

4. (𝜆𝑧.𝑧)(𝜆𝑧.𝑧𝑧)(𝜆𝑧.𝑧𝑦)
Hint: alpha equivalence.

5. (𝜆𝑥.𝜆𝑦.𝑥𝑦𝑦)(𝜆𝑦.𝑦)𝑦

6. (𝜆𝑎.𝑎𝑎)(𝜆𝑏.𝑏𝑎)𝑐

7. (𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧))(𝜆𝑥.𝑧)(𝜆𝑥.𝑎)
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1.12 Answers

Please note: At this time, this is the only chapter in the book for
which we have provided answers. We provide them here due
to the importance of being able to check your understanding
of this material and the relative difficulty of checking answers
that you probably wrote by hand in a notebook.

Equivalence Exercises

1. b

2. c

3. b

Combinators

1. 𝜆𝑥.𝑥𝑥𝑥 is indeed a combinator, it refers only to the variable
x which is introduced as an argument.

2. 𝜆𝑥𝑦.𝑧𝑥 is not a combinator, the variable z was not intro-
duced as an argument and is thus a free variable.

3. 𝜆𝑥𝑦𝑧.𝑥𝑦(𝑧𝑥) is a combinator, all terms are bound. The head
is 𝜆𝑥𝑦𝑧. and the body is 𝑥𝑦(𝑧𝑥). None of the arguments in
the head have been applied so it’s irreducible. The vari-
ables x, y, and z are all bound in the head and are not free.
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This makes the lambda a combinator - no occurrences of
free variables.

4. 𝜆𝑥𝑦𝑧.𝑥𝑦(𝑧𝑥𝑦) is a combinator. The lambda has the head
𝜆𝑥𝑦𝑧. and the body: 𝑥𝑦(𝑧𝑥𝑦). Again, none of the arguments
have been applied so it’s irreducible. All that is different
is that the bound variable y is referenced twice rather
than once. There are still no free variables so this is also a
combinator.

5. 𝜆𝑥𝑦.𝑥𝑦(𝑧𝑥𝑦) is not a combinator, z is free. Note that z isn’t
bound in the head.

Normal form or diverge?

1. 𝜆𝑥.𝑥𝑥𝑥 doesn’t diverge, has no further reduction steps. If
it had been applied to itself, it would diverge, but by itself
does not as it is already in normal form.

2. (𝜆𝑧.𝑧𝑧)(𝜆𝑦.𝑦𝑦) diverges, it never reaches a point where the
reduction is done. This is the omega term we showed you
earlier, with different names for the bindings. It’s alpha
equivalent to (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥).

3. (𝜆𝑥.𝑥𝑥𝑥)𝑧 doesn’t diverge, it reduces to 𝑧𝑧𝑧.

Beta reduce The following are evaluated in normal order, which
is where terms in the outer-most and left-most positions get
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evaluated (applied) first. This means that if all terms are in
the outermost position (none are nested), then it’s left-to-right
application order.

1. (𝜆𝑎𝑏𝑐.𝑐𝑏𝑎)𝑧𝑧(𝜆𝑤𝑣.𝑤)
(𝜆𝑎.𝜆𝑏.𝜆𝑐.𝑐𝑏𝑎)(𝑧)𝑧(𝜆𝑤.𝜆𝑣.𝑤)
(𝜆𝑏.𝜆𝑐.𝑐𝑏𝑧)(𝑧)(𝜆𝑤.𝜆𝑣.𝑤)
(𝜆𝑐.𝑐𝑧𝑧)(𝜆𝑤.𝜆𝑣.𝑤)
(𝜆𝑤.𝜆𝑣.𝑤)(𝑧)𝑧
(𝜆𝑣.𝑧)(𝑧)
𝑧

2. (𝜆𝑥.𝜆𝑦.𝑥𝑦𝑦)(𝜆𝑎.𝑎)𝑏
(𝜆𝑦(𝜆𝑎.𝑎)𝑦𝑦)(𝑏)
(𝜆𝑎.𝑎)(𝑏)𝑏
𝑏𝑏

3. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧𝑞)
(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧𝑞)
(𝜆𝑧.𝑧𝑞)(𝜆𝑧.𝑧𝑞)
(𝜆𝑧.𝑧𝑞)(𝑞)
𝑞𝑞

4. (𝜆𝑧.𝑧)(𝜆𝑧.𝑧𝑧)(𝜆𝑧.𝑧𝑦)
(𝜆𝑧.𝑧𝑧)(𝜆𝑧.𝑧𝑦)
(𝜆𝑧.𝑧𝑦)(𝜆𝑧.𝑧𝑦)
(𝜆𝑧.𝑧𝑦)(𝑦)
𝑦𝑦
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5. (𝜆𝑥.𝜆𝑦.𝑥𝑦𝑦)(𝜆𝑦.𝑦)𝑦
(𝜆𝑦(𝜆𝑦.𝑦)𝑦𝑦)(𝑦)
(𝜆𝑦.𝑦)(𝑦)𝑦
𝑦𝑦

6. (𝜆𝑎.𝑎𝑎)(𝜆𝑏.𝑏𝑎)𝑐
(𝜆𝑏.𝑏𝑎)(𝜆𝑏.𝑏𝑎)𝑐
(𝜆𝑏.𝑏𝑎)(𝑎)𝑐
𝑎𝑎𝑐

7. Steps we took

a) (𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧))(𝜆𝑥.𝑧)(𝜆𝑥.𝑎)

b) (𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥𝑧(𝑦𝑧))(𝜆𝑥.𝑧)(𝜆𝑥.𝑎)

c) (𝜆𝑦.𝜆𝑧1(𝜆𝑥.𝑧)𝑧1(𝑦𝑧1))(𝜆𝑥.𝑎)

d) (𝜆𝑧1.(𝜆𝑥.𝑧)(𝑧1)((𝜆𝑥.𝑎)𝑧1))

e) (𝜆𝑧1.𝑧((𝜆𝑥.𝑎)(𝑧1)))

f) (𝜆𝑧1.𝑧𝑎) The 𝑧1 notation allows us to distinguish two
variables named 𝑧 that came from different places.
One is bound by the first head; the second is a free
variable in the second lambda expression.

How we got there, step by step

a) Our expression we’ll reduce.

b) Add the implied lambdas to introduce each argument.
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c) Apply the leftmost 𝑥 and bind it to (𝜆𝑥.𝑧), rename
leftmost 𝑧 to 𝑧1 for clarity to avoid confusion with the
other z. Hereafter, “z” is exclusively the z in (𝜆𝑥.𝑧).

d) Apply 𝑦, it gets bound to (𝜆𝑥.𝑎).

e) Can’t apply z1 to anything, evaluation strategy is nor-
mal order so leftmost outermost is the order of the
day. Our leftmost, outermost lambda has no remain-
ing arguments to be applied so we now examine the
terms nested within to see if they are in normal form.
(𝜆𝑥.𝑧) gets applied to 𝑧1, tosses the 𝑧1 away and returns
𝑧. 𝑧 is now being applied to ((𝜆𝑥.𝑎)(𝑧1)).

f) Cannot reduce 𝑧 further, it’s free and we know noth-
ing, so we go inside yet another nesting and reduce
((𝜆𝑥.𝑎)(𝑧1)). 𝜆𝑥.𝑎 gets applied to 𝑧1, but tosses it away
and returns the free variable 𝑎. The 𝑎 is now part of
the body of that expression. All of our terms are in
normal order now.

1.13 Definitions

1. The lambda in lambda calculus is the greek letter 𝜆 used
to introduce, or abstract, arguments for binding in an
expression.

2. A lambda abstraction is an anonymous function or lambda
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term.

(𝜆𝑥.𝑥 + 1)

The head of the expression, 𝜆𝑥., abstracts out the term
𝑥 + 1. We can apply it to any 𝑥 and recompute different
results for each 𝑥 we applied the lambda to.

3. Application is how one evaluates or reduces lambdas, this
binds the argument to whatever the lambda was applied
to. Computations are performed in lambda calculus by
applying lambdas to arguments until you run out of ar-
guments to apply lambdas to.

(𝜆𝑥.𝑥)1

This example reduces to 1, the identity 𝜆𝑥.𝑥 was applied
to the value 1, 𝑥 was bound to 1, and the lambda’s body is
𝑥, so it just kicks the 1 out. In a sense, applying the 𝜆𝑥.𝑥
consumed it. We reduced the amount of structure we had.

4. Lambda calculus is a formal system for expressing pro-
grams in terms of abstraction and application.

5. Normal order is a common evaluation strategy in lambda
calculi. Normal order means evaluating (ie, applying or
beta reducing) the leftmost outermost lambdas first, eval-
uating terms nested within after you’ve run out of argu-
ments to apply. Normal order isn’t how Haskell code is
evaluated - it’s call-by-need instead. We’ll explain this more
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later. Answers to the evaluation exercises were written in
normal order.

1.14 Follow-up resources

These are optional and intended only to offer suggestions on
how you might deepen your understanding of the preceding
topic. Ordered approximately from most approachable to
most thorough.

1. Raul Rojas. A Tutorial Introduction to the Lambda Calcu-
lus
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

2. Henk Barendregt; Erik Barendsen. Introduction to
Lambda Calculus
http://www.cse.chalmers.se/research/group/logic/

TypesSS05/Extra/geuvers.pdf

3. Jean-Yves Girard; P. Taylor; Yves Lafon. Proofs and Types
http://www.paultaylor.eu/stable/prot.pdf

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
http://www.paultaylor.eu/stable/prot.pdf
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2.1 Hello, Haskell

Welcome to your first step in learning Haskell. Before you be-
gin with the main course of this book, you will need to install
the necessary tools in order to complete the exercises as you
work through the book. At this time, we recommend installing
Stack, which will install GHC Haskell, the interactive environ-
ment called GHCi, and a project build tool and dependency
manager all at once.

You can find the installation instructions online at http://
docs.haskellstack.org/en/stable/README/, and there is also great
documentation that can help you get started using Stack. You
can also find installation instructions at https://github.com/

bitemyapp/learnhaskell; there you will also find advice on learn-
ing Haskell and links to more exercises that may supplement
what you’re doing with this book.

The rest of this chapterwill assume that youhave completed
the installation and are ready to begin working. In this chapter,
you will

• use Haskell code in the interactive environment and also
from source files;

• understand the building blocks of Haskell: expressions
and functions;

http://docs.haskellstack.org/en/stable/README/
http://docs.haskellstack.org/en/stable/README/
https://github.com/bitemyapp/learnhaskell
https://github.com/bitemyapp/learnhaskell
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• learn some features of Haskell syntax and conventions of
good Haskell style;

• modify simple functions.

2.2 Interacting with Haskell code

Haskell offers two primary ways of working with code. The
first is inputting it directly into the interactive environment
known as GHCi, or the REPL. The second is typing it into a
text editor, saving, and then loading that source file into GHCi.
This section offers an introduction to each method.

Using the REPL

REPL is an acronym short for read-eval-print loop. REPLs are
interactive programming environments where you can input
code, have it evaluated, and see the result. They originated
with Lisp but are now common to modern programming
languages including Haskell.

Assuming you’ve completed your installation, you should
be able to open your terminal or command prompt, type ghci

or stack ghci1, hit enter, and see something like the following:

GHCi, version 7.10.3:

1 If you have installed GHC outside of Stack, then you should be able to open it with
just the ghci command, but if your only GHC installation is what Stack installed, then you
will need stack ghci.
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http://www.haskell.org/ghc/ :? for help

Prelude>

If you used stack ghci2 therewas probably a lotmore startup
text, and the prompt might be something other than Prelude.
That’s all fine. You may also have a different version of GHC.
As long as your GHC version is between 7.8 and 8.0, it should
be compatible with everything in this book.

Now try entering some simple arithmetic at your prompt:

Prelude> 2 + 2

4

Prelude> 7 < 9

True

Prelude> 10 ^ 2

100

If you can enter simple equations at the prompt and get the
expected results, congratulations — you are now a functional
programmer! More to the point, your REPL is working well
and you are ready to proceed.

To exit GHCi, use the command :quit or :q.

What is Prelude? Prelude is a library of standard functions.
Opening GHCi or Stack GHCi automatically loads those func-

2At this point in the book, you don’t need to use stack ghci, but in later chapters when
we’re importing a lot of modules and building projects, it will be much more convenient
to use it.
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tions so they can be used without needing to do anything
special. You can turn Prelude off, as we will show you later, and
there are alternative preludes, though we won’t use them in
the book. Prelude is contained in Haskell’s base package, which
can be found at https://www.stackage.org/package/base. You’ll
see us mention sometimes that something or other is “in base”
which means it’s contained in that large standard package.

GHCi commands

Throughout the book, we’ll be using GHCi commands, such
as :quit and :info in the REPL. Special commands that only
GHCi understands begin with the : character. :quit is not
Haskell code; it’s just a GHCi feature.

We will present them in the text spelled out, but they can
generally be abbreviated to just the colon and the first letter.
That is, :quit becomes :q, :info becomes :i and so forth. It’s
good to type the word out the first few times you use it, to help
you remember what the abbreviation stands for, but after a
few mentions, we will start abbreviating them.

Working from source files

As nice as REPLs are, usually you want to store code in a file
so you can build it incrementally. Almost all nontrivial pro-
gramming you do will involve editing libraries or applications
made of nested directories containing files with Haskell code

https://www.stackage.org/package/base
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in them. The basic process is to have the code and imports
(more on that later) in a file, load it into the REPL, and interact
with it there as you’re building, modifying, and testing it.

You’ll need a file named test.hs. The .hs file extension de-
notes a Haskell source code file. Depending on your setup and
the workflow you’re comfortable with, you can make a file by
that name and then open it in your text editor or you can open
your text editor, open a new file, and then save the file with
that file name.

Then enter the following code into the file and save it:

sayHello :: String -> IO ()

sayHello x =

putStrLn ("Hello, " ++ x ++ "!")

Here, :: is a way to write down a type signature. You can
think of it as saying has the type. So, sayHello has the type String

-> IO (). These first chapters are focused on syntax, and we’ll
talk about types in a later chapter.

Then in the samedirectorywhere you’ve stored your test.hs
file, open your ghci REPL and do the following:

Prelude> :load test.hs

Prelude> sayHello "Haskell"

Hello, Haskell!

Prelude>
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After using :load to load your test.hs, the sayHello function
is visible in the REPL and you can pass it a string argument,
such as “Haskell” (note the quotation marks), and see the out-
put.

You may notice that after loading code from a source file,
the GHCi prompt is no longer Prelude>. To return to the
Prelude>prompt, use the command :m, which is short for :module.
This will unload the file from GHCi, so the code in that file
will no longer be in scope in your REPL.

2.3 Understanding expressions

Everything in Haskell is an expression or declaration. Expres-
sions may be values, combinations of values, and/or functions
applied to values. Expressions evaluate to a result. In the case
of a literal value, the evaluation is trivial as it only evaluates
to itself. In the case of an arithmetic equation, the evaluation
process is the process of computing the operator and its ar-
guments, as you might expect. But, even though not all of
your programs will be about doing arithmetic, all of Haskell’s
expressions work in a similar way, evaluating to a result in a
predictable, transparent manner. Expressions are the building
blocks of our programs, and programs themselves are one big
expression made of smaller expressions.

Regarding declarations, it suffices to say for now that they
are top-level bindings which allows us to name expressions.
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We can then use those names to refer to them multiple times
without copying and pasting the expressions.

The following are all expressions:

1

1 + 1

"Icarus"

Each can be examined in the GHCi REPL by entering the
code at the prompt, then hitting ‘enter’ to see the result of
evaluating the expression. The numeric value 1, for example,
has no further reduction step, so it stands for itself.

If you haven’t already, open up your terminal and get your
REPL going to start following along with the code examples.

When we enter this into GHCi:

Prelude> 1

1

We see 1 printed because it cannot be reduced any further.
In the next example, GHCi reduces the expression 1 + 2 to

3, then prints the number 3. The reduction terminates with
the value 3 because there are no more terms to evaluate:

Prelude> 1 + 2

3
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Expressions can be nested in numbers limited only by our
willingness to take the time to write them down, much like in
arithmetic:

Prelude> (1 + 2) * 3

9

Prelude> ((1 + 2) * 3) + 100

109

You can keep expanding on this, nesting as many expres-
sions as you’d like and evaluating them. But, we don’t have to
limit ourselves to expressions such as these.

Normal form We say that expressions are in normal form
when there are no more evaluation steps that can be taken,
or, put differently, when they’ve reached an irreducible form.
The normal form of 1 + 1 is 2. Why? Because the expression 1

+ 1 can be evaluated or reduced by applying the addition oper-
ator to the two arguments. In other words, 1 + 1 is a reducible
expression, while 2 is an expression but is no longer reducible
— it can’t evaluate into anything other than itself. Reducible ex-
pressions are also called redexes. While we will generally refer
to this process as evaluation or reduction, you may also hear
it called “normalizing” or “executing” an expression, though
these are somewhat imprecise.
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2.4 Functions

Expressions are the most basic unit of a Haskell program, and
functions are a specific type of expression. Functions in Haskell
are related to functions in mathematics, which is to say they
map an input or set of inputs to an output. A function is an
expression that is applied to an argument and always returns a
result. Because they are built purely of expressions, they will
always evaluate to the same result when given the same values.

As in the lambda calculus, all functions in Haskell take one
argument and return one result. The way to think of this is that,
in Haskell, when it seems we are passing multiple arguments to
a function, we are actually applying a series of nested functions,
each to one argument. This is called currying.

You may have noticed that the expressions we’ve looked
at so far use literal values with no variables or abstractions.
Functions allow us to abstract the parts of code we’d want to
reuse for different literal values. Instead of nesting addition
expressions, for example, we could write a function that would
add the value we wanted wherever we called that function.

For example, say youhad a bunch of expressions youneeded
to multiply by 3. You could keep entering them as individual
expressions like this:

Prelude> (1 + 2) * 3
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9

Prelude> (4 + 5) * 3

27

Prelude> (10 + 5) * 3

45

But you don’t want to do that. Functions are how we factor
out the pattern into something we can reuse with different in-
puts. You do that by naming the function and introducing an
independent variable as the argument to the function. Func-
tions can also appear in the expressions that form the bodies
of other functions or be used as arguments to functions, just
as any other value can be.

In this case, we have a series of expressions that we want to
multiply by 3. Let’s think in terms of a function: what part is
common to all the expressions? What part varies? We know we
have to give functions a name and apply them to an argument,
so what could we call this function and what sort of argument
might we apply it to?

The common pattern is the * 3 bit. The part that varies
is the addition expression before it, so we will make that a
variable. Wewill nameour function and apply it to the variable.
When we input a value for the variable, our function will
evaluate that, multiply it by 3, and return a result. In the next
section, we will formalize this into a Haskell function.
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Defining functions

Function definitions all share a few things in common. First,
they start with the name of the function. This is followed by
the formal parameters3 of the function, separated only by white
space. Next there is an equal sign, which expresses equality of
the terms. Finally there is an expression that is the body of
the function and can be evaluated to return a value.

Defining functions in a Haskell source code file and in GHCi
are a little different. To introduce definitions of values or
functions in GHCi, you must use let,4 which looks like this:

Prelude> let triple x = x * 3

In a source file we would enter it like this:

triple x = x * 3

Let’s examine each part of that:

triple x = x * 3

-- [1] [2] [3] [ 4 ]

3In practice, the terms argument and parameter are often used interchangeably, but
there is a difference. Argument properly refers to the value(s) that are passed to the
function’s parameters when the function is applied, not to the variables that represent
them in the function definition (or those in the type signature). See the definitions at the
end of the chapter for more information.

4 This has changed as of the release of GHC 8.0.1; using let in declarations in GHCi is
no longer necessary. As we assume most readers of this edition will be using an earlier
version of GHC, we have kept the let notation throughout the book, and this shouldn’t
cause any errors or breakage.
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1. This is the name of the function we are defining; it is a
function declaration. Note that it begins with a lowercase
letter.

2. This is the parameter of the function. The parameters
of our function correspond to the head of a lambda and
bind variables that appear in the body expression.

3. The = is used to define (or declare) values and functions.
This is not how we test for equality between two values in
Haskell.

4. This is the body of the function, an expression that could
be evaluated if the function is applied to a value. If triple
is applied, the argument it’s applied to will be the value
to which the 𝑥 is bound. Here the expression x * 3 consti-
tutes the body of the function. So, if you have an expres-
sion like triple 6, 𝑥 is bound to 6. Since you’ve applied the
function, you can also replace the fully applied function
with its body and bound arguments.

Capitalization matters! Function names start with lowercase
letters. Sometimes for clarity in function names, you may
want camelCase style, and that is good style provided the first
letter remains lowercase.

Variables must also begin with lowercase letters. They need
not be single letters.
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Playing with the triple function First, try entering the triple

function directly into the REPL using let. Now call the func-
tion by name and introduce a numeric value for the 𝑥 argu-
ment:

Prelude> triple 2

6

Next, enter the second version (the one without let) into a
source file and save the file. Load it into GHCi, using the :load

or :l command. Once it’s loaded, you can call the function
at the prompt using the function name, triple, followed by
a numeric value, just as you did in the REPL example above.
Try using different values for 𝑥 — integer values or other arith-
metic expressions. Then try changing the function itself in
the source file and reloading it to see what changes. You can
use :reload, or :r, to reload the same file.

2.5 Evaluation

When we talk about evaluating an expression, we’re talking
about reducing the terms until the expression reaches its sim-
plest form. Once a term has reached its simplest form, we say
that it is irreducible or finished evaluating. Usually, we call this
a value. Haskell uses a nonstrict evaluation (sometimes called
“lazy evaluation”) strategy which defers evaluation of terms
until they’re forced by other terms referring to them.
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Values are irreducible, but applications of functions to ar-
guments are reducible. Reducing an expression means evalu-
ating the terms until you’re left with a value. As in the lambda
calculus, application is evaluation: applying a function to an
argument allows evaluation or reduction.

Values are expressions, but cannot be reduced further. Val-
ues are a terminal point of reduction:

1

"Icarus"

The following expressions can be reduced to a value:

1 + 1

2 * 3 + 1

Each can be evaluated in the REPL, which reduces the ex-
pressions and then prints what it reduced to.

Let’s get back to our triple function. Calling the function
by name and applying it to an argument makes it a reducible
expression. In a pure functional language like Haskell, we can
replace applications of functions with their definitions and get
the same result, like in math. As a result when we see:

triple 2

We can know that, since triple is defined as x = x * 3, the
expression is equivalent to:
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triple 2

-- [triple x = x * 3; x:= 2]

2 * 3

6

We’ve applied triple to the value 2 and then reduced the
expression to the final result 6. Our expression triple 2 is in
canonical or normal formwhen it reaches the number 6 because
the value 6 has no remaining reducible expressions.

Haskell doesn’t evaluate everything to canonical or normal
form by default. Instead, it only evaluates to weak head normal
form (WHNF) by default. What this means is that not every-
thing will get reduced to its irreducible form immediately, so
this:

(\f -> (1, 2 + f)) 2

reduces to the following in WHNF:

(1, 2 + 2)

This representation is an approximation, but the key point
here is that 2 + 2 is not evaluated to 4 until the last possible
moment.
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Exercises: Comprehension Check

1. Given the following lines of code as they might appear
in a source file, how would you change them to use them
directly in the REPL?

half x = x / 2

square x = x * x

2. Write one function that has one parameter and works
for all the following expressions. Be sure to name the
function.

3.14 * (5 * 5)

3.14 * (10 * 10)

3.14 * (2 * 2)

3.14 * (4 * 4)

3. There is a value in Prelude called pi. Rewrite your function
to use pi instead of 3.14.

2.6 Infix operators

Functions in Haskell default to prefix syntax, meaning that the
function being applied is at the beginning of the expression
rather than the middle. We saw that with our triple function,
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and we see it with standard functions such as the identity, or
id, function. This function returns whatever value it is given
as an argument:

Prelude> id 1

1

While this is the default syntax for functions, not all func-
tions are prefix. There are a group of operators, such as the
arithmetic operators we’ve been using, that are indeed func-
tions (they apply to arguments to produce an output) but ap-
pear by default in an infix position.

Operators are functions which can be used in infix style.
All operators are functions; not all functions are operators.
While triple and id are prefix functions (not operators), the +

function is an infix operator:

Prelude> 1 + 1

2

Now we’ll try a few other arithmetic operators:

Prelude> 100 + 100

200

Prelude> 768395 * 21356345

16410108716275

Prelude> 123123 / 123
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1001.0

Prelude> 476 - 36

440

Prelude> 10 / 4

2.5

You can sometimes use functions infix style, with a small
change in syntax:

Prelude> 10 `div` 4

2

Prelude> div 10 4

2

And you can use infix operators in prefix fashion by wrap-
ping them in parentheses:

Prelude> (+) 100 100

200

Prelude> (*) 768395 21356345

16410108716275

Prelude> (/) 123123 123

1001.0

If the function name is alphanumeric, it is a prefix function
by default, and not all prefix functions can be made infix. If
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the name is a symbol, it is infix by default but can be made
prefix by wrapping it in parentheses.5

Associativity and precedence

As you may remember from your math classes, there’s a de-
fault associativity and precedence to the infix operators (*),
(+), (-), and (/).

We can ask GHCi for information such as associativity and
precedence of operators and functions by using the :info com-
mand. When you ask GHCi for the :info about an operator
or function, it provides the type information. It also tells you
whether it’s an infix operator, and, if it is, its associativity and
precedence. Let’s talk about that associativity and precedence
briefly. We will elide the type information and so forth for
now.

Here’s what the code in Prelude says for (*), (+), and (-) at
time of writing:

5For people who like nitpicky details: you cannot make a prefix function into an infix
function using backticks, then wrap that in parentheses and make it into a prefix function.
We’re not clear why you’d want to do that anyway. Cut it out.
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:info (*)

infixl 7 *

-- [1] [2] [3]

:info (+) (-)

infixl 6 +

infixl 6 -

1. infixl means it’s an infix operator; the l means it’s left
associative.

2. 7 is the precedence: higher is applied first, on a scale of
0-9.

3. Infix function name: in this case, multiplication.

The information about addition and subtraction tell us they
are both left-associative, infix operators with the same prece-
dence (6).

Let’s play with parentheses and see what it means that these
associate to the left. Continue to follow along with the code
via the REPL:

This:

2 * 3 * 4

is evaluated as if it were:
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(2 * 3) * 4

because of left associativity.
Here’s an example of a right-associative infix operator:

Prelude> :info (^)

infixr 8 ^

-- [1] [2] [3]

1. infixr means infix operator; the r means it’s right associa-
tive.

2. 8 is the precedence. Higher precedence, indicated by
higher numbers, is applied first, so this is higher prece-
dence than multiplication (7), addition, or subtraction
(both 6).

3. Infix function name: in this case, exponentiation.

It was hard to tell with multiplication why associativity mat-
tered, because multiplication is commutative. So shifting the
parentheses around never changes the result. Exponentiation,
however, is not associative and thus makes a prime candidate
for demonstrating left vs. right associativity.

Prelude> 2 ^ 3 ^ 4

2417851639229258349412352

Prelude> 2 ^ (3 ^ 4)
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2417851639229258349412352

Prelude> (2 ^ 3) ^ 4

4096

As you can see, adding parentheses starting from the right-
hand side of the expressionwhen the operator is right-associative
doesn’t change anything. However, if we parenthesize from
the left, we get a different result when the expression is evalu-
ated.

Your intuitions about precedence, associativity, and paren-
thesization from math classes will generally hold in Haskell:

2 + 3 * 4

(2 + 3) * 4

What’s the difference between these two? Why are they
different?

Exercises: Parentheses and Association

Below are some pairs of functions that are alike except for
parenthesization. Read them carefully and decide if the paren-
theses change the results of the function. Check your work in
GHCi.

1. a) 8 + 7 * 9
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b) (8 + 7) * 9

2. a) perimeter x y = (x * 2) + (y * 2)

b) perimeter x y = x * 2 + y * 2

3. a) f x = x / 2 + 9

b) f x = x / (2 + 9)

2.7 Declaring values

The order of declarations in a source code file doesn’t matter
because GHCi loads the entire file at once, so it knows all the
values that have been defined. On the other hand, when you
enter them one by one into the REPL, the order does matter.

For example, we can declare a series of expressions in the
REPL like this:

Prelude> let y = 10

Prelude> let x = 10 * 5 + y

Prelude> let myResult = x * 5

As we saw above with the triple function, we have to use
let to declare something in the REPL.

We can now type the names of the values and hit enter to
see their values:

Prelude> x
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60

Prelude> y

10

Prelude> myResult

300

Let’s see how to declare those values in a file called learn.hs.
First, we declare the name of our module so it can be imported
by name in a project (we won’t be doing a project of this size for
a while yet, but it’s good to get in the habit of having module
names):

-- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

Module names are capitalized. Also, in the variable name,
we’ve used camelCase: the first letter is still lowercase, but we
use an uppercase to delineate a word boundary for readability.
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Troubleshooting

It is easy to make mistakes in the process of typing learn.hs

into your editor. We’ll look at a few common mistakes in
this section. One thing to keep in mind is that indentation of
Haskell code is significant and can change the meaning of the
code. Incorrect indentation of code can also break your code.
Use spaces, not tabs, to indent your source code.

In general, whitespace is significant in Haskell. Efficient
use of whitespace makes the syntax more concise. This can
take some getting used to if you’ve been working in another
programming language. Whitespace is often the only mark of
a function call, unless parentheses are necessary due to con-
flicting precedence. Trailing whitespace, that is, extraneous
whitespace at the end of lines of code, is considered bad style.

In source code files, indentation often replaces syntactic
markers like curly brackets, semicolons, and parentheses. The
basic rule is that code that is part of an expression should be
indented under the beginning of that expression, even when
the beginning of the expression is not at the leftmost margin.
Furthermore, parts of the expression that are grouped should
be indented to the same level. For example, in a block of code
introduced by let or do, you might see something like this:
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let

x = 3

y = 4

-- or

let x = 3

y = 4

This wouldn’t work in a source file unless they were embed-
ded in a top-level declaration.

Notice that the twodefinitions that are part of the expression
line up in either case. It is incorrect to write:

let x = 3

y = 4

-- or

let

x = 3

y = 4

If you have an expression that has multiple parts, your
indentation will follow a pattern like this:
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foo x =

let y = x * 2

z = x ^ 2

in 2 * y * z

Notice that the definitions of 𝑦 and 𝑧 line up, and the def-
initions of let and in are also aligned. As you work through
the book, pay attention to the indentation patterns as we have
them printed. There are many cases where improper inden-
tation will cause code not to work. Indentation can easily go
wrong in a copy-and-paste job as well.

If you make a mistake like breaking up the declaration of 𝑥
such that the rest of the expression began at the beginning of
the next line:

module Learn where

-- module declaration at the top

x = 10

* 5 + y

myResult = x * 5

y = 10

You might see an error like:
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Prelude> :l code/learn.hs

[1 of 1] Compiling Learn

code/learn.hs:10:1:

parse error on input ‘*’

Failed, modules loaded: none.

Note that the first line of the error message tells you where
the error occurred: code/learn.hs:10:1 indicates that the mis-
take is in line 10, column 1, of the named file. That can make it
easier to find the problem that needs to be fixed. Please note
that the exact line and column numbers in your own error
messages might be different from ours, depending on how
you’ve entered the code into the file.

The way to fix this is to either put it all on one line, like this:

x = 10 * 5 + y

or to make certain when you break up lines of code that the
second line begins at least one space from the beginning of
that line (either of the following should work):
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x = 10

* 5 + y

-- or

x = 10

* 5 + y

The second one looks a little better. Generally, you should
reserve breaking up of lines for when you have code exceeding
100 columns in width.

Another possible error is not starting a declaration at the
beginning (left) column of the line:

-- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

See that space before 𝑥? That will cause an error like:

Prelude> :l code/learn.hs
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[1 of 1] Compiling Learn

code/learn.hs:11:1:

parse error on input ‘myResult’

Failed, modules loaded: none.

This may confuse you, as myResult is not where you need to
modify your code. The error is only an extraneous space, but
all declarations in the module must start at the same column.
The column that all declarations within a module must start
in is determined by the first declaration in the module. In this
case, the error message gives a location that is different from
where you should fix the problem because all the compiler
knows is that the declaration of 𝑥 made a single space the ap-
propriate indentation for all declarations within that module,
and the declaration of myResult began a column too early.

It is possible to fix this error by indenting the myResult and
𝑦 declarations to the same level as the indented 𝑥 declaration:
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-- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

However, this is considered bad style and is not standard
Haskell practice. There is almost never a good reason to indent
all your declarations in this way, but noting this gives us some
idea of how the compiler is reading the code. It is better, when
confronted with an error message like this, to make sure that
your first declaration is at the leftmost margin and proceed
from there.

Another possible mistake is that you might’ve missed the
second - in the -- used to comment out source lines of code.

So this code:
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- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

will cause this error:

code/learn.hs:7:1:

parse error on input ‘module’

Failed, modules loaded: none.

Note again that it says the parse error occurred at the be-
ginning of the module declaration, but the issue is that the
comment line, - learn.hs, had only one dash, when it needed
two to form a syntactically correct Haskell comment.

Now we can see how to work with code that is saved in a
source file from GHCi without manually copying and pasting
the definitions into our REPL. Assuming we open our REPL
in the same directory as we have learn.hs saved, we can do the
following:

Prelude> :load learn.hs
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[1 of 1] Compiling Learn

Ok, modules loaded: Learn.

Prelude> x

60

Prelude> y

10

Prelude> myResult

300

Exercises: Heal the Sick

The following code samples are broken and won’t compile.
The first two are as you might enter into the REPL; the third
is from a source file. Find the mistakes and fix them so that
they will.

1. let area x = 3. 14 * (x * x)

2. let double x = b * 2

3. x = 7

y = 10

f = x + y

2.8 Arithmetic functions in Haskell

This section will explore some basic arithmetic using some
common operators and functions for arithmetic. We’ll focus
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on the following subset of them:

Operator Name Purpose/application

+ plus addition

- minus subtraction

* asterisk multiplication

/ slash fractional division

div divide integral division, round down

mod modulo like ‘rem’, but after modular division

quot quotient integral division, round towards zero

rem remainder remainder after division

At the risk of stating the obvious, “integral” division refers
to division of integers. Because it’s integral and not fractional,
it takes integers as arguments and returns integers as results.
That’s why the results are rounded.

Here’s an example of each in the REPL:

Prelude> 1 + 1

2

Prelude> 1 - 1

0

Prelude> 1 * 1

1

Prelude> 1 / 1

1.0
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Prelude> div 1 1

1

Prelude> mod 1 1

0

Prelude> quot 1 1

1

Prelude> rem 1 1

0

You will usually want div for integral division, due to the
way div and quot round:

-- rounds down

Prelude> div 20 (-6)

-4

-- rounds toward zero

Prelude> quot 20 (-6)

-3

Also, rem and mod have slightly different use cases; we’ll look
at mod in a little more detail in this chapter. We will cover (/)

in more detail in a later chapter, as that will require some
explanation of types and typeclasses.
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Laws for quotients and remainders

Programming often makes use of more division and remain-
der functions than standard arithmetic does, and it’s helpful
to be familiar with the laws about quot and rem, and div and
mod.6 We’ll take a look at those here.

(quot x y)*y + (rem x y) == x

(div x y)*y + (mod x y) == x

We won’t walk through a proof exercise, but we can demon-
strate these laws a bit:

(quot x y)*y + (rem x y)

Given x is 10 and y is (-4)

(quot 10 (-4))*(-4) + (rem 10 (-4))

quot 10 (-4) == (-2) and rem 10 (-4) == 2

(-2)*(-4) + (2) == 10

10 == x

6 From Lennart Augustsson’s blog http://augustss.blogspot.com or Stack Overflow an-
swer at http://stackoverflow.com/a/8111203

http://augustss.blogspot.com
http://stackoverflow.com/a/8111203
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Yes, we got to the result we wanted.
Now for div and mod:

(div x y)*y + (mod x y)

Given x is 10 and y is (-4)

(div 10 (-4))*(-4) + (mod 10 (-4))

div 10 (-4) == (-3) and mod 10 (-4) == -2

(-3)*(-4) + (-2) == 10

10 == x

Our result indicates all is well in the world of integral divi-
sion.

Using mod

This section is not a full discussion of modular arithmetic, but
we want to give more direction in how to use mod in general,
for those who may be unfamiliar with it, and how it works in
Haskell specifically.

We’ve already mentioned that mod gives the remainder of
a modular division. If you’re not already familiar with mod-
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ular division, you may not understand the useful difference
between mod and rem.

Modular arithmetic is a system of arithmetic for integers
where numbers “wrap around” upon reaching a certain value,
called the modulus. It is often explained in terms of a clock.

When we count time by a 12-hour clock, we have to wrap
the counting around the 12. For example, if the time is now
8:00 and you want to know what time it will be 8 hours from
now, you don’t simply add 8 + 8 and get a result of 16 o’clock.7

Instead, you wrap the count around every 12 hours. So,
adding 8 hours to 8:00 means that we add 4 hours to get to
the 12, and at the 12 we start over again as if it’s 0 and add the
remaining 4 hours of our 8, for an answer of 4:00. That is, 8
hours after 8:00 is 4:00.

This is arithmetic modulo 12. In our 12-hour clock, 12 is
equivalent to both itself and to 0, so the time at 12:00 is also,
in some sense 0:00. Arithmetic modulo 12 means that 12 is
both 12 and 0.

Often, this will give you the same answer that rem does:

Prelude> mod 15 12

3

Prelude> rem 15 12

3

7Obviously, with a 24-hour clock, such a time is possible; however, if we were starting
from 8:00 p.m. and trying to find the time 8 hours later, the answer would not be 16:00
a.m. A 24-hour clock has a different modulus than a 12-hour clock.
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Prelude> mod 21 12

9

Prelude> rem 21 12

9

Prelude> mod 3 12

3

Prelude> rem 3 12

3

If you’re wondering what the deal is with the last two ex-
amples, it’s because mod and rem can only represent integral
division. If all you have to work with is integers, then dividing
a smaller number by a larger number results in an answer of
0 with a remainder of whatever the smaller number (the divi-
dend) is. If you want to divide a smaller number by a larger
number and return a fractional answer, then you need to use
(/), and you won’t have a remainder.

Let’s say we need to write a function that will determine
what day of the week it was or will be a certain number of
days before or after this one. For our purposes here, we will
assign a number to each day of the week, using 0 to represent
Sunday.8 Then if today is Monday, and we want to know what

8 Sure, you may naturally think of the days of week as being numbered 1-7. But
programmers like to index things from zero.
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day of the week it will be 23 days from now, we could do this:

Prelude> mod (1 + 23) 7

3

The 1 represents Monday, the current day, while 23 is the
number of days we’re trying to add. Using mod to wrap it around
the 7 means it will return a number that corresponds to a day
of the week in our numbering.

And 5 days from Saturday will be Thursday:

Prelude> mod (6 + 5) 7

4

We can use rem to do the same thing with apparently equiv-
alent accuracy:

Prelude> rem (1 + 23) 7

3

However, if we want to subtract and find out what day of
the week it was some number of days ago, then we’ll see a
difference. Let’s try asking, if today is Wednesday (3), what
day it was 12 days ago:

Prelude> mod (3 - 12) 7

5

Prelude> rem (3 - 12) 7

-2
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The version with mod gives us a correct answer, while the rem

version does not.
One key difference here is that, in Haskell (not in all lan-

guages), if one or both arguments are negative, the results of
mod will have the same sign as the divisor, while the result of
rem will have the same sign as the dividend:

Prelude> (-5) `mod` 2

1

Prelude> 5 `mod` (-2)

-1

Prelude> (-5) `mod` (-2)

-1

But:

Prelude> (-5) `rem` 2

-1

Prelude> 5 `rem` (-2)

1

Prelude> (-5) `rem` (-2)

-1

Figuring out when you need mod takes some experience.
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Negative numbers

Due to the interaction of parentheses, currying, and infix syn-
tax, negative numbers get special treatment in Haskell.

If you want a value that is a negative number by itself, this
will work fine:

Prelude> -1000

-1000

However, this will not work in some cases:

Prelude> 1000 + -9

<interactive>:3:1:

Precedence parsing error

cannot mix ‘+’ [infixl 6] and

prefix `-` [infixl 6]

in the same infix expression

Fortunately, we were told about our mistake before any
of our code was executed. Note how the error message tells
you the problem has to do with precedence. Addition and
subtraction have the same precedence (6), and GHCi thinks
we are trying to add and subtract, not add a negative number,
so it doesn’t know how to resolve the precedence and evaluate
the expression. We need to make a small change before we
can add a positive and a negative number together:
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Prelude> 1000 + (-9)

991

The negation of numbers in Haskell by the use of a unary -

is a form of syntactic sugar. Syntax is the grammar and struc-
ture of the text we use to express programs, and syntactic
sugar is a means for us to make that text easier to read and
write. Syntactic sugar can make the typing or reading of code
nicer but changes nothing about the semantics, or meaning, of
programs and doesn’t change how we solve problems in code.
Typically when code with syntactic sugar is processed by our
REPL or compiler, a simple transformation from the shorter
(“sweeter”) form to a more verbose, truer representation is
performed after the code has been parsed.

In the specific case of -, the syntactic sugar means the oper-
ator now has two possible interpretations. The two possible
interpretations of the syntactic - are that - is being used as an
alias for negate or that it is the subtraction function. The fol-
lowing are semantically identical (that is, they have the same
meaning, despite different syntax) because the - is translated
into negate:

Prelude> 2000 + (-1234)

766

Prelude> 2000 + (negate 1234)

766
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Whereas this is - being used for subtraction:

Prelude> 2000 - 1234

766

Fortunately, syntactic overloading like this isn’t common
in Haskell.

2.9 Parenthesization

Here we’ve listed the information that GHCi gives us for var-
ious infix operators. We have left the type signatures in, al-
though it is not directly relevant at this time. This will give
you a chance to look at the types if you’re curious and also
provide a more accurate picture of the :info command.

Prelude> :info (^)

(^) :: (Num a, Integral b) => a -> b -> a

infixr 8 ^

Prelude> :info (*)

class Num a where

(*) :: a -> a -> a

infixl 7 *

Prelude> :info (+)

class Num a where
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(+) :: a -> a -> a

infixl 6 +

Prelude> :info (-)

class Num a where

(-) :: a -> a -> a

infixl 6 -

Prelude> :info ($)

($) :: (a -> b) -> a -> b

infixr 0 $

We should take a moment to explain and demonstrate the
($) operator as you will run into it fairly frequently in Haskell
code. The good news is it does almost nothing. The bad news
is this fact sometimes trips people up.

First, here’s the definition of ($):

f $ a = f a

Immediately this seems a bit pointless until we remember
that it’s defined as an infix operator with the lowest possible
precedence. The ($) operator is a convenience for when you
want to express something with fewer pairs of parentheses:

Prelude> (2^) (2 + 2)

16
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-- can replace those parentheses

Prelude> (2^) $ 2 + 2

16

-- without either parentheses or $

Prelude> (2^) 2 + 2

6

The ($) will allow everything to the right of it to be evalu-
ated first and can be used to delay function application. You’ll
see what we mean about delaying function application in par-
ticular when we get to Chapter 7 and use it with function
composition.

Also note that you can stack up multiple uses of ($) in the
same expression. For example, this works:

Prelude> (2^) $ (+2) $ 3*2

256

But this does not:

Prelude> (2^) $ 2 + 2 $ (*30)

A rather long and ugly type error about trying to use num-
bers as if they were functions follows. We can see why this
code doesn’t make sense if we examine the reduction steps:
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-- Remember ($)'s definition

f $ a = f a

(2^) $ 2 + 2 $ (*30)

Given the right-associativity (infixr) of $ we must begin at
the right-most position:

2 + 2 $ (*30)

-- reduce ($)

(2 + 2) (*30)

Then we must evaluate (2 + 2) before we can apply it:

4 (*30)

You might think that this could evaluate as (4 * 30), but it’s
trying to apply 4 as if it was a function to the argument (*30)!
Writing expressions like (*30) is called sectioning.

Now let’s flip that expression around a bit so it works and
then walk through a reduction:
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(2^) $ (*30) $ 2 + 2

-- must evaluate right-side first

(2^) $ (*30) $ 2 + 2

-- application of the function (*30) to the

-- expression (2 + 2) forces evaluation

(2^) $ (*30) 4

-- then we reduce (*30) 4

(2^) $ 120

-- reduce ($) again.

(2^) 120

-- reduce (2^)

1329227995784915872903807060280344576

Some Haskellers find parentheses more readable than the
dollar sign, but it’s too common in idiomatic Haskell code for
you to not at least be familiar with it.

Parenthesizing infix operators

There are times when you want to refer to an infix function
without applying any arguments, and there are also times
when you want to use them as prefix operators instead of infix.
In both cases you must wrap the operator in parentheses. Let’s
look at how we use infix operators as prefixes.

If your infix function is >> then you must write (>>) to refer
to it as a value. (+) is the addition infix function without any
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arguments applied yet and (+1) is the same addition function
but with one argument applied, making it return the next
argument it’s applied to plus one:

Prelude> 1 + 2

3

Prelude> (+) 1 2

3

Prelude> (+1) 2

3

The last case is known as sectioning and allows you to pass
around partially applied functions. With commutative func-
tions, such as addition, it makes no difference if you use (+1)

or (1+) because the order of the arguments won’t change the
result.

If you use sectioning with a function that is not commuta-
tive, the order matters:

Prelude> (1/) 2

0.5

Prelude> (/1) 2

2.0

Subtraction, (-), is a special case. These will work:

Prelude> 2 - 1
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1

Prelude> (-) 2 1

1

The following, however, won’t work:

Prelude> (-2) 1

Enclosing a value inside the parentheses with the - indi-
cates to GHCi that it’s the argument of a function. Because
the - function represents negation, not subtraction, when it’s
applied to a single argument, GHCi does not know what to do
with that, and so it returns an error message. Here, - is a case
of syntactic overloading disambiguated by how it is used.

You can use sectioning for subtraction, but it must be the
first argument:

Prelude> let x = 5

Prelude> let y = (1 -)

Prelude> y x

-4

Or instead of (- x), you can write (subtract x):

Prelude> (subtract 2) 3

1
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It may not be immediately obvious why you would ever
want to do this, but you will see this syntax used throughout the
book, for example, once we start wanting to apply functions
to each value inside a list or other data structure.

2.10 Let and where

You will often see let and where used to introduce components
of expressions, and they seem similar. It takes some practice
to get used to the appropriate times to use each.

The contrast here is that let introduces an expression, so it
can be used wherever you can have an expression, but where is
a declaration and is bound to a surrounding syntactic construct.

We’ll start with an example of where:

-- FunctionWithWhere.hs

module FunctionWithWhere where

printInc n = print plusTwo

where plusTwo = n + 2

And if we use this in the REPL:

Prelude> :l FunctionWithWhere.hs

[1 of 1] Compiling FunctionWithWhere ...
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Ok, modules loaded: FunctionWithWhere.

Prelude> printInc 1

3

Prelude>

Now we have the same function, but using let in the place
of where:

-- FunctionWithLet.hs

module FunctionWithLet where

printInc2 n = let plusTwo = n + 2

in print plusTwo

When you see let followed by in, you’re looking at a let
expression. Here’s that function in the REPL:

Prelude> :load FunctionWithLet.hs

[1 of 1] Compiling FunctionWithLet ...

Ok, modules loaded: FunctionWithLet.

Prelude> printInc2 3

5

If you loaded FunctionWithLet in the same REPL session as
FunctionWithWhere, then it will have unloaded the first one be-
fore loading the new one:



CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 87

Prelude> :load FunctionWithWhere.hs

[1 of 1] Compiling FunctionWithWhere ...

Ok, modules loaded: FunctionWithWhere.

Prelude> printInc 1

3

Prelude> :load FunctionWithLet.hs

[1 of 1] Compiling FunctionWithLet ...

Ok, modules loaded: FunctionWithLet.

Prelude> printInc2 10

12

Prelude> printInc 10

<interactive>:6:1:

Not in scope: ‘printInc’

Perhaps you meant ‘printInc2’ (line 4)

printInc isn’t in scope anymore because GHCi unloaded
everything you’d defined or loaded after you used :load to load
the FunctionWithLet.hs source file. Scope is the area of source
code where a binding of a variable applies.

That is one limitation of the :load command in GHCi. As
we build larger projects that require having multiple modules
in scope, we will use a project manager called Stack rather
than GHCi itself.
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Exercises: A Head Code

Now for some exercises. First, determine in your head what
the following expressions will return, then validate in the
REPL:

1. let x = 5 in x

2. let x = 5 in x * x

3. let x = 5; y = 6 in x * y

4. let x = 3; y = 1000 in x + 3

Above, you entered some let expressions into your REPL
to evaluate them. Now, we’re going to open a file and rewrite
some let expressions using where declarations. You will have
to give the value you’re binding a name, although the name
can be a single letter if you like. For example,

-- this should work in GHCi

let x = 5; y = 6 in x * y

could be rewritten as

-- put this in a file

mult1 = x * y

where x = 5

y = 6
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Making the equals signs line up is a stylistic choice. As long
as things are nested in that way, the equals signs do not have
to line up. But notice we use a name that we will use to refer
to this value in the REPL:

Prelude> :l practice.hs

[1 of 1] Compiling Main

Ok, modules loaded: Main.

Prelude> mult1

30

The prompt changes to *Main instead of Prelude to indicate
that you have a module called Main loaded.

Rewrite with where clauses:

1. let x = 3; y = 1000 in x * 3 + y

2. let y = 10; x = 10 * 5 + y in x * 5

3. let x = 7

y = negate x

z = y * 10

in z / x + y

Note: the filename you choose is unimportant except for
the .hs extension.
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2.11 Chapter Exercises

The goal for all the following exercises is to get you playing
with code and forming hypotheses about what it should do.
Read the code carefully, using what we’ve learned so far. Gen-
erate a hypothesis about what you think the code will do. Play
with it in the REPL and find out where you were right or wrong.

Parenthesization

Given what we know about the precedence of (*), (+), and (^),
how can we parenthesize the following expressions more ex-
plicitly without changing their results? Put together an answer
you think is correct, then test in the GHCi REPL.

For example, we want to make this more explicit

2 + 2 * 3 - 3

This will produce the same result:

2 + (2 * 3) - 3

Attempt the above on the following expressions:

1. 2 + 2 * 3 - 1

2. (^) 10 $ 1 + 1

3. 2 ^ 2 * 4 ^ 5 + 1
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Equivalent expressions

Which of the following pairs of expressions will return the
same result when evaluated? Try to reason them out by read-
ing the code and then enter them into the REPL to check your
work:

1. 1 + 1

2

2. 10 ^ 2

10 + 9 * 10

3. 400 - 37

(-) 37 400

4. 100 `div` 3

100 / 3

5. 2 * 5 + 18

2 * (5 + 18)
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More fun with functions

Here is a bit of code as it might be entered into a source file.
Remember that when you write code in a source file, the order
is unimportant, but when writing code directly into the REPL
the order does matter. Given that, look at this code and rewrite
it such that it could be evaluated in the REPL (remember: you
may need let when entering it directly into the REPL). Be sure
to enter your code into the REPL to make sure it evaluates
correctly.

z = 7

x = y ^ 2

waxOn = x * 5

y = z + 8

1. Now you have a value called waxOn in your REPL. What do
you think will happen if you enter:
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10 + waxOn

-- or

(+10) waxOn

-- or

(-) 15 waxOn

-- or

(-) waxOn 15

2. Earlier we looked at a function called triple. While your
REPL has waxOn in session, re-enter the triple function at
the prompt:

let triple x = x * 3

3. Now, whatwill happen ifwe enter this at ourGHCi prompt?
What do you think will happen first, considering what role
waxOn is playing in this function call? Then enter it, see
what does happen, and check your understanding:

triple waxOn

4. Rewrite waxOn as an expression with a where clause in your
source file. Load it into your REPL and make sure it still
works as expected.

5. To the same source file where you have waxOn, add the
triple function. Remember: You don’t need let and the
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function name should be at the left margin (that is, not
nested as one of the waxOn expressions). Make sure it works
by loading it into your REPL and then entering triple

waxOn again at the REPL prompt. You should have the
same answer as you did above.

6. Now, without changing what you’ve done so far in that
file, add a new function called waxOff that looks like this:

waxOff x = triple x

7. Load the source file into your REPL and enter waxOff waxOn

at the prompt.

You now have a function, waxOff that can be applied to a
variety of arguments — not just waxOn but any (numeric)
value you want to put in for 𝑥. Play with that a bit. What
is the result of waxOff 10 or waxOff (-50)? Try modifying
your waxOff function to do something new — perhaps
you want to first triple the 𝑥 value and then square it or
divide it by 10. Spend some time getting comfortable with
modifying the source file code, reloading it, and checking
your modification in the REPL.

2.12 Definitions

1. The terms argument and parameter are often used inter-
changeably. However, it is worthwhile to understand the



CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 95

distinction. A parameter, or formal parameter, represents a
value that will be passed to the function when the func-
tion is called. Thus, parameters are usually variables. An
argument is an input value the function is applied to. A
function’s parameter is bound to the value of an argument
when the function is applied to that argument. For exam-
ple, in f x = x + 2 which takes an argument and returns
that value added to 2, 𝑥 is the one parameter of our func-
tion. We run the code by applying 𝑓 to some argument.
If the argument we passed to the parameter 𝑥 were 2, our
result would be 4. However, arguments can themselves
be variables or be expressions that include variables, thus
the distinction is not always clear. When we use “param-
eter” in this book, it will always be referring to formal
parameters, usually in a type signature, but we’ve taken
the liberty of using “argument” somewhat more loosely.

2. An expression is a combination of symbols that conforms
to syntactic rules and can be evaluated to some result. In
Haskell, an expression is a well-structured combination
of constants, variables, and functions. While irreducible
constants are technically expressions, we usually refer to
those as “values”, so we usually mean “reducible expres-
sion” when we use the term expression.

3. A value is an expression that cannot be reduced or evalu-
ated any further. 2 * 2 is an expression, but not a value,
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whereas what it evaluates to, 4, is a value.

4. A function is a mathematical object whose capabilities are
limited to being applied to an argument and returning a
result. Functions can be described as a list of ordered pairs
of their inputs and the resulting outputs, like a mapping.
Given the function f x = x + 2 applied to the argument
2, we would have the ordered pair (2, 4) of its input and
output.

5. Infix notation is the style used in arithmetic and logic. Infix
means that the operator is placed between the operands
or arguments. An example would be the plus sign in an
expression like 2 + 2.

6. Operators are functions that are infix by default. In Haskell,
operators must use symbols and not alphanumeric char-
acters.

7. Syntactic sugar is syntax within a programming language
designed to make expressions easier to write or read.

2.13 Follow-up resources

1. Haskell wiki article on Let vs. Where
https://wiki.haskell.org/Let_vs._Where

2. How to desugar Haskell code; Gabriel Gonzalez

https://wiki.haskell.org/Let_vs._Where
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3.1 Printing strings

So far we’ve been doing arithmetic using simple expressions.
In this chapter, we will turn our attention to a different type
of data called String.

Most programming languages refer to the data structures
used to contain text as “strings,” usually represented as se-
quences, or lists, of characters. In this section, we will

• take an introductory look at types to understand the data
structure called String;

• talk about the special syntax, or syntactic sugar, used for
strings;

• print strings in the REPL environment;

• work with some standard functions that operate on this
datatype.

3.2 A first look at types

First, since we will be working with strings, we want to start by
understanding what these data structures are in Haskell as well
as a bit of special syntax we use for them. We haven’t talked
much about types yet, although you saw some examples of
them in the last chapter. Types are important in Haskell, and
the next two chapters are entirely devoted to them.
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Types are a way of categorizing values. There are sev-
eral types for numbers, for example, depending on whether
they are integers, fractional numbers, etc. There is a type
for boolean values, specifically the values True and False. The
types we are primarily concerned with in this chapter are Char

‘character’ and String. Strings are lists of characters.
It is easy to find out the type of a value, expression, or

function in GHCi. We do this with the :type command.
Open up your REPL, enter :type 'a' at the prompt, and

you should see something like this:

Prelude> :type 'a'

'a' :: Char

We’ll highlight a few things here. First, we’ve enclosed
our character in single quotes. This lets GHCi know that the
character is not a variable. If you enter :type a instead, it will
think it’s a variable and give you an error message that the 𝑎 is
not in scope. That is, the variable 𝑎 hasn’t been defined (is not
in scope), so it has no way to know what the type of it is.

Second, the :: symbol is read as “has the type.” You’ll see
this often in Haskell. Whenever you see that double colon,
you know you’re looking at a type signature. A type signature
is a line of code that defines the types for a value, expression,
or function.

And, finally, there is Char, the type. Char is the type that
includes alphabetic characters, Unicode characters, symbols,
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etc. So, asking GHCi :type 'a', that is, “what is the type of ‘a’?”,
gives us the information, 'a' :: Char, that is, “‘a’ has the type
of Char.”

Now, let’s try a string of text. This time we have to use
double quotation marks, not single, to tell GHCi we have a
string, not a single character:

Prelude> :type "Hello!"

"Hello!" :: [Char]

We have something new in the type information. The
square brackets around Char here are the syntactic sugar for a
list. String is a type alias, or type synonym, for a list of Char. A
type alias is what it sounds like: we use one name for a type,
usually for convenience, that has a different type name under-
neath. Here String is another name for a list of characters. By
using the name String we are able to visually differentiate it
from other types of lists. When we talk about lists in more
detail later, we’ll see why the square brackets are considered
syntactic sugar; for now, we only need to understand that
GHCi says “Hello!” has the type list of Char.

3.3 Printing simple strings

Now, let’s see how to print strings of text in the REPL:

Prelude> print "hello world!"
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"hello world!"

We used print to tell GHCi to print the string to the display,
so it does, with the quotation marks still around it. The print

function is not specific to strings of text, though; it can be used
to print different types of data to the screen.

The following also tell GHCi to print to the screen but are
specific to String:

Prelude> putStrLn "hello world!"

hello world!

Prelude>

Prelude> putStr "hello world!"

hello world!Prelude>

You can probably see that putStr and putStrLn are similar,
with one key difference. We also notice that both of these print
the string to the display without the quotation marks. This is
because, while they are superficially similar to print, they have
a different type than print does. Functions that are similar on
the surface can behave differently depending on the type or
category they belong to.

Next, let’s take a look at how to do these things from source
files. Type the following into a file named print1.hs:
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-- print1.hs

module Print1 where

main :: IO ()

main = putStrLn "hello world!"

Here’s what you should see when you load it in GHCi and
run main:

Prelude> :l print1.hs

[1 of 1] Compiling Print1

Ok, modules loaded: Print1.

*Print1> main

hello world!

*Print1>

First, note that your Prelude> prompt may have changed
to reflect the name of the module you loaded. You can use
:module or :m to unload the module and return to Prelude if
you wish. You can also set your prompt to something specific,
which means it won’t change every time you load or unload a
module1:

Prelude> :set prompt "λ> "

λ> :r

1You can set it permanently if you prefer by setting the configuration in your ~/.ghci
file. You may have to create that file yourself in order to do so.
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Ok, modules loaded: Print1.

λ> main

hello world!

λ>

Looking at the code, main is the default action when you
build an executable or run it in a REPL. It is not a function but
is often a series of instructions to execute, which can include
applying functions and producing side-effects. When building
a project with Stack, having a main executable in a Main.hs file
is obligatory, but you can have source files and load them in
GHCi without necessarily having a main block.

As you can see, main has the type IO (). IO, or I/O, stands
for input/output. In Haskell, it is a special type, called IO,
used when the result of running the program involves effects
beyond evaluating a function or expression. Printing to the
screen is an effect, so printing the output of a module must be
wrapped in this IO type. When you enter functions directly
into the REPL, GHCi implicitly understands and implements
IO without you having to specify that. Since the main action is
the default executable, you will see it in a lot of source files
that we build from here on out. We will explain its meaning
in more detail in a later chapter.

Let’s start another file:
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-- print2.hs

module Print2 where

main :: IO ()

main = do

putStrLn "Count to four for me:"

putStr "one, two"

putStr ", three, and"

putStrLn " four!"

This do syntax is a special syntax that allows for sequencing
actions. It is most commonly used to sequence the actions
that constitute your program, some of which will necessarily
perform effects such as printing to the screen (that’s why the
obligatory type of main is IO ()). do notation isn’t strictly neces-
sary, but since it often makes for more readable code than the
alternatives, you’ll see it a lot.

Here’s what you should see when you run this one:

Prelude> :l print2.hs

[1 of 1] Compiling Print2

Ok, modules loaded: Print2.

Prelude> main

Count to four for me:

one, two, three, and four!

Prelude>
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For a bit of fun, change the invocations of putStr to putStrLn

and vice versa. Rerun the program and see what happens. The
Ln in putStrLn indicates that it starts a new line.

String concatenation

To concatenate something means to link together. Usually when
we talk about concatenation in programming we’re talking
about linear sequences such as lists or strings of text. If we
concatenate two strings "Curry" and " Rocks!" we will get the
string "Curry Rocks!". Note the space at the beginning of "

Rocks!". Without that, we’d get "CurryRocks!".
Let’s start a new text file and type the following:
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-- print3.hs

module Print3 where

myGreeting :: String

myGreeting = "hello" ++ " world!"

hello :: String

hello = "hello"

world :: String

world = "world!"

main :: IO ()

main = do

putStrLn myGreeting

putStrLn secondGreeting

where secondGreeting =

concat [hello, " ", world]

We used :: to declare the types of each top-level expression.
It isn’t strictly necessary, as the compiler can infer these types,
but it is a good habit to be in as you write longer programs.

Remember, String is a type synonym for [Char]. You can
try changing the type signatures to reflect that and see if it
changes anything in the program execution.
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If you execute this, you should see something like:

Prelude> :load print3.hs

[1 of 1] Compiling Print3

Ok, modules loaded: Print3.

*Print3> main

hello world!

hello world!

*Print3>

This little exercise demonstrates a few things:

1. We defined values at the top level of a module: (myGreeting,
hello, world, and main). That is, they were declared at the
top level so that they are available throughout the module.

2. We specify explicit types for top-level definitions.

3. We concatenate strings with (++) and concat.

3.4 Top-level versus local definitions

What does it mean for something to be at the top level of a
module? It doesn’t necessarily mean it’s defined at the top of
the file. When the compiler reads the file, it will see all the
top-level declarations, no matter what order they come in the
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file (with some limitations which we’ll see later). Top-level
declarations are not nested within anything else and they are
in scope throughout the whole module.

We can contrast a top-level definition with a local definition.
To be locally defined would mean the declaration is nested
within some other expression and is not visible outside that
expression. We practiced this in the previous chapter with let

and where. Here’s an example for review:

module TopOrLocal where

topLevelFunction :: Integer -> Integer

topLevelFunction x =

x + woot + topLevelValue

where woot :: Integer

woot = 10

topLevelValue :: Integer

topLevelValue = 5

In the above, you could import and use topLevelFunction

or topLevelValue from another module, and they are accessi-
ble to everything else in the module. However, woot is effec-
tively invisible outside of topLevelFunction. The where and let

clauses in Haskell introduce local bindings or declarations.
To bind or declare something means to give an expression a
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name. You could pass around and use an anonymous version
of topLevelFunction manually, but giving it a name and reusing
it by that name is less repetitious.

Also note we explicitly declared the type of woot in the where

clause, using the :: syntax. This wasn’t necessary (Haskell’s
type inference would’ve figured it out), but it was done here
to show you how. Be sure to load and run this code in your
REPL:

Prelude> :l TopOrLocal.hs

[1 of 1] Compiling TopOrLocal

Ok, modules loaded: TopOrLocal.

*TopOrLocal> topLevelFunction 5

20

Experiment with different arguments and make sure you
understand the results you’re getting by walking through the
arithmetic in your head (or on paper).

Exercises: Scope

1. These lines of code are from a REPL session. Is 𝑦 in scope
for 𝑧?

Prelude> let x = 5

Prelude> let y = 7

Prelude> let z = x * y
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2. These lines of code are from a REPL session. Is ℎ in scope
for 𝑔? Go with your gut here.

Prelude> let f = 3

Prelude> let g = 6 * f + h

3. This code sample is from a source file. Is everything we
need to execute area in scope?

area d = pi * (r * r)

r = d / 2

4. This code is also from a source file. Now are 𝑟 and 𝑑 in
scope for area?

area d = pi * (r * r)

where r = d / 2

3.5 Types of concatenation functions

Let’s look at the types of (++) and concat. The ++ function is
an infix operator. When we need to refer to an infix operator
in a position that is not infix — such as when we are using it
in a prefix position or having it stand alone in order to query
its type — we must put parentheses around it. On the other
hand, concat is a normal (not infix) function, so parentheses
aren’t necessary:
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++ has the type [a] -> [a] -> [a]

concat has the type [[a]] -> [a]

Here’s how we query that in GHCi:

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

Prelude> :t concat

concat :: [[a]] -> [a]

The type of concat says that we have a list of lists as input
and we will return a list. It will have the same values inside it
as the list of lists did; it just flattens it into one list structure, in
a manner of speaking. A String is a list, a list of Char specifically,
and concat can work on lists of strings or lists of lists of other
things:

Prelude> concat [[1, 2], [3, 4, 5], [6, 7]]

[1,2,3,4,5,6,7]

Prelude> concat ["Iowa", "Melman", "Django"]

"IowaMelmanDjango"

(n.b., Assuming you are using GHC 7.10 or higher, if you
check this type signature in your REPL, you will see a dif-
ference. We’ll explain it in detail later; for now, please read
Foldable t => t [a] as being [[a]]. The Foldable t, for our cur-
rent purposes, can be thought of as another list. In truth, list is
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only one of the possible types here — types that have instances
of the Foldable typeclass — but right now, lists are the only one
we care about.)

But what do these types mean? Here’s how we can break it
down:

(++) :: [a] -> [a] -> [a]

-- [1] [2] [3]

Everything after the :: is about our types, not our values.
The ‘a’ inside the list type constructor [] is a type variable.

1. Take an argument of type [a]. This type is a list of ele-
ments of some type 𝑎. This function does not know what
type 𝑎 is. It doesn’t need to know. In the context of the
program, the type of 𝑎 will be known and made concrete
at some point.

2. Take another argument of type [a], a list of elements
whose type we don’t know. Because the variables are the
same, they must be the same type throughout (a == a).

3. Return a result of type [a].

As we’ll see, because String is a type of list, the operators
we use with strings can also be used on lists of other types,
such as lists of numbers. The type [a] means that we have
a list with elements of a type 𝑎 we do not yet know. If we
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use the operators to concatenate lists of numbers, then the
𝑎 in [a] will be some type of number (for example, integers).
If we are concatenating lists of characters, then 𝑎 represents
a Char because String is [Char]. The type variable 𝑎 in [a] is
polymorphic. Polymorphism is an important feature of Haskell.
For concatenation, every list must be the same type of list; we
cannot concatenate a list of numbers with a list of characters,
for example. However, since the 𝑎 is a variable at the type level,
the literal values in each list we concatenate need not be the
same, only the same type. In other words, 𝑎 must equal 𝑎 (a ==
a).

Prelude> "hello" ++ " Chris"

"hello Chris"

But:

Prelude> "hello" ++ [1, 2, 3]

<interactive>:14:13:

No instance for (Num Char) arising

from the literal ‘1’

In the expression: 1

In the second argument of ‘(++)’,

namely ‘[1, 2, 3]’

In the expression: "hello" ++ [1, 2, 3]
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In the first example, we have two strings, so the type of 𝑎
matches — they’re both Char in [Char], even though the literal
values are different. Since the type matches, no type error
occurs and we see the concatenated result.

In the second example, we have two lists (a String and a
list of numbers) whose types do not match, so we get the
error message. GHCi asks for an instance of the numeric
typeclass Num for the type Char. Typeclasses provide definitions
of operations, or functions, that can be shared across sets of
types. For now, you can understand this message as telling
you the types don’t match so it can’t concatenate the two lists.

Exercises: Syntax Errors

Read the syntax of the following functions and decide whether
it will compile. Test them in your REPL and try to fix the
syntax errors where they occur.

1. ++ [1, 2, 3] [4, 5, 6]

2. '<3' ++ ' Haskell'

3. concat ["<3", " Haskell"]
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3.6 Concatenation and scoping

We will use parentheses to call ++ as a prefix (not infix) function:
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-- print3flipped.hs

module Print3Flipped where

myGreeting :: String

myGreeting = (++) "hello" " world!"

hello :: String

hello = "hello"

world :: String

world = "world!"

main :: IO ()

main = do

putStrLn myGreeting

putStrLn secondGreeting

where secondGreeting =

(++) hello ((++) " " world)

-- could've been:

-- secondGreeting =

-- hello ++ " " ++ world

In secondGreeting, using ++ as a prefix function forces us to
shift some things around. Parenthesizing it that way empha-
sizes the right associativity of the ++ function. Since it’s an infix
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operator, you can check for yourself that it’s right associative:

Prelude> :i (++)

(++) :: [a] -> [a] -> [a] -- Defined in ‘GHC.Base’

infixr 5 ++

The where clause creates local bindings for expressions that
are not visible at the top level. In other words, the where clause
in main introduces a definition visible only within the expres-
sion or function it’s attached to, rather than making it visible to
the entiremodule. Something visible at the top level is in scope
for all parts of the module and may be exported by the module
or imported by a different module. Local definitions, on the
other hand, are only visible to that one function. You cannot
import into a different module and reuse secondGreeting.

To illustrate:
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-- print3broken.hs

module Print3Broken where

printSecond :: IO ()

printSecond = do

putStrLn greeting

main :: IO ()

main = do

putStrLn greeting

printSecond

where greeting = "Yarrrrr"

You should get an error like this:

Prelude> :l print3broken.hs

[1 of 1] Compiling Print3Broken

( print3broken.hs, interpreted )

print3broken.hs:6:12: Not in scope: ‘greeting’

Failed, modules loaded: none.

Let’s take a closer look at this error:

print3broken.hs:6:12: Not in scope: ‘greeting’

# [1][2] [3] [4]
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1. The line the error occurred on: in this case, line 6.

2. The column the error occurred on: column 12. Text
on computers is often described in terms of lines and
columns. These line and column numbers are about lines
and columns in your text file containing the source code.

3. The actual problem: we refer to something not in scope,
that is, not visible to the printSecond function.

4. The thing we referred to that isn’t visible or in scope.

Now make the Print3Broken code compile. It should print
“Yarrrrr” twice on two different lines and then exit.

3.7 More list functions

Since a String is a specialized type of list, you can use standard
list operations on strings as well.

Here are some examples:

Prelude> :t 'c'

'c' :: Char

Prelude> :t "c"

"c" :: [Char]

-- [Char] is String

The (:) operator, called cons, builds a list:
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Prelude> 'c' : "hris"

"chris"

Prelude> 'P' : ""

"P"

Next up, head returns the head or first element of a list:

Prelude> head "Papuchon"

'P'

The complementary function tail returns the list with the
head chopped off:

Prelude> tail "Papuchon"

"apuchon"

take returns the specified number of elements from the list,
starting from the left:

Prelude> take 1 "Papuchon"

"P"

Prelude> take 0 "Papuchon"

""

Prelude> take 6 "Papuchon"

"Papuch"

And drop returns the remainder of the list after the specified
number of elements has been dropped:
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Prelude> drop 4 "Papuchon"

"chon"

Prelude> drop 9001 "Papuchon"

""

Prelude> drop 1 "Papuchon"

"apuchon"

We’ve already seen the (++) operator:

Prelude> "Papu" ++ "chon"

"Papuchon"

Prelude> "Papu" ++ ""

"Papu"

The infix operator, (!!), returns the element that is in the
specified position in the list. Note that this is an indexing func-
tion, and indices start from 0. That means the first element of
your list is 0, not 1, when using this function:

Prelude> "Papuchon" !! 0

'P'

Prelude> "Papuchon" !! 4

'c'

Note that while all these functions are standard Prelude func-
tions, many of them are considered unsafe. They are unsafe
because they do not cover the case where they are given an
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empty list as input. Instead they throw out an error message,
or exception:

Prelude> head ""

*** Exception: Prelude.head: empty list

Prelude> "" !! 4

*** Exception: Prelude.!!: index too large

This isn’t ideal behavior, so the use of these functions is
considered unwise for programs of any real size or complexity,
although we will use them in these first few chapters. We will
address how to cover all cases and make safer versions of such
functions in a later chapter.

3.8 Chapter Exercises

Reading syntax

1. For the following lines of code, read the syntax carefully
and decide if they are written correctly. Test them in your
REPL after you’ve decided to check your work. Correct
as many as you can.

a) concat [[1, 2, 3], [4, 5, 6]]

b) ++ [1, 2, 3] [4, 5, 6]

c) (++) "hello" " world"
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d) ["hello" ++ " world]

e) 4 !! "hello"

f) (!!) "hello" 4

g) take "4 lovely"

h) take 3 "awesome"

2. Next we have two sets: the first set is lines of code and
the other is a set of results. Read the code and figure out
which results came from which lines of code. Be sure to
test them in the REPL.

a) concat [[1 * 6], [2 * 6], [3 * 6]]

b) "rain" ++ drop 2 "elbow"

c) 10 * head [1, 2, 3]

d) (take 3 "Julie") ++ (tail "yes")

e) concat [tail [1, 2, 3],

tail [4, 5, 6],

tail [7, 8, 9]]

Can you match each of the previous expressions to one
of these results presented in a scrambled order?

a) "Jules"

b) [2,3,5,6,8,9]
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c) "rainbow"

d) [6,12,18]

e) 10

Building functions

1. Given the list-manipulation functions mentioned in this
chapter, write functions that take the following inputs and
return the expected outputs. Do them directly in your
REPL and use the take and drop functions you’ve already
seen.

Example

-- If you apply your function

-- to this value:

"Hello World"

-- Your function should return:

"ello World"

The following would be a fine solution:

Prelude> drop 1 "Hello World"

"ello World"
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Now write expressions to perform the following trans-
formations, just with the functions you’ve seen in this
chapter. You do not need to do anything clever here.

a) -- Given

"Curry is awesome"

-- Return

"Curry is awesome!"

b) -- Given

"Curry is awesome!"

-- Return

"y"

c) -- Given

"Curry is awesome!"

-- Return

"awesome!"

2. Now take each of the above and rewrite it in a source
file as a general function that could take different string
inputs as arguments but retain the same behavior. Use
a variable as the argument to your (named) functions. If
you’re unsure how to do this, refresh your memory by
looking at the waxOff exercise from the previous chapter
and the TopOrLocal module from this chapter.
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3. Write a function of type String -> Char which returns the
third character in a String. Remember to give the function
a name and apply it to a variable, not a specific String,
so that it could be reused for different String inputs, as
demonstrated (feel free to name the function something
else. Be sure to fill in the type signature and fill in the
function definition after the equals sign):

thirdLetter ::

thirdLetter x =

-- If you apply your function

-- to this value:

"Curry is awesome"

-- Your function should return

`r'

Note that programming languages conventionally start
indexing things by zero, so getting the zeroth index of a
string will get you the first letter. Accordingly, indexing
with 3 will get you the fourth. Keep this in mind as you
write this function.

4. Now change that function so the string operated on is
always the same and the variable represents the number
of the letter you want to return (you can use “Curry is
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awesome!” as your string input or a different string if you
prefer).

letterIndex :: Int -> Char

letterIndex x =

5. Using the take and drop functions we looked at above, see
if you can write a function called rvrs (an abbreviation of
‘reverse’ used because there is a function called ‘reverse’
already in Prelude, so if you call your function the same
name, you’ll get an error message). rvrs should take the
string “Curry is awesome” and return the result “awesome
is Curry.” This may not be the most lovely Haskell code
you will ever write, but it is quite possible using only what
we’ve learned so far. First write it as a single function in
a source file. This doesn’t need to, and shouldn’t, work
for reversing the words of any sentence. You’re expected
only to slice and dice this particular string with take and
drop.

6. Let’s see if we can expand that function into a module.
Why would we want to? By expanding it into a module,
we can add more functions later that can interact with
each other. We can also then export it to other modules
if we want to and use this code in those other modules.
There are different ways you could lay it out, but for the



CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 128

sake of convenience, we’ll show you a sample layout so
that you can fill in the blanks:

module Reverse where

rvrs :: String -> String

rvrs x =

main :: IO ()

main = print ()

Into the parentheses after print you’ll need to fill in your
function name rvrs plus the argument you’re applying
rvrs to, in this case “Curry is awesome.” That rvrs function
plus its argument are now the argument to print. It’s
important to put them inside the parentheses so that that
function gets applied and evaluated first, and then that
result is printed.

Of course, we have also mentioned that you can use the $

symbol to avoid using parentheses, too. Try modifying
your main function to use that instead of the parentheses.

3.9 Definitions

1. A String is a sequence of characters. In Haskell, String is
represented by a linked-list of Char values, aka [Char].
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2. A type or datatype is a classification of values or data.
Types in Haskell determine what values are members
of the type or that inhabit the type. Unlike in other lan-
guages, datatypes in Haskell by default do not delimit the
operations that can be performed on that data.

3. Concatenation is the joining together of sequences of val-
ues. Often in Haskell this is meant with respect to the
[], or list, datatype, which also applies to String which is
[Char]. The concatenation function in Haskell is (++) which
has type [a] -> [a] -> [a]. For example:

Prelude> "tacos" ++ " " ++ "rock"

"tacos rock"

4. Scope is where a variable referred to by name is valid.
Another word used with the same meaning is visibility,
because if a variable isn’t visible it’s not in scope.

5. Local bindings are bindings local to particular expressions.
The primary delineation here from top level bindings is
that local bindings cannot be imported by other programs
or modules.

6. Top level bindings in Haskell are bindings that stand outside
of any other declaration. The main feature of top-level
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bindings is that they can be made available to other mod-
ules within your programs or to other people’s programs.

7. Data structures are a way of organizing data so that the
data can be accessed conveniently or efficiently.



Chapter 4

Basic datatypes

There are many ways of
trying to understand
programs. People often
rely too much on one
way, which is called
“debugging” and consists
of running a
partly-understood
program to see if it does
what you expected.
Another way, which ML
advocates, is to install
some means of
understanding in the very
programs themselves.

Robin Milner
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4.1 Basic Datatypes

Haskell has a robust and expressive type system. Types play an
important role in the readability, safety, and maintainability of
Haskell code as they allow us to classify and delimit data, thus
restricting the forms of data our programs can process. Types,
also called datatypes, provide the means to build programs
more quickly and also allow for greater ease of maintenance.
As we learn more Haskell, we’ll learn how to leverage types
in a way that lets us accomplish the same things but with less
code.

So far, we’ve looked at expressions involving numbers, char-
acters, and lists of characters, also called strings. These are
some of the standard datatypes and are built into the standard
library. While those are useful datatypes and cover a lot of
types of values, they don’t cover every type of data. In this
chapter, we will

• review types we have seen in previous chapters;

• learn about datatypes, type constructors, and data con-
structors;

• work with predefined datatypes;

• learn more about type signatures and a bit about type-
classes.
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4.2 What are types?

Expressions, when evaluated, reduce to values. Every value
has a type. Types are how we group a set of values together
that share something in common. Sometimes that common-
ality is abstract; sometimes it’s a specific model of a particular
concept or domain. If you’ve taken a mathematics course that
covered sets, thinking about types as being like sets will help
guide your intuition on what types are and how they work in
a mathematical1 sense.

4.3 Anatomy of a data declaration

Data declarations are how datatypes are defined.
The type constructor is the name of the type and is capi-

talized. When you are reading or writing type signatures (the
type level of your code), the type names or type constructors
are what you use.

Data constructors are the values that inhabit the type they
are defined in. They are the values that show up in your code,
at the term level instead of the type level. By term level, we
mean they are the values as they appear in your code or the
values that your code evaluates to.

1 Set theory is the study of mathematical collections of objects. Set theory was a
precursor to type theory, the latter being used prolifically in the design of programming
languages like Haskell. Logical operations like disjunction (or) and conjunction (and) used
in the manipulation of sets have equivalents in Haskell’s type system.
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We will start with a basic datatype to see how datatypes are
structured and get acquainted with the vocabulary. Bool isn’t a
datatype we’ve seen yet in the book, but it provides for truth
values. It is named after the great logician George Boole and
the system of logic named for him. Because there are only
two truth values, there are only two data constructors:

-- the definition of Bool

data Bool = False | True

-- [1] [2] [3] [4]

1. Type constructor for datatype Bool. This is the name of
the type and shows up in type signatures.

2. Data constructor for the value False.

3. Pipe | indicates a sum type or logical disjunction: or. So, a
Bool value is True or False.

4. Data constructor for the value True.

The whole thing is called a data declaration. Data declara-
tions do not always follow precisely the same pattern — there
are datatypes that use logical conjunction (and) instead of dis-
junction, and some type constructors and data constructors
may have arguments. The thing they have in common is the
keyword data followed by the type constructor (or name of
the type that will appear in type signatures), the equals sign to
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denote a definition, and then data constructors (or names of
values that inhabit your term-level code).

You can find the datatype definition for built-in datatypes
by using :info in GHCi:

Prelude> :info Bool

data Bool = False | True

Let’s look at where different parts of datatypes show up
in our code. If we query the type information for a function
called notwe see that it takes one Bool value and returns another
Bool value, so the type signature makes reference to the type
constructor, or datatype name:

Prelude> :t not

not :: Bool -> Bool

But when we use the not function, we use the data construc-
tors, or values:

Prelude> not True

False

And our expression evaluates to another data constructor,
or value — in this case, the other data constructor for the same
datatype.
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Exercises: Mood Swing

Given the following datatype, answer the following questions:

data Mood = Blah | Woot deriving Show

The deriving Show part is not something we’ve explained
yet. For now, all we’ll say is that when you make your own
datatypes, deriving Show allows the values of that type to be
printed to the screen. We’ll talk about it more when we talk
about typeclasses in detail.

1. What is the type constructor, or name of this type?

2. If the function requires a Mood value, what are the values
you could possibly use?

3. We are trying to write a function changeMood to change
Chris’s mood instantaneously. It should act like not in
that, given one value, it returns the other value of the same
type. So far, we’ve written a type signature changeMood ::

Mood -> Woot. What’s wrong with that?

4. Now we want to write the function that changes his mood.
Given an input mood, it gives us the other one. Fix any
mistakes and complete the function:

changeMood Mood = Woot

changeMood _ = Blah
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We’re doing something here called pattern matching. We
can define a function by matching on a data constructor,
or value, and describing the behavior that the function
should have based on which value it matches. The un-
derscore in the second line denotes a catch-all, otherwise
case. So, in the first line of the function, we’re telling it
what to do in the case of a specific input. In the second
one, we’re telling it what to do regardless of all potential
inputs. It’s trivial when there are only two potential values
of a given type, but as we deal with more complex cases,
it can be convenient.

5. Enter all of the above — datatype (including the deriving

Show bit), your corrected type signature, and the corrected
function into a source file. Load it and run it in GHCi to
make sure you got it right.

4.4 Numeric types

Let’s look next at numeric types, because we’ve already seen
these types in previous chapters, and numbers are familiar
territory. It’s important to understand that Haskell does not
use only one type of number. For most purposes, the types of
numbers we need to be concerned with are:
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Integral numbers These are whole numbers, positive and
negative.

1. Int: This type is a fixed-precision integer. By “fixed pre-
cision,” we mean it has a range, with a maximum and a
minimum, and so it cannot be arbitrarily large or small
— more about this in a moment.

2. Integer: This type is also for integers, but this one supports
arbitrarily large (or small) numbers.

Fractional These are not integers. Fractional values include
the following four types:

1. Float: This is the type used for single-precision float-
ing point numbers. Fixed-point number representations
have immutable numbers of digits assigned for the parts
of the number before and after the decimal point. In
contrast, floating point can shift how many bits it uses to
represent numbers before or after the decimal point. This
flexibility does, however, mean that floating point arith-
metic violates some common assumptions and should
only be used with great care. Generally, floating point
numbers should not be used at all in business applications.
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2. Double: This is a double-precision floating point number
type. It has twice as many bits with which to describe
numbers as the Float type.

3. Rational: This is a fractional number that represents a
ratio of two integers. The value 1 / 2 :: Rational will be a
value carrying two Integer values, the numerator 1 and the
denominator 2, and represents a ratio of 1 to 2. Rational is
arbitrarily precise but not as efficient as Scientific.

4. Scientific: This is a space efficient and almost arbitrary
precision scientific number type. Scientific numbers are
represented using scientific notation. It stores the coef-
ficient as an Integer and the exponent as an Int. Since
Int isn’t arbitrarily large, there is technically a limit to
the size of number you can express with Scientific, but
hitting that limit is quite unlikely. Scientific is available
in a library2 and can be installed using cabal install or
stack install.

These numeric datatypes all have instances of a typeclass
called Num. We will talk about typeclasses in the upcoming
chapters, but as we look at the types in this section, you will
see Num listed in some of the type information.

Typeclasses are a way of adding functionality to types that
is reusable across all the types that have instances of that type-

2Hackage page for scientific: https://hackage.haskell.org/package/scientific

https://hackage.haskell.org/package/scientific
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class. Num is a typeclass for which most numeric types will
have an instance because there are standard functions that are
convenient to have available for all types of numbers. The Num

typeclass is what provides your standard (+), (-), and (*) oper-
ators along with a few others. Any type that has an instance of
Num can be used with those functions. An instance defines how
the functions work for that specific type. We will talk about
typeclasses in much more detail soon.

Integral numbers

As we noted above, there are two main types of integral num-
bers: Int and Integer.

Integral numbers are whole numbers with no fractional
component. The following are integral numbers:

1 2 199 32442353464675685678

The following are not integral numbers:

1.3 1/2

Integer

The numbers of type Integer are the sorts of numbers we’re
used to working with in arithmetic equations that involve
whole numbers. They can be positive or negative, and Integer

extends as far in either direction as one needs them to go.
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The Bool datatype only has two possible values, so we can list
them explicitly as data constructors. In the case of Integer, and
most numeric datatypes, these data constructors are not writ-
ten out because they include an infinite series of whole num-
bers. We’d need infinite data constructors stretching up and
down from zero. Hypothetically we could represent Integer as
a sum of three cases, recursive constructors headed towards
negative infinity, zero, and recursive constructors headed to-
wards positive infinity. This representation would be terribly
inefficient so there’s some GHC magic sprinkled on it.

Why do we have Int?

The Intnumeric types are artifacts of what computer hardware
has supported natively over the years. Most programs should
use Integer, not Int, unless the limitations of the type are un-
derstood and the additional performance makes a difference.

The danger of Int and the related types Int8, Int16, et al. is
that they cannot express arbitrarily large quantities of infor-
mation. Since they are integral, this means they cannot be
arbitrarily large in the positive or negative sense.

Here’s what happens if we try to represent a number too
large for Int8:

Prelude> import GHC.Int

Prelude> 127 :: Int8
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127

Prelude> 128 :: Int8

<interactive>:11:1: Warning:

Literal 128 is out of the

Int8 range -128..127

If you are trying to write a large

negative literal,

use NegativeLiterals

-128

Prelude> (127 + 1) :: Int8

-128

The syntax you see there, :: Int8 is us assigning the Int8

type to these numbers. As we will explain in more detail in
the next chapter, numbers are polymorphic under the surface,
and the compiler doesn’t assign them a concrete type until it
is forced to. It would be weird and unexpected if the compiler
defaulted all numbers to Int8, so in order to reproduce the
situation of having a number too large for an Int type, we had
to assign that concrete type to it.

As you can see, 127 is fine because it is within the range of
valid values of type Int8, but 128 gives you a warning about
the impending overflow, and 127 + 1 overflows the bounds
and resets back to its smallest numeric value. Because the
memory the value is allowed to occupy is fixed for Int8, it
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cannot grow to accommodate the value 128 the way Integer

can. Here the 8 represents how many bits the type uses to
represent integral numbers.3 Being of a fixed size can be
useful in some applications, but most of the time, Integer is
preferred.

You can find out the minimum and maximum bounds of
numeric types using maxBound and minBound from the Bounded

typeclass. Here’s an example using our Int8 and Int16 example:

Prelude> import GHC.Int

Prelude> :t minBound

minBound :: Bounded a => a

Prelude> :t maxBound

maxBound :: Bounded a => a

Prelude> minBound :: Int8

-128

Prelude> minBound :: Int16

-32768

Prelude> minBound :: Int32

-2147483648

Prelude> minBound :: Int64

-9223372036854775808

3The representation used for the fixed-size Int types is two’s complement.
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Prelude> maxBound :: Int8

127

Prelude> maxBound :: Int16

32767

Prelude> maxBound :: Int32

2147483647

Prelude> maxBound :: Int64

9223372036854775807

Thus you can find the limitations of possible values for
any type that has an instance of that particular typeclass. In
this case, we are able to find out the range of values we can
represent with an Int8 is -128 to 127.

You can find out if a type has an instance of Bounded, or any
other typeclass, by asking GHCi for the :info for that type.
Doing this will also give you the datatype representation for
the type you queried:

Prelude> :i Int

data Int = GHC.Types.I# GHC.Prim.Int#

-- Defined in ‘GHC.Enum’

instance Bounded Int

Int of course has many more typeclass instances, but Bounded
is the one we cared about at this time.



CHAPTER 4. BECAUSE PIGS CAN’T FLY 145

Fractional numbers

The four common Fractional types in use in Haskell are Float,
Double, Rational, and Scientific. Rational, Double, and Float come
with your install of GHC. Scientific comes from a library, as
we mentioned previously. Rational and Scientific are arbi-
trary precision, with the latter being more efficient. Arbitrary
precision means that these can be used to do calculations re-
quiring a high degree of precision rather than being limited
to a specific degree of precision, the way Float and Double are.
You almost never want a Float unless you’re doing graphics
programming such as with OpenGL.

Some computations involving numbers will be fractional
rather than integral. A good example of this is the division
function (/) which has the type:

Prelude> :t (/)

(/) :: Fractional a => a -> a -> a

The notation Fractional a => denotes a typeclass constraint.
It tells us the type variable 𝑎 must implement the Fractional

typeclass. Whatever type of number 𝑎 turns out to be, it must
be a type that has an instance of the Fractional typeclass; that
is, there must be a declaration of how the operations from
that typeclass will work for the type. The / function will take
one number that implements Fractional, divide it by another
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of the same type, and return a value of the same type as the
result.

Fractional is a typeclass that requires types to already have
an instance of the Num typeclass. We describe this relation-
ship between typeclasses by saying that Num is a superclass of
Fractional. So (+) and other functions from the Num typeclass
can be used with Fractional numbers, but functions from the
Fractional typeclass cannot be used with all types that have a
Num instance:

Here’s what happens when we use (/) in the REPL:

Prelude> 1 / 2

0.5

Prelude> 4 / 2

2.0

Note that even when we had a whole number as a result,
the result was fractional. This is because values of Fractional
a => a default to the floating point type Double. In most cases,
you won’t want to explicitly use Double. You may be better
off using the arbitrary precision sibling to Integer, Scientific.
Most people do not find it easy to reason about floating point
arithmetic and find it difficult to code around the quirks (those
quirks exist by design, but that’s another story), so in order
to avoid making mistakes, use arbitrary-precision types as a
matter of course.
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4.5 Comparing values

Up to this point, most of our operations with numbers have
involved doing simple arithmetic. We can also compare num-
bers to determine whether they are equal, greater than, or less
than:

Prelude> let x = 5

Prelude> x == 5

True

Prelude> x == 6

False

Prelude> x < 7

True

Prelude> x > 3

True

Prelude> x /= 5

False

Notice here that we first declared a value for 𝑥 using the
standard equals sign. Now we know that for the remainder of
our REPL session, all instances of 𝑥 will be the value 5. Because
the equals sign in Haskell is already used to define variables
and functions, we must use a double equals sign, ==, to have
the specific meaning is equal to. The /= symbol means is not
equal to. The other symbols should already be familiar to you.
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Having done this, we see that GHCi is returning a result of
either True or False, depending on whether the expression is
true or false. True and False are the data constructors for the
Bool datatype we saw above. If you look at the type information
for any of these infix operators, you’ll find the result type listed
as Bool:

Prelude> :t (==)

(==) :: Eq a => a -> a -> Bool

Prelude> :t (<)

(<) :: Ord a => a -> a -> Bool

Notice that we get some typeclass constraints again. Eq is a
typeclass that includes everything that can be compared and
determined to be equal in value; Ord is a typeclass that includes
all things that can be ordered. Note that neither of these is
limited to numbers. Numbers can be compared and ordered,
of course, but so can letters, so this typeclass constraint allows
for flexibility. These equality and comparison functions can
take any values that can be said to have equal value or can be
ordered. The rest of the type information tells us that it takes
one of these values, compares it to another value of the same
type, and returns a Bool value. As we’ve already seen, the Bool

values are True or False.
With this information, let’s try playing with some other

values:
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Prelude> 'a' == 'a'

True

Prelude> 'a' == 'b'

False

Prelude> 'a' < 'b'

True

Prelude> 'a' > 'b'

False

Prelude> 'a' == 'A'

False

Prelude> "Julie" == "Chris"

False

We know that alphabetical characters can be ordered, al-
though we do not normally think of ‘a’ as being “less than” ‘b.’
But we can understand that here it means ‘a’ comes before ‘b’ in
alphabetical order. Further, we see this also works with strings
such as “Julie” or “Chris.” GHCi has faithfully determined that
those two strings are not equal in value.

Now use your REPL to determine whether ‘a’ or ‘A’ is greater.
Next, take a look at this sample and see if you can figure out

why GHCi returns the given results:

Prelude> "Julie" > "Chris"

True

Prelude> "Chris" > "Julie"

False
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Good to see Haskell code that reflects reality. “Julie” is
greater than “Chris” because J > C, if the words had been “Back”
and “Brack” then it would’ve skipped the first letter to deter-
mine which was greater because B == B, then “Brack” would
have been greater because ‘r’ > ‘a’ in the lexicographic ordering.
Note that this is leaning on the Ord typeclass instances for the
list type and Char. You can only compare lists of items where
the items themselves also have an instance of Ord. Accordingly,
the following will work because Char and Integer have instances
of Ord:

Prelude> ['a', 'b'] > ['b', 'a']

False

Prelude> 1 > 2

False

Prelude> [1, 2] > [2, 1]

False

A datatype that has no instance of Ord will not work with
these functions:

Prelude> data Mood = G | B deriving Show

Prelude> [G, B]

[G,B]

Prelude> [G, B] > [B, G]

<interactive>:28:14:
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No instance for (Ord Mood) arising

from a use of ‘>’

In the expression: [G, B] > [B, G]

In an equation for ‘it’:

it = [G, B] > [B, G]

“No instance for (Ord Mood)” means it doesn’t have an Ord

instance to know how to order these values.
Here is another thing that doesn’t work with these functions:

Prelude> "Julie" == 8

<interactive>:38:12:

No instance for (Num [Char]) arising from

the literal ‘8’

In the second argument of ‘(==)’,

namely ‘8’

In the expression: "Julie" == 8

In an equation for ‘it’: it = "Julie" == 8

We said above that comparison functions are polymorphic
and can work with a lot of different types. But we also noted
that the type information only admitted values of matching
types. Once you’ve given a term-level value that is a String

such as “Julie,” the type is determined and the other argument
must have the same type. The error message we see above is
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telling us that the type of the literal value 8 doesn’t match the
type of the first value, and for this function, it must.

4.6 Go on and Bool me

The Bool datatype comes standard in the Prelude. As we saw
earlier, Bool is a sum type with two constructors:

data Bool = False | True

This declaration creates a datatype with the type construc-
tor Bool, and we refer to specific types by their type construc-
tors. We use type constructors in type signatures, not in the
expressions that make up our term-level code. The type con-
structor Bool takes no arguments (some type constructors do
take arguments). The definition of Bool above also creates two
data constructors, True and False. Both of these values are of
type Bool. Any function that accepts values of type Bool must
allow for the possibility of True or False; you cannot specify
in the type that it should only accept one specific value. An
English language formulation of this datatype would be some-
thing like: “The datatype Bool is represented by the values True
or False.”

Remember, you can find the type of any value by asking
for it in GHCi, just as you can with functions:

Prelude> :t True
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True :: Bool

Prelude> :t "Julie"

"Julie" :: [Char]

Now let’s have some fun with Bool. We’ll start by reviewing
the not function:

Prelude> :t not

not :: Bool -> Bool

Prelude> not True

False

Note that we capitalize True and False because they are our
data constructors. What happens if you try to use not without
capitalizing them?

Let’s try something slightly more complex:

Prelude> let x = 5

Prelude> not (x == 5)

False

Prelude> not (x > 7)

True

We know that comparison functions evaluate to a Bool value,
so we can use them with not.

Let’s playwith infix operators that deal directlywith boolean
logic. How do we use Bool and these associated functions?
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First, (&&) is the infix operator for boolean conjunction. The
first example reads, colloquially, “true and true:”

Prelude> True && True

True

Prelude> (8 > 4) && (4 > 5)

False

Prelude> not (True && True)

False

The infix operator for boolean disjunction is (||), so the
first example here reads “false or true:”

Prelude> False || True

True

Prelude> (8 > 4) || (4 > 5)

True

Prelude> not ((8 > 4) || (4 > 5))

False

We can look up info about datatypes that are in scope (if
they’re not in scope, we have to import the module they live
in to bring them into scope) using the :info command GHCi
provides. Scope is a way to refer to where a named binding to
an expression is valid. When we say something is in scope, it
means you can use that expression by its bound name, either
because it was defined in the same function or module, or
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because you imported it. So, it’s visible to the program we’re
trying to run right now. What is built into Haskell’s Prelude

module is significant because everything in it is automatically
imported and in scope. For now, this is what we want so we
don’t have to write every function from scratch.

Exercises: Find the Mistakes

The following lines of code may have mistakes — some of
them won’t compile! You know what you need to do.

1. not True && true

2. not (x = 6)

3. (1 * 2) > 5

4. [Merry] > [Happy]

5. [1, 2, 3] ++ "look at me!"

Conditionals with if-then-else

Haskell doesn’t have ‘if’ statements, but it does have if ex-
pressions. It’s a built-in bit of syntax that works with the Bool

datatype.

Prelude> let t = "Truthin'"

Prelude> let f = "Falsin'"
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Prelude> if True then t else f

"Truthin'"

The expression if True evaluates to True, hence we return 𝑡.

Prelude> if False then t else f

"Falsin'"

Prelude> :t if True then t else f

if True then "Truthin'" else "Falsin'"

:: [Char]

And if False evaluates to False, so we return the else value.
The type of the whole expression is String (aka [Char]) because
that’s the type of the value that is returned as a result.

The structure here is:

if CONDITION

then EXPRESSION_A

else EXPRESSION_B

If the condition (which must evaluate to Bool) reduces to the
value True, then EXPRESSION_A is the result, otherwise EXPRESSION_B.

If-expressions can be thought of as a way to choose between
two values. You can embed a variety of expressions within
the if of an if-then-else, as long as it evaluates to Bool. The
types of the expressions in the then and else clauses must be
the same, as in the following:
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Prelude> let x = 0

Prelude> let a = "AWESOME"

Prelude> let w = "wut"

Prelude> if (x + 1 == 1) then a else w

"AWESOME"

Here’s how it reduces:

-- Given:

x = 0

if (x + 1 == 1) then "AWESOME" else "wut"

-- x is zero

if (0 + 1 == 1) then "AWESOME" else "wut"

-- reduce 0 + 1 so we can see

-- if it's equal to 1

if (1 == 1) then "AWESOME" else "wut"

-- Does 1 equal 1?

if True then "AWESOME" else "wut"

-- pick the branch based on the Bool value

"AWESOME"

-- dunzo
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But this does not work:

Prelude> let dog = "adopt a dog"

Prelude> let cat = "or a cat"

Prelude> let x = 0

Prelude> if x * 100 then dog else cat

<interactive>:15:7:

No instance for (Num Bool) arising

from a use of ‘*’

In the expression: (x * 100)

In the expression:

if (x * 100)

then "adopt a dog"

else "or a cat"

In an equation for ‘it’:

it = if (x * 100)

then "adopt a dog"

else "or a cat"

We got this type error because the condition passed to the
if-expression is of type Num a => a, not Bool and Bool doesn’t
implement the Num typeclass. To oversimplify, (x * 100) evalu-
ates to a numeric result, and numbers aren’t truth values. It
would have typechecked had the condition been x * 100 == 0
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or x * 100 == 9001. In those cases, it would’ve been an equality
check of two numbers which reduces to a Bool value.

Here’s an example of a function that uses a Bool value in an
if-expression:

-- greetIfCool1.hs

module GreetIfCool1 where

greetIfCool :: String -> IO ()

greetIfCool coolness =

if cool

then putStrLn "eyyyyy. What's shakin'?"

else

putStrLn "pshhhh."

where cool =

coolness == "downright frosty yo"

When you test this in the REPL, it should play out like this:

Prelude> :l greetIfCool1.hs

[1 of 1] Compiling GreetIfCool1

Ok, modules loaded: GreetIfCool1.

Prelude> greetIfCool "downright frosty yo"

eyyyyy. What's shakin'?

Prelude> greetIfCool "please love me"

pshhhh.
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Also note that greetIfCool could’ve been written with cool

being a function rather than a value defined against the argu-
ment directly like so:

-- greetIfCool2.hs

module GreetIfCool2 where

greetIfCool :: String -> IO ()

greetIfCool coolness =

if cool coolness

then putStrLn "eyyyyy. What's shakin'?"

else

putStrLn "pshhhh."

where cool v =

v == "downright frosty yo"

4.7 Tuples

Tuple is a type that allows you to store and pass around multiple
values within a single value. Tuples have a distinctive, built-
in syntax that is used at both type and term levels, and each
tuple has a fixed number of constituents. We refer to tuples
by the number of values in each tuple: the two-tuple or pair,
for example, has two values inside it, (x, y); the three-tuple
or triple has three, (x, y, z), and so on. This number is also
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known as the tuple’s arity. As we will see, the values within a
tuple do not have to be of the same type.

We will start by looking at the two-tuple, a tuple with two
elements. The two-tuple is expressed at both the type level and
term level with the constructor (,). The datatype declaration
looks like this:

Prelude> :info (,)

data (,) a b = (,) a b

This is different from the Bool type we looked at earlier in a
couple of important ways, even apart from that special type
constructor syntax. The first is that it has two parameters,
represented by the type variables 𝑎 and 𝑏. Those have to be
applied to concrete types, much as variables at the term level
have to be applied to values to evaluate a function. The second
major difference is that this is a product type, not a sum type.
A product type represents a logical conjunction: you must
supply both arguments to construct a value.

Notice that the two type variables are different, so that al-
lows for tuples that contain values of two different types. The
types are not, however, required to be different:

λ> (,) 8 10

(8,10)

λ> (,) 8 "Julie"

(8,"Julie")
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λ> (,) True 'c'

(True,'c')

But if we try to apply it to only one argument:

λ> (,) 9

<interactive>:34:1:

No instance for (Show (b0 -> (a0, b0)))

(maybe you haven't applied enough

arguments to a function?)

arising from a use of ‘print’

In the first argument of ‘print’,

namely ‘it’

In a stmt of an interactive

GHCi command: print it

Well, look at that error. This is one we will explore in detail
soon, but for now the important part is the part in parenthe-
ses: we haven’t applied the function — in this case, the data
constructor — to enough arguments.

The two-tuple in Haskell has some default convenience
functions for getting the first or second value. They’re named
fst and snd:

fst :: (a, b) -> a

snd :: (a, b) -> b
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The type signature tells us there’s nothing those functions
could do other than return the first or second value, respec-
tively.

Here are some examples of manipulating tuples, specifically
the two-tuple:

Prelude> let myTup = (1 :: Integer, "blah")

Prelude> :t myTup

myTup :: (Integer, [Char])

Prelude> fst myTup

1

Prelude> snd myTup

"blah"

Prelude> import Data.Tuple

Prelude> swap myTup

("blah",1)

We had to import Data.Tuple because swap isn’t included in
the Prelude.

We can also combine tuples with other expressions:

Prelude> 2 + fst (1, 2)

3

Prelude> 2 + snd (1, 2)

4

The (x, y) syntax of the tuple is special. The constructors
you use in the type signatures and in your code (terms) are
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syntactically identical even though they’re different things.
Sometimes that type constructor is referred to without the
type variables explicitly inside of it such as (,). Other times,
you’ll see (a, b) — particularly in type signatures.

You can use that syntax to pattern match when you write
functions, too. One nice thing about that is that the func-
tion definition can look very much like the type signature
sometimes. For example, we can implement fst and snd for
ourselves like this:

fst' :: (a, b) -> a

fst' (a, b) = a

snd' :: (a, b) -> b

snd' (a, b) = b

Let’s look at another example of pattern matching on tuples:

tupFunc :: (Int, [a])

-> (Int, [a])

-> (Int, [a])

tupFunc (a, b) (c, d) =

((a + c), (b ++ d))

It’s generally unwise to use tuples of an overly large size,
both for efficiency and sanity reasons. Most tuples you see will
be ( , , , , ) (5-tuple) or smaller.
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4.8 Lists

Lists are another type used to contain multiple values within
a single value. However, they differ from tuples in three im-
portant ways: First, all elements of a list must be of the same
type. Second, lists have their own distinct [] syntax. Like the
tuple syntax, it is used for both the type constructor in type
signatures and at the term level to express list values. Third,
the number of values that will be in the list isn’t specified in
the type — unlike tuples where the arity is set in the type and
immutable.

Here’s an example for your REPL:

Prelude> let p = "Papuchon"

Prelude> let awesome = [p, "curry", ":)"]

Prelude> awesome

["Papuchon","curry",":)"]

Prelude> :t awesome

awesome :: [[Char]]

First thing to note is that awesome is a list of lists of Char values
because it is a list of strings, and String is a type alias for [Char].
This means all the functions and operations valid for lists of
any value, usually expressed as [a], are valid for String because
[Char] is more specific than [a].
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Prelude> let s = "The Simons"

Prelude> let also = ["Quake", s]

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

Prelude> awesome ++ also

["Papuchon",

"curry",

":)",

"Quake",

"The Simons"]

Prelude> let allAwesome = [awesome, also]

Prelude> allAwesome

[["Papuchon","curry",":)"],

["Quake","The Simons"]]

Prelude> :t allAwesome

allAwesome :: [[[Char]]]

Prelude> :t concat

concat :: [[a]] -> [a]

Prelude> concat allAwesome

["Papuchon",

"curry",

":)",

"Quake",

"The Simons"]

We’ll save a full exploration of the list datatype until we
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get to the chapter on lists. The list data structure gets a whole
chapter because lists have some interesting complexity, we’re
going to use them to demonstrate some things about Haskell’s
nonstrict evaluation, and there are many standard functions
and constructs that can be used with lists.

4.9 Chapter Exercises

As in previous chapters, you will gain more by working out the
answer before you check what GHCi tells you, but be sure
to use your REPL to check your answers to the following
exercises. Also, you will need to have the awesome, also, and
allAwesome code from above in scope for this REPL session. For
convenience of reference, here are those values again:

awesome = ["Papuchon", "curry", ":)"]

also = ["Quake", "The Simons"]

allAwesome = [awesome, also]

length is a function that takes a list and returns a result that
tells how many items are in the list.

1. Given the definition of length above, what would the type
signature be? How many arguments, of what type does it
take? What is the type of the result it evaluates to?

2. What are the results of the following expressions?
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a) length [1, 2, 3, 4, 5]

b) length [(1, 2), (2, 3), (3, 4)]

c) length allAwesome

d) length (concat allAwesome)

3. Given what we know about numeric types and the type
signature of length, look at these two expressions. One
works and one returns an error. Determine which will
return an error and why.

(n.b., you will find Foldable t => t a representing [a], as
with concat in the previous chapter. Again, consider Foldable
t to represent a list here, even though list is only one of
the possible types.)

Prelude> 6 / 3

-- and

Prelude> 6 / length [1, 2, 3]

4. How can you fix the broken code from the preceding
exercise using a different division function/operator?

5. What is the type of the expression 2 + 3 == 5? What would
we expect as a result?

6. What is the type and expected result value of the follow-
ing:
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Prelude> let x = 5

Prelude> x + 3 == 5

7. Below are some bits of code. Which will work? Why or
why not? If they will work, what value would these reduce
to?

Prelude> length allAwesome == 2

Prelude> length [1, 'a', 3, 'b']

Prelude> length allAwesome + length awesome

Prelude> (8 == 8) && ('b' < 'a')

Prelude> (8 == 8) && 9

8. Write a function that tells you whether or not a given
String (or list) is a palindrome. Here you’ll want to use
a function called reverse a predefined function that does
what it sounds like.

reverse :: [a] -> [a]

reverse "blah"

"halb"

isPalindrome :: (Eq a) => [a] -> Bool

isPalindrome x = undefined

9. Write a function to return the absolute value of a number
using if-then-else
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myAbs :: Integer -> Integer

myAbs = undefined

10. Fill in the definition of the following function, using fst

and snd:

f :: (a, b) -> (c, d) -> ((b, d), (a, c))

f = undefined

Correcting syntax

In the following examples, you’ll be shown syntactically incor-
rect code. Type it in and try to correct it in your text editor,
validating it with GHC or GHCi.

1. Here, we want a function that adds 1 to the length of a
string argument and returns that result.

x = (+)

F xs = w 'x' 1

where w = length xs

2. This is supposed to be the identity function, id.

\X = x

3. When fixed, this function will return 1 from the value (1,

2).
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f (a b) = A

Match the function names to their types

1. Which of the following types is the type of show?

a) show a => a -> String

b) Show a -> a -> String

c) Show a => a -> String

2. Which of the following types is the type of (==)?

a) a -> a -> Bool

b) Eq a => a -> a -> Bool

c) Eq a -> a -> a -> Bool

d) Eq a => A -> Bool

3. Which of the following types is the type of fst?

a) (a, b) -> a

b) b -> a

c) (a, b) -> b

4. Which of the following types is the type of (+)?

a) (+) :: Num a -> a -> a -> Bool

b) (+) :: Num a => a -> a -> Bool
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c) (+) :: num a => a -> a -> a

d) (+) :: Num a => a -> a -> a

e) (+) :: a -> a -> a

4.10 Definitions

1. A tuple is an ordered grouping of values. In Haskell, you
cannot have a tuple with only one element, but there is a
zero tuple also called unit or (). The types of the elements
of tuples are allowed to vary, so you can have both (String,
String) or (Integer, String). Tuples in Haskell are the usual
means of briefly carrying around multiple values without
giving that combination its own name.

2. A typeclass is a set of operations defined with respect to
a polymorphic type. When a type has an instance of a
typeclass, values of that type can be used in the standard
operations defined for that typeclass. In Haskell, type-
classes are unique pairings of class and concrete instance.
This means that if a given type 𝑎 has an instance of Eq, it
has only one instance of Eq.

3. Data constructors in Haskell provide a means of creating
values that inhabit a given type. Data constructors in
Haskell have a type and can either be constant values
(nullary) or take one or more arguments, like functions.
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In the following example, Cat is a nullary data constructor
for Pet and Dog is a data constructor that takes an argument:

-- Why name a cat?

-- They don't answer anyway.

type Name = String

data Pet = Cat | Dog Name

The data constructors have the following types:

Prelude> :t Cat

Cat :: Pet

Prelude> :t Dog

Dog :: Name -> Pet

4. Type constructors in Haskell are not values and can only be
used in type signatures. Just as data declarations generate
data constructors to create values that inhabit that type,
data declarations generate type constructors which can be
used to denote that type. In the above example, Pet is the
type constructor. A guideline for differentiating the two
kinds of constructors is that type constructors always go
to the left of the = in a data declaration.
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5. Data declarations define new datatypes in Haskell. Data
declarations always create a new type constructor, but may
ormay not create new data constructors. Data declarations
are how we refer to the entire definition that begins with
the data keyword.

6. A type alias is a way to refer to a type constructor or type
constant by an alternate name, usually to communicate
something more specific or for brevity.

type Name = String

-- creates a new type alias Name of the

-- type String *not* a data declaration,

-- just a type alias declaration

7. Arity is the number of arguments a function accepts. This
notion is a little slippery in Haskell as, due to currying, all
functions are 1-arity and we handle accepting multiple
arguments by nesting functions.

8. Polymorphism in Haskell means being able to write code
in terms of values which may be one of several, or any,
type. Polymorphism in Haskell is either parametric or
constrained. The identity function, id, is an example of a
parametrically polymorphic function:

id :: a -> a

id x = x
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Here id works for a value of any type because it doesn’t
use any information specific to a given type or set of types.
Whereas, the following function isEqual:

isEqual :: Eq a => a -> a -> Bool

isEqual x y = x == y

Is polymorphic, but constrained or bounded to the set of
types which have an instance of the Eq typeclass. The dif-
ferent kinds of polymorphism will be discussed in greater
detail in a later chapter.

4.11 Names and variables

Names

In Haskell there are seven categories of entities that have
names: functions, term-level variables, data constructors, type
variables, type constructors, typeclasses, and modules. Term-
level variables and data constructors exist in your terms. Term
level is where your values live and is the code that executes
when your program is running. At the type level, which is used
during the static analysis & verification of your program, we
have type variables, type constructors, and typeclasses. Lastly,
for the purpose of organizing our code into coherent group-
ings across different files, we have modules.
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Conventions for variables

Haskell uses a lot of variables, and some conventions have
developed. It’s not critical that you memorize this, because for
the most part, these are merely conventions, but familiarizing
yourself with them will help you read Haskell code.

Type variables (that is, variables in type signatures) gener-
ally start at 𝑎 and go from there: 𝑎, 𝑏, 𝑐, and so forth. You may
sometimes see them with numbers appended to them, e.g., 𝑎1.

Functions can be used as arguments and in that case are
typically labeled with variables starting at 𝑓 (followed by 𝑔 and
so on). They may sometimes have numbers appended (e.g., 𝑓1)
and may also sometimes be decorated with the ′ character as
in 𝑓 ′. This would be pronounced “eff-prime,” should you have
need to say it aloud. Usually this denotes a function that is
closely related to or a helper function to function 𝑓 . Functions
may also be given variable names that are not on this spectrum
as a mnemonic. For example, a function that results in a list
of prime numbers might be called 𝑝, or a function that fetches
some text might be called 𝑡𝑥𝑡.

Variables do not have to be a single letter. In small programs,
they often are; in larger programs, they usually should not
be a single letter. If there are many variables in a function
or program, as is common, it is helpful to have descriptive
variable names. It is often advisable in domain-specific code



CHAPTER 4. BECAUSE PIGS CAN’T FLY 177

to use domain-specific variable names.
Arguments to functions are most often given names start-

ing at 𝑥, again occasionally seen numbered as in 𝑥1. Other
single-letter variable names may be chosen when they serve a
mnemonic role, such as choosing 𝑟 to represent a value that is
the radius of a circle.

If you have a list of things you have named 𝑥, by convention
that will usually be called 𝑥𝑠, that is, the plural of 𝑥. You will
see this convention often in the form (x:xs), which means you
have a list in which the head of the list is 𝑥 and the rest of the
list is 𝑥𝑠.

All of these, though, are conventions, not definite rules.
While we will generally adhere to the conventions in this book,
any Haskell code you see out in the wild may not. Calling a
type variable 𝑥 instead of 𝑎 is not going to break anything. As
in the lambda calculus, the names don’t have any inherent
meaning. We offer this information as a descriptive guide of
Haskell conventions, not as rules you must follow in your own
code.
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Types

She was the single
artificer of the world
In which she sang. And
when she sang, the sea,
Whatever self it had,
became the self
That was her song, for she
was the maker.

Wallace Stevens, “The
Idea of Order at Key

West”

178



CHAPTER 5. TYPES 179

5.1 Types

In the last chapter, we looked at some built-in datatypes, such
as Bool and tuples and had a brief run-in with the typeclasses
Num and Eq. However, a deep understanding of types and how to
read and interpret them is fundamental to reading and writing
Haskell.

As we have seen, a datatype declaration defines a type con-
structor and data constructors. Data constructors are the val-
ues of a particular type; they are also functions that let us
create data, or values, of a particular type, although it will
take some time before the full import of this becomes clear.
In Haskell, you cannot create untyped data, so except for a
sprinkling of syntactic sugar for things like numbers or func-
tions, everything originates in a data constructor from some
definition of a type.

In this chapter, we’re going to take a deeper look at the type
system and

• learn more about querying and reading type signatures;

• see that currying has, unfortunately, nothing to do with
food;

• take a closer look at different kinds of polymorphism;

• look at type inference and how to declare types for our
functions.
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5.2 What are types for?

Haskell is an implementation of a pure lambda calculus, in
the sense that it isn’t much more than syntactic sugar over the
basic system of variables, abstractions, and applications that
constitute the rules of the lambda calculus — at least, of a typed
lambda calculus. Developments in logic, mathematics, and
computer science led to the discovery (or invention, take your
pick) of a typed lambda calculus called System F in the 1970s.
Haskell has improved on System F in some key ways, such as
by allowing general recursion (more on that in a later chapter)
and the Hindley-Milner system to permit type inference (more
on that later in this chapter), but the core logic is the same.

So, why do we want types? Type systems in logic and math-
ematics have been designed to impose constraints that enforce
correctness. For our purposes, we can say that well-designed
type systems help eliminate some classes of errors as well as
concerns such as what the effect of a conditional over a non-
Boolean value might be. A type system defines the associations
between different parts of a program and checks that all the
parts fit together in a logically consistent, provably correct
way.

Let’s consider a short, somewhat oversimplified example.
The Bool type is a set with two inhabitants, True and False, as
we saw in the last chapter. Anytime the value True or False

occurs in a Haskell program, the typechecker will know they’re
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members of the Bool type. The inverse is that whenever the
type Bool is declared in a type signature, the compiler will
expect one of those two values and only one of those two
values; you get a type error if you try to pass a number where
a Bool is expected.

In Haskell, where typing is static, typechecking occurs at
compile time. That means many errors will be caught before
you try to execute, or run, your program. The difference isn’t
always obvious because GHCi allows you to typecheck things
interactively, as you’re writing them, as well as execute them if
they typecheck. No type system can eliminate all possibilities
for error, so the possibility of runtime errors and exceptions
still exists, and testing of programs is necessary, but the type
system reduces the number and kinds of tests you must write.

Good type systems can also enable compiler optimizations,
because the compiler can know and predict certain things
about the execution of a program based on the types. Types
can also serve as documentation of your program, which is
one reason we encourage you to declare types (that is, write
the type signatures) for your functions. It won’t matter too
much when you’re writing small programs, but as programs
get longer, type signatures can help you read your program
and remember what you were doing, and help anyone else
who might be trying to use your code as well.

You may feel that Haskell’s type system requires a lot of up-
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front work. This upfront cost comes with a later payoff: code
that is safer and, down the line, easier to maintain. Working
with a good type system can eliminate those tests that only
check that you’re passing the right sort of data around, and
since tests are more code that you have to write (correctly) and
maintain, it will eventually save you time and effort.

Many, perhaps most, programming languages have type
systems that feel like haggling with a petty merchant. However,
we believe Haskell provides a type system that more closely
resembles a quiet, pleasant conversation with a colleague than
an argument in the bazaar. Much of what we suggest with
regards to putting code in a file, loading it in a REPL, querying
types in the REPL, and so forth, is about creating habits con-
ducive to having this pleasant back and forth with your type
system.

5.3 How to read type signatures

In previous chapters, we’ve seen that we can query types in
the REPL with the :type or :t command. You can query types
for functions, partially applied functions, and values, which
are, in a way, fully applied functions.

When we query the types of values, we see something like
this:

Prelude> :type 't'
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't' :: Char -- 't' has the type Char

Prelude> :type "julie"

"julie" :: [Char] -- "julie" has the type String

Prelude> :type True

True :: Bool -- True has the type Bool

When we query the types of numeric values, we see type-
class information instead of a concrete type, because the com-
piler doesn’t know which specific numeric type a value is until
the type is either declared or the compiler is forced to infer
a specific type based on the function. For example, 13 may
look like an integer to us, but that would only allow us to use it
in computations that take integers (and not, say, in fractional
division). For that reason, the compiler gives it the type with
the broadest applicability (most polymorphic) and says it’s a
constrained polymorphic Num a => a value:

Prelude> :type 13

13 :: Num a => a

-- we can give it a concrete type

-- by declaring it

Prelude> let x = 13 :: Integer

Prelude> :t x

x :: Integer
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You can also query the type signatures of functions, as we’ve
seen:

Prelude> :type not

not :: Bool -> Bool

This takes one input of a Bool value and returns one Bool

value. Given that type, there aren’t too many things it even
could do.1

Understanding the function type

The arrow, (->), is the type constructor for functions in Haskell.
It’s baked into the language, but syntactically it works in very
much the same way as all the other types you’ve seen so far. It’s
a type constructor, like Bool, except the (->) type constructor
takes arguments and has no data constructors:

Prelude> :info (->)

data (->) a b

-- some further information is elided

If you compare this to the type constructor for the two-
tuple, you see the similarity:

Prelude> :info (,)

data (,) a b = (,) a b

1 Four, to be precise. But if we assume that the standard Prelude functions are generally
useful functions, it helps narrow it down considerably.



CHAPTER 5. TYPES 185

We saw earlier that the tuple constructor needs to be applied
to two values in order to construct a tuple. A function must
similarly have two arguments — one input and one result —
in order to be a function. Unlike the tuple constructor, though,
the function type has no data constructors. The value that
shows up at term level is the function. Functions are values.

As we’ve said, the hallmark of a function is that it can be
applied, and the structure of the type demonstrates this. The
arrow is an infix operator that has two parameters and associates
to the right (although function application is left associative).
The parameterization suggests that we will apply the function
to some argument that will be bound to the first parameter,
with the second parameter, 𝑏, representing the return or result
type. We will cover these things in more detail throughout
this chapter.

Let’s return to reading type signatures. The function fst is
a value of type (a, b) -> a where -> is an infix type constructor
that takes two arguments:

fst :: (a, b) -> a

-- [1] [2] [3]

1. The first parameter of fst has the type (a, b). Note that
the tuple type itself (,) takes two arguments 𝑎 and 𝑏.

2. The function type, (->), has two parameters. One is (a,

b) and one is the result 𝑎.
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3. The result of the function, which has type 𝑎. It’s the same
𝑎 that was in the tuple (a, b).

How do we know it’s the same 𝑎? We can say that we know
the input type 𝑎 and the output type 𝑎 must be the same type,
and we can see that nothing happens between the input and the
output; that is, there is no operation that comes between them
that could transform that 𝑎 into some other value of that type.

Let’s look at another function:

Prelude> :type length

length :: [a] -> Int

The length function takes one argument that is a list — note
the square brackets — and returns an Int result. The Int result
in this case will be the number of items in the list. The type
of the inhabitants of the list is left unspecified; this function
does not care — in fact, cannot care — what types of values
are inside the list.

Typeclass-constrained type variables

Next, let’s look at the types of some arithmetic functions. You
may recall that the act of wrapping an infix operator in paren-
theses allows us to use the function just like a normal prefix
function, including being able to query the type:

Prelude> :type (+)
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(+) :: Num a => a -> a -> a

Prelude> :type (/)

(/) :: Fractional a => a -> a -> a

To describe these casually, we could say addition takes one
numeric argument, adds it to a second numeric argument of
the same type, and returns a numeric value of the same type
as a result. Similarly, the fractional division function takes a
fractional value, divides it by a second fractional value, and
returns a third fractional value as a result. This isn’t precise,
but it will do for now.

The compiler gives the least specific and most general type
it can. Instead of limiting this function to a concrete type, we
get a typeclass-constrained polymorphic type variable. We’ll
save a fuller explanation of typeclasses for the next chapter.
What we need to know here is that each typeclass offers a stan-
dard set of functions that can be used across several concrete
types. When a typeclass is constraining a type variable in this
way, the variable could represent any of the concrete types
that have instances of that typeclass so that specific operations
on which the function depends are defined for that type. We
say it’s constrained because we still don’t know the concrete
type of 𝑎, but we do know it can only be one of the types that
has the required typeclass instance.

This generalization of numberhood is what lets us use the
same numerical literals to represent numeric values of dif-
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ferent types. We can start with a Num a => a value and then
create specific versions of it with a concrete type using the ::

to assign a type to the value:

Prelude> let fifteen = 15

Prelude> :t fifteen

fifteen :: Num a => a

Prelude> let fifteenInt = fifteen :: Int

Prelude> let fifteenDouble = fifteen :: Double

Prelude> :t fifteenInt

fifteenInt :: Int

Prelude> :t fifteenDouble

fifteenDouble :: Double

We went from Num a => a to Int and Double. This works be-
cause Int and Double each have an instance of the Num typeclass:

Prelude> :info Num

[...irrelevant bits elided...]

instance Num Int -- Defined in ‘GHC.Num’

instance Num Double -- Defined in ‘GHC.Float’

Since they both have instances of Num, the operations from
Num, such as addition, are defined for both of them:

Prelude> fifteenInt + fifteenInt

30
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Prelude> fifteenDouble + fifteenDouble

30.0

We can also make more specific versions of our Num a => a

value named fifteen by using it in a way that requires it to
become something more specific:

Prelude> fifteenDouble + fifteen

30.0

Prelude> fifteenInt + fifteen

30

What we cannot do is this:

Prelude> fifteenDouble + fifteenInt

Couldn't match expected type ‘Double’

with actual type ‘Int’

In the second argument of ‘(+)’,

namely ‘fifteenInt’

In the expression: fifteenDouble + fifteenInt

We can’t add those two values because their types are no
longer polymorphic, and their concrete types are different so
they have different definitions of how to implement addition.
The type error message contrasts the actual type with the ex-
pected type. The actual type is what we provided; the expected
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type is what the compiler expected. Since we had fifteenDouble

as our first argument, it expected the second value to also have
the type Double but it actually has the type Int.

A type signature might have multiple typeclass constraints
on one or more of the variables. You will sometimes see (or
write) type signatures such as:

(Num a, Num b) => a -> b -> b

-- or

(Ord a, Num a) => a -> a -> Ordering

Here, the constraints look like a tuple, although they don’t
add another function argument that you must provide, and
they don’t appear as a tuple at the value or term level. Nothing
to the left of the typeclass arrow, =>, shows up at term level. The
tuple of constraints does represent a product, or conjunction,
of constraints.

In the first example above, there are two constraints, one
for each variable. Both 𝑎 and 𝑏 must have instances of the
Num typeclass. In the second example, both of the constraints
are on the one variable 𝑎 — that is, 𝑎 must be a type that
implements both Ord and Num.
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Exercises: Type Matching

Below you’ll find a list of several standard functions we’ve
talked about previously. Under that is a list of their type sig-
natures. Match the function to its type signature. Try to do
it without peeking at the type signatures (either in the text or
in GHCi) and then check your work. You may find it easier to
start from the types and work out what you think a function
of that type would do.

1. Functions:

a) not

b) length

c) concat

d) head

e) (<)

2. Type signatures:

a) _ :: [a] -> a

b) _ :: [[a]] -> [a]

c) _ :: Bool -> Bool

d) _ :: [a] -> Int

e) _ :: Ord a => a -> a -> Bool
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5.4 Currying

As in the lambda calculus, arguments (plural) is a shorthand
for the truth in Haskell: all functions in Haskell take one argu-
ment and return one result. Other programming languages,
if you have any experience with them, typically allow you to
define functions that can take multiple arguments. There is
no support for this built into Haskell. Instead there are syn-
tactic conveniences that construct curried functions by default.
Currying refers to the nesting of multiple functions, each ac-
cepting one argument and returning one result, to allow the
illusion of multiple-parameter functions.

The arrows we’ve seen in type signatures denote the func-
tion type. We looked at the datatype definition earlier, but
let’s review:

data (->) a b

In order to have a function, you must have one input, the 𝑎,
to apply the function to, and you’ll get one result, the 𝑏, back.
Each arrow in a type signature represents one argument and
one result, with the final type being the final result. If you
are constructing a function that requires multiple parameters,
then the 𝑏 can be another function (the 𝑎 can be another func-
tion as well). In that case, just like in lambda abstractions that
have multiple heads, they are nested.
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Let’s break this down by looking at the type signature for
addition, a function that needs multiple inputs:

(+) :: Num a => a -> a -> a

-- | 1 |

(+) :: Num a => a -> a -> a

-- | 2 |

(+) :: Num a => a -> a -> a

-- [3]

1. Here is the typeclass constraint saying that 𝑎 must have
an instance of Num. Addition is defined in the Num typeclass.

2. The boundaries of 2 demarcate what you might call the
two parameters to the function (+), but all functions in
Haskell take one argument and return one result. This is
because functions in Haskell are nested like Matryoshka
dolls in order to accept “multiple” arguments. The way
the (->) type constructor for functions works means a ->

a -> a represents successive function applications, each
taking one argument and returning one result. The dif-
ference is that the function at the outermost layer is re-
turning another function that accepts the next argument.
This is called currying.
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3. This is the result type for this function. It will be a number
of the same type as the two inputs.

The way the type constructor for functions, (->), is defined
makes currying the default in Haskell. This is because it is an
infix operator and right associative. Because it associates to
the right, types are implicitly parenthesized like so:

f :: a -> a -> a

-- associates to

f :: a -> (a -> a)

and

map :: (a -> b) -> [a] -> [b]

-- associates into

map :: (a -> b) -> ([a] -> [b])

Let’s see if we can unpack the notion of a right-associating
infix operator giving us curried functions. The association
here, or grouping into parentheses, is not to control prece-
dence or order of evaluation; it only serves to group the pa-
rameters into argument and result, since there can only be
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one argument and one result per arrow. Since all the arrows
have the same precedence, the associativity does not change
the precedence or order of evaluation.

Remember, when we have a lambda expression that appears
to have two parameters, they are nested lambdas. Applying the
expression to one argument returns a function that awaits ap-
plication to a second argument. After you apply it to a second
argument, you have a final result. You can nest more lambdas
than two, of course, but the process is the same: one argument,
one result, even though that result may be a function awaiting
application to another argument.

The type constructor for functions and the types we see
above are the same thing, but written in Haskell. When there
are “two arguments” in Haskell, we apply our function to an
argument, just like when we apply a lambda expression to an
argument, and then return a result that is a function and needs
to be applied to a second argument.

Explicit parenthesization, as when an input parameter is
itself a function (such as in map, above), may be used to indicate
order of evaluation, but the implicit associativity of the func-
tion type does not mean the inner or final set of parentheses,
i.e., the result type, evaluates first. Application is evaluation;
in other words, the only way to evaluate anything is by apply-
ing functions, and function application is left associative. So,
the leftmost, or outermost, arguments will be evaluated first,
assuming anything gets evaluated (since Haskell is nonstrict,
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you can’t assume that anything will be evaluated, but this will
be more clear later).

Partial application

Currying may be interesting, but many people wonder what
the practical effect or value of currying is. We’ll look now at
a strategy called partial application to see what currying does
for us. It’s something we’ll explore more as we go through the
book as well.

We use the double colon to assign a type. Making the type
concrete will eliminate the typeclass constraint:

addStuff :: Integer -> Integer -> Integer

addStuff a b = a + b + 5

So, addStuff appears to take two Integer arguments and re-
turn an Integer result. But after loading that in GHCi we see
that it is taking one argument and returning a function that
takes one argument and returns one result:

Prelude> :t addStuff

addStuff :: Integer -> Integer -> Integer

Prelude> let addTen = addStuff 5

Prelude> :t addTen

addTen :: Integer -> Integer

Prelude> let fifteen = addTen 5
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Prelude> fifteen

15

Prelude> addTen 15

25

Prelude> addStuff 5 5

15

Here fifteen is equal to addStuff 5 5, because addTen is equal
to addStuff 5. The ability to apply only some of a function’s ar-
guments is called partial application. This lets us reuse addStuff

and create a new function from it with one of the arguments
applied.

If we recall that (->) is a type constructor and associates to
the right, this becomes more clear:

addStuff :: Integer -> Integer -> Integer

-- with explicit parenthesization

addStuff :: Integer -> (Integer -> Integer)

Applying addStuff to one Integer argument gave us the func-
tion addTen, which is the return function of addStuff. Applying
addTen to an Integer argument gives us a return value, so the
type of fifteen is Integer — no more function arrows.

Let’s check our understanding with a function that isn’t
commutative:
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subtractStuff :: Integer

-> Integer

-> Integer

subtractStuff x y = x - y - 10

subtractOne = subtractStuff 1

Prelude> :t subtractOne

subtractOne :: Integer -> Integer

Prelude> let result = subtractOne 11

Prelude> result

-20

Why did we get this result? Because of the order in which
we applied arguments, result is equal to 1 - 11 - 10.

Manual currying and uncurrying

Haskell is curried by default, but you can uncurry functions.
Uncurrying means un-nesting the functions and replacing the
two functions with a tuple of two values (these would be the two
values you want to use as arguments). If you uncurry (+), the
type changes from Num a => a -> a -> a to Num a => (a, a) -> a

which better fits the description “takes two arguments, returns
one result” than curried functions. Some older functional
languages default to using a product type like tuples to express
multiple arguments.
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• Uncurried functions: One function, many arguments

• Curried functions: Many functions, one argument apiece

You can also desugar the automatic currying yourself, by
nesting the arguments with lambdas, though there’s rarely a
reason to do so.

We’ll use anonymous lambda syntax here to show you some
examples of uncurrying. You may want to review anonymous
lambda syntax or try comparing these functions directly and
thinking of the backslash as a lambda:
indexanonymous function ! syntax

nonsense :: Bool -> Integer

nonsense True = 805

nonsense False = 31337

curriedFunction :: Integer

-> Bool

-> Integer

curriedFunction i b =

i + (nonsense b)

uncurriedFunction :: (Integer, Bool)

-> Integer

uncurriedFunction (i, b) =

i + (nonsense b)
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anonymous :: Integer -> Bool -> Integer

anonymous = \i b -> i + (nonsense b)

anonNested :: Integer

-> Bool

-> Integer

anonNested =

\i -> \b -> i + (nonsense b)

Then when we test the functions from the REPL:

Prelude> curriedFunction 10 False

31347

Prelude> anonymous 10 False

31347

Prelude> anonNested 10 False

31347

They are all the same function, all giving the same results.
In anonNested, we manually nested the anonymous lambdas to
get a function that was semantically identical to curriedFunction

but didn’t leverage the automatic currying. This means func-
tions that seem to accept multiple arguments such as with a ->

a -> a -> a are higher-order functions: they yield more function
values as each argument is applied until there are no more (->)

type constructors and it terminates in a non-function value.
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Currying and uncurrying existing functions

It turns out, we can curry and uncurry functions with multiple
parameters generically without writing new code for each one.
Consider the following example for currying:

Prelude> let curry f a b = f (a, b)

Prelude> :t curry

curry :: ((t1, t2) -> t) -> t1 -> t2 -> t

Prelude> :t fst

fst :: (a, b) -> a

Prelude> :t curry fst

curry fst :: t -> b -> t

Prelude> fst (1, 2)

1

Prelude> curry fst 1 2

1

Then for uncurrying:

Prelude> let uncurry f (a, b) = f a b

Prelude> :t uncurry

uncurry :: (t1 -> t2 -> t) -> (t1, t2) -> t

Prelude> :t (+)

(+) :: Num a => a -> a -> a

Prelude> (+) 1 2

3
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Prelude> uncurry (+) (1, 2)

3

Currying and uncurrying functions of three or more argu-
ments automatically is quite possible, but trickier. We’ll leave
that be, but investigate on your own if you like.

Sectioning

We mentioned sectioning in Chapter 2, and now that we’ve
talked a bit more about currying and partial application, it
may be more clear what’s happening there. The term section-
ing specifically refers to partial application of infix operators,
which has a special syntax and allows you to choose whether
the argument you’re partially applying the operator to is the
first or second argument:

Prelude> let x = 5

Prelude> let y = (2^)

Prelude> let z = (^2)

Prelude> y x

32

Prelude> z x

25

With commutative functions such as addition, the argu-
ment order does not matter. We will usually section addition
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as, for example, (+3), but when we start using partially applied
functions a lot with maps and folds and so forth, you’ll be able
to see the difference that the argument order can make with
noncommutative operators.

This does not only work with arithmetic, though:

Prelude> let celebrate = (++ " woot!")

Prelude> celebrate "naptime"

"naptime woot!"

Prelude> celebrate "dogs"

"dogs woot!"

You can also use the syntax with functions that are normally
prefix if you use the backticks to make them infix (note the
.. is a shorthand for constructing a list of all the elements
between the first and last values given — go ahead and play
with this in your REPL):

Prelude> elem 9 [1..10]

True

Prelude> 9 `elem` [1..10]

True

Prelude> let c = (`elem` [1..10])

Prelude> c 9

True

Prelude> c 25

False
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If you partially applied elem in its usual prefix form, then
the argument you apply it to would necessarily be the first
argument:

Prelude> let hasTen = elem 10

Prelude> hasTen [1..9]

False

Prelude> hasTen [5..15]

True

Partial application is common enough in Haskell that, over
time, you’ll develop an intuition for it. The sectioning syntax
exists to allow some freedom in which argument of a binary
operator you apply the function to.

Exercises: Type Arguments

Given a function and its type, tell us what type results from
applying some or all of the arguments.

You can check your work in the REPL like this (using the
first question as an example):

Prelude> let f :: a -> a -> a -> a; f = undefined

Prelude> let x :: Char; x = undefined

Prelude> :t f x



CHAPTER 5. TYPES 205

It turns out that you can check the types of things that aren’t
implemented yet, so long as you give GHCi an undefined to
bind the signature to.

1. If the type of f is a -> a -> a -> a, and the type of 𝑥 is Char
then the type of f x is

a) Char -> Char -> Char

b) x -> x -> x -> x

c) a -> a -> a

d) a -> a -> a -> Char

2. If the type of g is a -> b -> c -> b, then the type of
g 0 'c' "woot" is

a) String

b) Char -> String

c) Int

d) Char

3. If the type of h is (Num a, Num b) => a -> b -> b, then the
type of
h 1.0 2 is:

a) Double

b) Integer
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c) Integral b => b

d) Num b => b

Note that because the type variables 𝑎 and 𝑏 are different,
the compilermust assume that the types could be different.

4. If the type of h is (Num a, Num b) => a -> b -> b, then the
type of
h 1 (5.5 :: Double) is

a) Integer

b) Fractional b => b

c) Double

d) Num b => b

5. If the type of jackal is (Ord a, Eq b) => a -> b -> a, then
the type of
jackal "keyboard" "has the word jackal in it"

a) [Char]

b) Eq b => b

c) b -> [Char]

d) b

e) Eq b => b -> [Char]
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6. If the type of jackal is (Ord a, Eq b) => a -> b -> a, then
the type of
jackal "keyboard"

a) b

b) Eq b => b

c) [Char]

d) b -> [Char]

e) Eq b => b -> [Char]

7. If the type of kessel is (Ord a, Num b) => a -> b -> a, then
the type of
kessel 1 2 is

a) Integer

b) Int

c) a

d) (Num a, Ord a) => a

e) Ord a => a

f) Num a => a

8. If the type of kessel is (Ord a, Num b) => a -> b -> a, then
the type of
kessel 1 (2 :: Integer) is

a) (Num a, Ord a) => a
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b) Int

c) a

d) Num a => a

e) Ord a => a

f) Integer

9. If the type of kessel is (Ord a, Num b) => a -> b -> a, then
the type of
kessel (1 :: Integer) 2 is

a) Num a => a

b) Ord a => a

c) Integer

d) (Num a, Ord a) => a

e) a

5.5 Polymorphism

Polymorph is a word of relatively recent provenance. It was
invented in the early 19th century from the Greek words poly
for “many” andmorph for “form”. The -ic suffix in polymorphic
means “made of.” So, ‘polymorphic’ means “made of many
forms.” In programming, this is understood to be in contrast
with monomorphic, “made of one form.”
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Polymorphic type variables give us the ability to implement
expressions that can accept arguments and return results of
different types without having to write variations on the same
expression for each type. It would be inefficient if you were
doing arithmetic and had to write the same code over and
over for different numeric types. The good news is the nu-
merical functions that come with your GHC installation and
the Prelude are polymorphic by default. Broadly speaking,
type signatures may have three kinds of types: concrete, con-
strained polymorphic, or parametrically polymorphic.

In Haskell, polymorphism divides into two categories: para-
metric polymorphism and constrained polymorphism. If you’ve
encountered polymorphism before, it was probably a form
of constrained, often called ad-hoc, polymorphism. Ad-hoc
polymorphism2 in Haskell is implemented with typeclasses.

Parametric polymorphism is broader than ad-hoc polymor-
phism. Parametric polymorphism refers to type variables, or
parameters, that are fully polymorphic. When unconstrained
by a typeclass, their final, concrete type could be anything.
Constrained polymorphism, on the other hand, puts typeclass
constraints on the variable, decreasing the number of concrete
types it could be, but increasing what you can do with it by
defining and bringing into scope a set of operations.

2Wadler’s paper on making Ad-hoc polymorphism less ad-hoc http://people.csail.

mit.edu/dnj/teaching/6898/papers/wadler88.pdf

http://people.csail.mit.edu/dnj/teaching/6898/papers/wadler88.pdf
http://people.csail.mit.edu/dnj/teaching/6898/papers/wadler88.pdf
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Recall that when you see a lowercase name in a type sig-
nature, it is a type variable and polymorphic (like 𝑎, 𝑡, etc). If
the type is capitalized, it is a specific, concrete type such as Int,
Bool, etc.

Let’s consider a parametrically polymorphic function: iden-
tity. The id function comes with the Prelude and is called the
identity function because it is the identity for any value in
our language. In the next example, the type variable 𝑎 is para-
metrically polymorphic and not constrained by a typeclass.
Passing any value to id will return the same value:

id :: a -> a

This type says: for all 𝑎, get an argument of some type 𝑎
and return a value of the same type 𝑎.

This is the maximally polymorphic signature for id. It
allows this function to work with any type of data:

Prelude> id 1

1

Prelude> id "blah"

"blah"

Prelude> let inc = (+1)

Prelude> inc 2

3

Prelude> (id inc) 2

3
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Based on the type of id, we are guaranteed this behavior —
it cannot do anything else! The 𝑎 in the type signature cannot
change because the type variable gets fixed to a concrete type
throughout the entire type signature (a == a). If one applies
id to a value of type Int, the 𝑎 is fixed to type Int. By default,
type variables are resolved at the left-most part of the type
signature and are fixed once sufficient information to bind
them to a concrete type is available.

The arguments in parametrically polymorphic functions,
like id, could be anything, any type or typeclass, so the terms
of the function are more restricted because there are no meth-
ods or information attached to them. With the type id :: a

-> a, it can do nothing other than return 𝑎 because there is
no information or method attached to its parameter at all —
nothing can be done with 𝑎. On the other hand, a function like
negate, with a similar-appearing type signature of Num a => a

-> a constrains the 𝑎 variable as an instance of the Num typeclass.
Now 𝑎 has fewer concrete types it could be, but there is a set of
methods you can use, a set of things that can be done with 𝑎.

If a variable represents a set of possible values, then a type
variable represents a set of possible types. When there is no
typeclass constraint, the set of possible types a variable could
represent is effectively unlimited. Typeclass constraints limit
the set of potential types (and, thus, potential values) while
also passing along the common functions that can be used
with those values.
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Concrete types have even more flexibility in terms of com-
putation. This has to do with the additive nature of typeclasses.
For example, an Int is only an Int, but it can make use of the
methods of the Num and Integral typeclasses because it has in-
stances of both. We can describe Num as a superclass of several
other numeric typeclasses that all inherit operations from Num.

In sum, if a variable could be anything, then there’s little
that can be done to it because it has no methods. If it can
be some types (say, a type that has an instance of Num), then
it has some methods. If it is a concrete type, you lose the
type flexibility but, due to the additive nature of typeclass
inheritance, gain more potential methods. It’s important to
note that this inheritance extends downward from a superclass,
such as Num, to subclasses, such as Integral and then Int, but not
the other way around. That is, if something has an instance
of Num but not an instance of Integral, it can’t implement the
methods of the Integral typeclass. A subclass cannot override
the methods of its superclass.

A function is polymorphic when its type signature has vari-
ables that can represent more than one type. That is, its param-
eters are polymorphic. Parametric polymorphism refers to
fully polymorphic (unconstrained by a typeclass) parameters.
Parametricity is the property we get from having parametric
polymorphism. Parametricity means that the behavior of a
function with respect to the types of its (parametrically poly-
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morphic) arguments is uniform. The behavior can not change
just because it was applied to an argument of a different type.

Exercises: Parametricity

All you can do with a parametrically polymorphic value is pass
or not pass it to some other expression. Prove that to yourself
with these small demonstrations.

1. Given the type a -> a, which is the type for id, attempt
to make a function that terminates successfully that does
something other than returning the same value. This is
impossible, but you should try it anyway.

2. We can get a more comfortable appreciation of para-
metricity by looking at a -> a -> a. This hypothetical
function a -> a -> a has two–and only two–implementa-
tions. Write both possible versions of a -> a -> a. After
doing so, try to violate the constraints of parametrically
polymorphic values we outlined above.

3. Implement a -> b -> b. How many implementations can
it have? Does the behavior change when the types of 𝑎
and 𝑏 change?
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Polymorphic constants

We’ve seen that there are several types of numbers in Haskell
and that there are restrictions on using different types of num-
bers in different functions. But intuitively we see it would be
odd if we could not do arithmetic along the lines of -10 + 6.3.
Well, let’s try it:

Prelude> (-10) + 6.3

-3.7

That works just fine. Why? Let’s look at the types and see if
we can find out:

Prelude> :t (-10) + 6.3

(-10) + 6.3 :: Fractional a => a

Prelude> :t (-10)

(-10) :: Num a => a

Numeric literals like (-10) and 6.3 are polymorphic and stay
so until given a more specific type. The Num a => or Fractional

a => is a typeclass constraint and the 𝑎 is the type variable
in scope. In the type for the entire equation, we see that the
compiler inferred that it was working with Fractional numbers.
It had to, to accommodate the fractional number 6.3. Fine,
but what about (-10)? We see that the type of (-10) is given
maximum polymorphism by only being an instance of the
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Num typeclass, which could be any type of number. We call
this a polymorphic constant; (-10) is not a variable, of course,
but the type that it instantiates could be any numeric type, so
its underlying representation is polymorphic. It will have to
resolve into a concrete type at some point in order to evaluate.

We can force the compiler to be more specific about the
types of numbers by declaring the type:

Prelude> let x = 5 + 5

Prelude> :t x

x :: Num a => a

Prelude> let x = 5 + 5 :: Int

Prelude> :t x

x :: Int

In the first example, we did not specify a type for the num-
bers, so the type signature defaulted to the broadest interpre-
tation, but in the second version, we told the compiler to use
the Int type.

Working around constraints

Previously, we’ve looked at a function called length that takes
a list and counts the number of members and returns that
number as an Int value. We saw in the last chapter that because
Int is not a Fractional number, this function won’t work:
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Prelude> 6 / length [1, 2, 3]

No instance for (Fractional Int) arising

from a use of ‘/’

In the expression: 6 / length [1, 2, 3]

In an equation for ‘it’: it = 6 / length [1, 2, 3]

Here the problem is length isn’t polymorphic enough. Fractional
includes several types of numbers, but Int isn’t one of them,
and that’s all length can return. Haskell does offer ways to
work around this type of conflict, though. In this case, we
will use a function called fromIntegral that takes an integral
value and forces it to implement the Num typeclass, rendering
it polymorphic. Here’s what the type signature looks like:

Prelude> :type fromIntegral

fromIntegral :: (Num b, Integral a) => a -> b

So, it takes a value, 𝑎, of an Integral type and returns it as
a value, 𝑏, of any Num type. Let’s see how that works with our
fractional division problem:

Prelude> 6 / fromIntegral (length [1, 2, 3])

2.0

And now all is right with the world once again.
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5.6 Type inference

Haskell does not obligate us to assert a type for every expres-
sion or value in our programs because it has type inference.
Type inference is an algorithm for determining the types of
expressions. Haskell’s type inference is built on an extended
version of the Damas-Hindley-Milner type system.

Haskell will infer the most generally applicable (polymor-
phic) type that is still correct. Essentially, the compiler starts
from the values whose types it knows and then works out the
types of the other values. As you mature as a Haskell pro-
grammer, you’ll find this is principally useful for when you’re
still figuring out new code rather than for code that is “done”.
Once your program is “done,” you will certainly know the
types of all the functions, and it’s considered good practice
to explicitly declare them. Remember when we suggested
that a good type system was like a pleasant conversation with
a colleague? Think of type inference as a helpful colleague
working through a problem with you.

For example, we can write id ourselves:

Prelude> let ourId x = x

Prelude> :t ourId

ourId :: t -> t

Prelude> ourId 1

1
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Prelude> ourId "blah"

"blah"

Here we let GHCi infer the type of ourId itself. Due to alpha
equivalence, the difference in letters (𝑡 here versus 𝑎 above)
makes no difference. Type variables have no meaning outside
of the type signatures where they are bound.

For this function, we again ask the compiler to infer the
type:

Prelude> let myGreet x = x ++ " Julie"

Prelude> myGreet "hello"

"hello Julie"

Prelude> :type myGreet

myGreet :: [Char] -> [Char]

The compiler knows the function (++) and has one value to
work with already that it knows is a String. It doesn’t have to
work very hard to infer a type signature from that information.
If, however, we take out the string value and replace it with
another variable, see what happens:

Prelude> let myGreet x y = x ++ y

Prelude> :type myGreet

myGreet :: [a] -> [a] -> [a]

We’re back to a polymorphic type signature, the same sig-
nature for (++) itself, because the compiler has no information



CHAPTER 5. TYPES 219

by which to infer the types for any of those variables (other
than that they are lists of some sort).

Let’s see type inference at work. Open your editor of choice
and enter the following snippet:

-- typeInference1.hs

module TypeInference1 where

f :: Num a => a -> a -> a

f x y = x + y + 3

Then load the code into GHCi to experiment:

Prelude> :l typeInference1.hs

[1 of 1] Compiling TypeInference1

Ok, modules loaded: TypeInference1.

Prelude> f 1 2

6

Prelude> :t f

f :: Num a => a -> a -> a

Prelude> :t f 1

f 1 :: Num a => a -> a

Because the numeric literals in Haskell have the (typeclass
constrained) polymorphic type Num a => a, we don’t get a more
specific type when applying 𝑓 to 1.
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Look at what happens when we elide the explicit type sig-
nature for 𝑓 :

-- typeInference2.hs

module TypeInference2 where

f x y = x + y + 3

No type signature for 𝑓 , so does it compile? Does it work?

Prelude> :l typeInference2.hs

[1 of 1] Compiling TypeInference2

Ok, modules loaded: TypeInference2.

Prelude> :t f

f :: Num a => a -> a -> a

Prelude> f 1 2

6

Nothing changes. In certain cases there might be a change,
usually when you are using typeclasses in a way that doesn’t
make it clear which type you mean unless you assert one.

Exercises: Apply Yourself

Look at these pairs of functions. One function is unapplied,
so the compiler will infer maximally polymorphic type. The
second function has been applied to a value, so the inferred
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type signature may have become concrete, or at least less
polymorphic. Figure out how the type would change and why,
make a note of what you think the new inferred type would
be and then check your work in GHCi.

1. -- Type signature of general function

(++) :: [a] -> [a] -> [a]

-- How might that change when we apply

-- it to the following value?

myConcat x = x ++ " yo"

2. -- General function

(*) :: Num a => a -> a -> a

-- Applied to a value

myMult x = (x / 3) * 5

3. take :: Int -> [a] -> [a]

myTake x = take x "hey you"

4. (>) :: Ord a => a -> a -> Bool

myCom x = x > (length [1..10])
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5. (<) :: Ord a => a -> a -> Bool

myAlph x = x < 'z'

5.7 Asserting types for declarations

Most of the time, we want to declare our types, rather than
relying on type inference. Adding type signatures to your code
can provide guidance to you as you write your functions. It
can also help the compiler give you information about where
your code is going wrong. As programs become longer and
more complex, type signatures become even more important,
as they help you or other programmers trying to use your
code read it and figure out what it’s supposed to do. This
section will look at how to declare types. We will start with
some trivial examples.

You may remember the triple function we’ve seen before.
If we allow the compiler to infer the type, we end up with this:

Prelude> let triple x = x * 3

Prelude> :type triple

triple :: Num a => a -> a

Here the triple function was made from the (*) function
which has type (*) :: Num a => a -> a -> a, but we have al-
ready applied one of the arguments, which is the 3, so there is
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one less parameter in this type signature. It is still polymor-
phic because it can’t tell what type 3 is yet. If, however, we
want to ensure that our inputs and result may only be integers,
this is how we declare that:

Prelude> let triple x = x * 3 :: Integer

Prelude> :t triple

triple :: Integer -> Integer

Note the typeclass constraint is gone because Integer imple-
ments Num, so that constraint is redundant.

Here’s another example of a type declaration for our triple

function; this one is more like what you would see in a source
file:

-- type declaration

triple :: Integer -> Integer

-- function declaration

triple x = x * 3

This is how most Haskell code you look at will be laid out,
with separate top-level declarations for types and functions.
Such top-level declarations are in scope throughout the mod-
ule.
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It is possible, though uncommon, to declare types locally
with let and where. Here’s an example of assigning a typewithin
a where clause:

triple x = tripleItYo x

where tripleItYo :: Integer -> Integer

tripleItYo y = y * 3

We don’t have to assert the type of triple:

Prelude> :t triple

triple :: Integer -> Integer

The assertion in the where clause narrowed our type down
from Num a => a -> a to Integer -> Integer. GHC will pick up
and propagate type information for inference from appli-
cations of functions, sub-expressions, definitions — almost
anywhere. The type inference is strong with this one.

There are constraints on our ability to declare types. For
example, if we try to make the (+) function return a String, we
get an error message:

Prelude> let x = 5 + 5 :: String

No instance for (Num String) arising from a use of ‘+’

In the expression: 5 + 5 :: String

In an equation for ‘x’: x = 5 + 5 :: String
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This function cannot accept arguments of type String. In
this case, it’s overdetermined, both because the (+) function
is limited to types implementing the Num typeclass and also
because we’ve already passed it two numeric literals as values.
The numeric literals could be any of several numeric types
under the hood, but they can’t be String because String does
not implement the Num typeclass.

5.8 Chapter Exercises

Welcome to another round of “Knowing is not enough; we
must apply.”

Multiple choice

1. A value of type [a] is

a) a list of alphabetic characters

b) a list of lists

c) a list whose elements are all of some type 𝑎

d) a list whose elements are all of different types

2. A function of type [[a]] -> [a] could

a) take a list of strings as an argument

b) transform a character into a string
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c) transform a string into a list of strings

d) take two arguments

3. A function of type [a] -> Int -> a

a) takes one argument

b) returns one element of type 𝑎 from a list

c) must return an Int value

d) is completely fictional

4. A function of type (a, b) -> a

a) takes a list argument and returns a Char value

b) has zero arguments

c) takes a tuple argument and returns the first value

d) requires that 𝑎 and 𝑏 be of different types

Determine the type

For the following functions, determine the type of the spec-
ified value. We suggest you type them into a file and load
the contents of the file in GHCi. In all likelihood, it initially
will not have the polymorphic types you might expect due to
the monomorphism restriction. That means that top-level dec-
larations by default will have a concrete type if any can be
determined. You can fix this by setting up your file like so:
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{-# LANGUAGE NoMonomorphismRestriction #-}

module DetermineTheType where

-- simple example

example = 1

If you had not included the NoMonomorphismRestriction exten-
sion, example would have had the type Integer instead of Num a

=> a. Do your best to determine the most polymorphic type
an expression could have in the following exercises.

1. All function applications return a value. Determine the
value returned by these function applications and the type
of that value.

a) (* 9) 6

b) head [(0,"doge"),(1,"kitteh")]

c) head [(0 :: Integer ,"doge"),(1,"kitteh")]

d) if False then True else False

e) length [1, 2, 3, 4, 5]

f) (length [1, 2, 3, 4]) > (length "TACOCAT")

2. Given
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x = 5

y = x + 5

w = y * 10

What is the type of w?

3. Given

x = 5

y = x + 5

z y = y * 10

What is the type of z?

4. Given

x = 5

y = x + 5

f = 4 / y

What is the type of f?

5. Given

x = "Julie"

y = " <3 "

z = "Haskell"

f = x ++ y ++ z

What is the type of f?
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Does it compile?

For each set of expressions, figure out which expression, if any,
causes the compiler to squawk at you (n.b. we do not mean
literal squawking) and why. Fix it if you can.

1. bigNum = (^) 5 $ 10

wahoo = bigNum $ 10

2. x = print

y = print "woohoo!"

z = x "hello world"

3. a = (+)

b = 5

c = b 10

d = c 200

4. a = 12 + b

b = 10000 * c

Type variable or specific type constructor?

1. You will be shown a type declaration, and you should
categorize each type. The choices are a fully polymorphic
type variable, constrained polymorphic type variable, or
concrete type constructor.
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f :: Num a => a -> b -> Int -> Int

-- [0] [1] [2] [3]

Here, the answer would be: constrained polymorphic
(Num) ([0]), fully polymorphic ([1]), and concrete ([2] and
[3]).

2. Categorize each component of the type signature as de-
scribed in the previous example.

f :: zed -> Zed -> Blah

3. Categorize each component of the type signature

f :: Enum b => a -> b -> C

4. Categorize each component of the type signature

f :: f -> g -> C

Write a type signature

For the following expressions, please add a type signature. You
should be able to rely on GHCi type inference to check your
work, although you might not have precisely the same answer
as GHCi gives (due to polymorphism, etc).

1. While we haven’t fully explained this syntax yet, you’ve
seen it in Chapter 2 and as a solution to an exercise in
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Chapter 4. This syntax is a way of destructuring a single
element of a list by pattern matching.

functionH ::

functionH (x:_) = x

2. functionC ::

functionC x y =

if (x > y) then True else False

3. functionS ::

functionS (x, y) = y

Given a type, write the function

You will be shown a type and a function that needs to be writ-
ten. Use the information the type provides to determine what
the function should do. We’ll also tell you how many ways
there are to write the function. Syntactically different but
semantically equivalent implementations are not counted as
being different. For example, writing a function one way then
rewriting the semantically identical function but using anony-
mous lambda syntax does not count as two implementations.

To make things a little easier, we’ll demonstrate how to solve
this kind of exercise. Given:
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myFunc :: (x -> y)

-> (y -> z)

-> c

-> (a, x)

-> (a, z)

myFunc xToY yToZ _ (a, x) = undefined

Talking through the above, we have a function that takes
four arguments. The final result is a tuple with the type (a,

z). It turns out, the 𝑐 argument is nowhere in our results and
there’s nothing to do with it, so we use the underscore to ignore
that. We named the two function arguments by their types
and pattern matched on the tuple argument. The only way to
get the second value of the tuple from the type 𝑥 to the type 𝑧
is to use both of the functions furnished to us. If we tried the
following:

myFunc xToY yToZ _ (a, x) =

(a, (xToY x))

We would get a type error that it expected the type 𝑧 but
the actual type was 𝑦. That’s because we’re on the right path,
but not quite done yet! Accordingly, the following should
typecheck:
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myFunc :: (x -> y)

-> (y -> z)

-> c

-> (a, x)

-> (a, z)

myFunc xToY yToZ _ (a, x) =

(a, (yToZ (xToY x)))

1. There is only one function definition that typechecks and
doesn’t go into an infinite loop when you run it.

i :: a -> a

i = undefined

2. There is only one version that works.

c :: a -> b -> a

c = undefined

3. Given alpha equivalence are c'' and c (see above) the same
thing?

c'' :: b -> a -> b

c'' = ?

4. Only one version that works.

c' :: a -> b -> b

c' = undefined
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5. There are multiple possibilities, at least two of which
you’ve seen in previous chapters.

r :: [a] -> [a]

r = undefined

6. Only one version that will typecheck.

co :: (b -> c) -> (a -> b) -> a -> c

co = undefined

7. One version will typecheck.

a :: (a -> c) -> a -> a

a = undefined

8. One version will typecheck.

a' :: (a -> b) -> a -> b

a' = undefined

Fix it

Won’t someone take pity on this poor broken code and fix it
up? Be sure to check carefully for things like capitalization,
parentheses, and indentation.

1. module sing where
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fstString :: [Char] ++ [Char]

fstString x = x ++ " in the rain"

sndString :: [Char] -> Char

sndString x = x ++ " over the rainbow"

sing = if (x > y) then fstString x or sndString y

where x = "Singin"

x = "Somewhere"

2. Now that it’s fixed, make a minor change and make it sing
the other song. If you’re lucky, you’ll end up with both
songs stuck in your head!

3. -- arith3broken.hs

module Arith3Broken where

main :: IO ()

Main = do

print 1 + 2

putStrLn 10

print (negate -1)

print ((+) 0 blah)

where blah = negate 1
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Type-Kwon-Do

The name is courtesy of Phillip Wright.3 Thank you for the
idea!

The focus here is on manipulating terms in order to get the
types to fit. This sort of exercise is something you’ll encounter
in writing real Haskell code, so the practice will make it easier
to deal with when you get there. Practicing this will make you
better at writing ordinary code as well.

Weprovide the types and bottomedout (declared as undefined)
terms. Bottom and undefined will be explained in more detail
later. The contents of the terms are irrelevant here. You’ll use
only the declarations provided and what the Prelude provides
by default unless otherwise specified. Your goal is to make the
???’d declaration pass the typechecker by modifying it alone.

Here’s a worked example for how we present these exercises
and how you are expected to solve them. Given the following:

3 https://twitter.com/SixBitProxyWax

https://twitter.com/SixBitProxyWax
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data Woot

data Blah

f :: Woot -> Blah

f = undefined

g :: (Blah, Woot) -> (Blah, Blah)

g = ???

Here it’s 𝑔 that you’re supposed to implement; however,
you can’t evaluate anything. You’re to only use type-checking
and type-inference to validate your answers. Also note that
we’re using a trick for defining datatypes which can be named
in a type signature, but have no values. Here’s an example of
a valid solution:

g :: (Blah, Woot) -> (Blah, Blah)

g (b, w) = (b, f w)

The idea is to only fill in what we’ve marked with ???.
Not all terms will always be used in the intended solution for a

problem.
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1. f :: Int -> String

f = undefined

g :: String -> Char

g = undefined

h :: Int -> Char

h = ???

2. data A

data B

data C

q :: A -> B

q = undefined

w :: B -> C

w = undefined

e :: A -> C

e = ???
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3. data X

data Y

data Z

xz :: X -> Z

xz = undefined

yz :: Y -> Z

yz = undefined

xform :: (X, Y) -> (Z, Z)

xform = ???

4. munge :: (x -> y)

-> (y -> (w, z))

-> x

-> w

munge = ???

5.9 Definitions

1. Polymorphism refers to type variables which may refer to
more than one concrete type. In Haskell, this will usually
manifest as parametric or ad-hoc polymorphism. By hav-
ing a larger set of types, we intersect the commonalities
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of them all to produce a smaller set of correct terms. This
makes it less likely we’ll write an incorrect program and
lets us reuse the code with other types.

2. Type inference is a faculty some programming languages,
most notably Haskell and ML, have to infer principal types
from terms without needing explicit type annotations.
There are, in some cases, terms in Haskell which can be
well-typed but which have no principal type. In those
cases, an explicit type annotation must be added.

With respect to Haskell, the principal type is the most
generic type which still typechecks. More generally, Prin-
cipal type is a property of the type system you’re interact-
ing with. Principal typing holds for that type system if a
type can be found for a term in an environment for which
all other types for that term are instances of the principal
type. Here are some examples:



CHAPTER 5. TYPES 241

-- Given the inferred types

a

Num a => a

Int

-- The principal type here is the

-- parametrically polymorphic 'a'.

-- Given these types

(Ord a, Num a) => a

Integer

-- The principal type is

-- (Ord a, Num a) => a

3. Type variable is a way to refer to an unspecified type or
set of types in Haskell type signatures. Type variables
ordinarily will be equal to themselves throughout a type
signature. Let us consider some examples.

id :: a -> a

-- One type variable 'a' that occurs twice,

-- once as an argument, once as a result.

-- Parametrically polymorphic, could be

-- strictly anything
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(+) :: Num a => a -> a -> a

-- One type variable 'a', constrained

-- to needing an instance of Num. Two

-- arguments, one result.

-- All the same type.

4. A typeclass is a means of expressing faculties or interfaces
that multiple datatypes may have in common. This en-
ables us to write code exclusively in terms of those com-
monalities without repeating yourself for each instance.
Just as one may sum values of type Int, Integer, Float,
Double, and Rational, we can avoid having different (+), (*),
(-), negate, etc. functions for each by unifying them into
a single typeclass. Importantly, these can then be used
with all types that have a Num instance. Thus, a typeclass
provides us a means to write code in terms of those oper-
ators and have our functions be compatible with all types
that have instances of that typeclass, whether they already
exist or are yet to be invented (by you, perhaps).

5. Parametricity is the property that holds in the presence of
parametric polymorphism. Parametricity states that the
behavior of a function will be uniform across all concrete
applications of the function. Parametricity4 tells us that
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the function:

id :: a -> a

Can be understood to have the same exact behavior for
every type in Haskell without us needing to see how it
was written. It is the same property that tells us:

const :: a -> b -> a

const must return the first value — parametricity and the
definition of the type requires it!

f :: a -> a -> a

Here, 𝑓 can only return the first or second value, nothing
else, and it will always return one or the other consistently
without changing. If the function 𝑓 made use of (+) or
(*), its type would necessarily be constrained by the type-
class Num and thus be an example of ad-hoc, rather than
parametric, polymorphism.

blahFunc :: b -> String

blahFunc totally ignores its argument and is effectively a
constant value of type String which requires a throw-away
argument for no reason.

4 Examples are courtesy of the @parametricity twitter account.
https://twitter.com/parametricity

https://twitter.com/parametricity
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convList :: a -> [a]

Unless the result is [], the resulting list has values that are
all the same value. The list will always be the same length.

6. Ad-hoc polymorphism (sometimes called “constrained poly-
morphism”) is polymorphism that applies one or more
typeclass constraints to what would’ve otherwise been a
parametrically polymorphic type variable. Here, rather
than representing a uniformity of behavior across all con-
crete applications, the purpose of ad-hoc polymorphism
is to allow the functions to have different behavior for each
instance. This ad-hoc-ness is constrained by the types
in the typeclass that defines the methods and Haskell’s
requirement that typeclass instances be unique for a given
type. For any given combination of typeclass and a type,
such as Ord and Bool, there must only exist one unique
instance in scope. This makes it considerably easier to
reason about typeclasses. See the example for a disam-
biguation.
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(+) :: Num a => a -> a -> a

-- the above function is leveraging

-- ad-hoc polymorphism via the

-- Num typeclass

c' :: a -> a -> a

-- This function is not,

-- it's parametrically polymorphic in 'a'.

7. A module is the unit of organization that the Haskell pro-
gramming language uses to collect together declarations
of values, functions, data types, typeclasses, and typeclass
instances. Any time you use “import” in Haskell, you are
importing declarations from a module. Let us look at an
example from the chapter exercises:

{-# LANGUAGE NoMonomorphismRestriction #-}

module DetermineTheType where

-- ^ name of our module

Here we made our Haskell source file have a module and
we named it DetermineTheType. We included a directive to
the compiler to disable the monomorphism restriction
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before we declared the module. Also consider the follow-
ing example using import:

import Data.Aeson (encode)

-- ^ the module Data.Aeson

import Database.Persist

-- ^ the module Database.Persist

In the above example, we are importing the function
encode declared in the module Data.Aeson along with any
typeclass instances. With the module Database.Persist we
are importing everything it makes available.

5.10 Follow-up resources

1. Luis Damas; Robin Milner. Principal type-schemes for
functional programs

2. Christopher Strachey. Fundamental Concepts in Pro-
gramming Languages
Popular origin of the parametric/ad-hoc polymorphism
distinction.
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Typeclasses

A blank cheque kills
creativity.

Mokokoma Mokhonoana

247
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6.1 Typeclasses

You may have realized that it is very difficult to talk about or
understand Haskell’s type system without also talking about
typeclasses. So far we’ve been focused on the way they interact
with type variables and numeric types, especially. This chapter
explains some important predefined typeclasses, only some
of which have to do with numbers, and provides more detail
about how typeclasses work more generally. In this chapter,
we will

• examine the typeclasses Eq, Num, Ord, Enum, and Show;

• learn about type-defaulting typeclasses and typeclass in-
heritance;

• look at some common but often implicit functions that
create side effects.

6.2 What are typeclasses?

Typeclasses and types in Haskell are, in a sense, opposites.
Where a declaration of a type defines how that type in partic-
ular is created, a declaration of a typeclass defines how a set
of types are consumed or used in computations. This tension
is related to the expression problem which is about defining
code in terms of how data is created or processed. As Philip
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Wadler put it, “The goal is to define a datatype by cases, where
one can add new cases to the datatype and new functions over
the datatype, without recompiling existing code, and while
retaining static type safety (e.g., no casts).”1 If you know other
programming languages with a similar concept, it may help to
think of typeclasses as being like interfaces to data that can work
across multiple datatypes. The latter facility is why typeclasses
are a means of ad hoc polymorphism — ad hoc because type-
class code is dispatched by type, something we will explain
later in this chapter. We will continue calling it constrained
polymorphism, though, as we think that term is generally
more clear.

Typeclasses allow us to generalize over a set of types in
order to define and execute a standard set of features for those
types. For example, the ability to test values for equality is
useful, and we’d want to be able to use that function for data
of various types. In fact, we can test any data of a type that
implements the typeclass known as Eq for equality. We do
not need separate equality functions for each different type
of data; as long as our datatype implements, or instantiates,
the Eq typeclass, we can use the standard functions. Similarly,
all the numeric literals and their various types implement a
typeclass called Num, which defines a standard set of operators
that can be used with any type of numbers.

1Philip Wadler, “The Expression Problem” http://homepages.inf.ed.ac.uk/wadler/

papers/expression/expression.txt

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
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We’ll get into more detail about what it means for a type
to have an “instance” of a typeclass in this chapter, but briefly
stated, it means that there is code that defines how the values
and functions from that typeclass work for that type. When
you use a typeclass method with one of the types that has such
an instance, the compiler looks up the code that dictates how
the function works for that type. We’ll see this more as we
write our own instances.

6.3 Back to Bool

Let’s return briefly to the Bool type to get a feel for what type-
class information looks like. As you may recall, we can use
the GHCi command :info to query information, including
typeclass information about any function or type (and some
values):

Prelude> :info Bool

data Bool = False | True

instance Bounded Bool

instance Enum Bool

instance Eq Bool

instance Ord Bool

instance Read Bool

instance Show Bool
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The information includes the data declaration for Bool and
which typeclasses it already has instances of. It also tells you
where the datatype and its instances are defined for the com-
piler, if you want to look at the source code, but we’ve left that
information out.

Let’s look at that list of instances. Each of these instances
is a typeclass that Bool implements, and the instances are the
unique specifications of how Bool makes use of the methods
from that typeclass. In this chapter, we’re only going to exam-
ine a few of these, namely Eq, Ord, and Show. Briefly, however,
they mean the following:

1. instance Bounded Bool – Bounded for types that have an up-
per and lower bound

2. instance Enum Bool – Enum for things that can be enumer-
ated

3. instance Eq Bool– Eq for things that can be tested for equal-
ity

4. instance Ord Bool – Ord for things that can be put into a
sequential order

5. instance Read Bool – Read parses strings into things. Don’t
use it. No seriously, don’t.

6. instance Show Bool – Show renders things into strings.
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Typeclasses have a hierarchy of sorts,2 as you might recall
from our discussion of numeric types. All Fractional numbers
implement the Num typeclass, but not all Num are Fractional. All
members of Ord must be members of Eq, and all members of
Enum must be members of Ord. To be able to put something
in an enumerated list, they must be able to be ordered; to be
able to order something, they must be able to be compared
for equality.

6.4 Eq

In Haskell, equality is implemented with a typeclass called Eq.
Some programming languages bake equality into every object
in the language, but some datatypes do not have a sensible
notion of equality3, so Haskell does not encode equality into
every type. Eq allows us to use standard measures of equality
for quite a few datatypes, though.

Eq is defined this way:

Prelude> :info Eq

class Eq a where

(==) :: a -> a -> Bool

2You can use a search engine like Hoogle at http://haskell.org/hoogle to find informa-
tion on Haskell datatypes and typeclasses. Hoogle is a Haskell API search engine, which
allows you to search many standard Haskell libraries by function name or type signature.
As you become fluent in Haskell types, you will be able to input the type of the function
you want and find the functions that match.

3Most importantly, the function type does not have an Eq instance for reasons we will
not get into here.

http://haskell.org/hoogle
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(/=) :: a -> a -> Bool

First, it tells us we have a typeclass called Eq where there are
two basic functions, equality and nonequality, and gives their
type signatures. Next it lists the instances of Eq:

-- partial list

instance Eq a => Eq [a]

instance Eq Ordering

instance Eq Int

instance Eq Float

instance Eq Double

instance Eq Char

instance Eq Bool

instance (Eq a, Eq b) => Eq (a, b)

instance Eq ()

instance Eq a => Eq (Maybe a)

instance Eq Integer

We see several numeric types, our old friend Bool, Char (un-
surprising, as we’ve seen that we can compare characters for
equality), and tuples. We know from this that any time we are
using data of these types, we are implementing the Eq typeclass
and therefore have generic functions we can use to compare
their equality. Any type that has an instance of this typeclass
implements the methods of the typeclass.

Here are some examples using this typeclass:
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Prelude> 132 == 132

True

Prelude> 132 /= 132

False

Prelude> (1, 2) == (1, 1)

False

Prelude> (1, 1) == (1, 2)

False

Prelude> "doge" == "doge"

True

Prelude> "doge" == "doggie"

False

The types of (==) and (/=) in Eq tell us something important
about these functions:

(==) :: Eq a => a -> a -> Bool

(/=) :: Eq a => a -> a -> Bool

Given these types, we know that they can be used for any
type 𝑎 which implements the Eq typeclass. We also know that
both functions will take two arguments of the same type 𝑎 and
return Bool. We know they have to be the same because 𝑎 must
equal 𝑎 in the same type signature.

When we apply (==) to a single argument, we can see how
it specializes the arguments:
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(==) :: Eq a => a -> a -> Bool

-- if we specialized (==)

-- for [Char] aka String

(==)

:: [Char] -> [Char] -> Bool

(==) "cat"

:: [Char] -> Bool

(==) "cat" "cat"

:: Bool

You can experiment with this further in the REPL to see
how applying types to arguments makes the type variables
more specific.

What happens if the first two arguments 𝑎 and 𝑎 aren’t the
same type?

Prelude F M> (1, 2) == "puppies!"

Couldn't match expected type ‘(t0, t1)’

with actual type ‘[Char]’

In the second argument of ‘(==)’, namely ‘"puppies!"’

In the expression: (1, 2) == "puppies!"

In an equation for ‘it’: it = (1, 2) == "puppies!"

Let’s break down this type error:

Couldn't match expected type ‘(t0, t1)’
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with actual type ‘[Char]’

This error means our [Char] wasn’t the tuple of types 𝑡0 and
𝑡1 that was expected. (t0, t1) was expected for the second
argument (where we supplied "puppies!") because that’s the
type of the first argument. Remember: the type of 𝑎 is usually
set by the leftmost occurrence and can’t change in the signature
Eq a => a -> a -> Bool.

Applying (==) to Integer will bind the 𝑎 type variable to
Integer. This is as if the signature changed to:

Eq Integer => Integer -> Integer -> Bool

The typeclass constraint Eq Integer => gets dropped because
it’s redundant. We can see the issue more clearly if we look at
the typeclass instances on the 2-tuple (,):

data (,) a b = (,) a b

instance (Eq a, Eq b) => Eq (a, b)

instance (Ord a, Ord b) => Ord (a, b)

instance (Read a, Read b) => Read (a, b)

instance (Show a, Show b) => Show (a, b)

We saw the Eq instance of (,) getting used earlier when we
tested code like (1, 2) == (1, 2). Critically, the Eq instance of
(a, b) relies on the Eq instances of 𝑎 and 𝑏. This tells us the
equality of two tuples (a, b) depends on the equality of their
constituent values 𝑎 and 𝑏. This is why this works:
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Prelude> (1, 'a') == (2, 'b')

False

But neither of these will work:

Prelude> (1, 2) == ('a', 'b')

Prelude> (1, 'a') == ('a', 1)

Typeclass deriving Typeclass instances we can magically de-
rive are Eq, Ord, Enum, Bounded, Read, and Show, though there are
some constraints on deriving some of these. Deriving means
you don’t have to manually write instances of these typeclasses
for each new datatype you create. We’ll address this a bit more
in the chapter on Algebraic Datatypes.

6.5 Writing typeclass instances

We haven’t talked much about writing your own datatypes yet,
or about writing your own typeclass; however, you can and
will do both. In either case, you will sometimes find yourself
needing to write your own typeclass instances. While Eq is one
of the typeclasses you can simply derive, it’s also one of the
least complicated typeclasses to write instances for, so we’re
going to use it here, to demonstrate how to write your own
instances.
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Eq instances

As we’ve seen, Eq provides instances for determining equality
of values, so making an instance of it for a given datatype is
usually straightforward.

You can investigate a typeclass by referring to the Hack-
age documentation for that typeclass. Typeclasses like Eq

come with the core base library that is located at http://hackage.
haskell.org/package/base . Eq specifically is located at http://

hackage.haskell.org/package/base/docs/Data-Eq.html.
In that documentation, you’ll want to note a particular bit

of wording:

Minimal complete definition: either == or /=.

This tells you what methods you need to define to have
a valid Eq instance. In this case, either (==) (equal) or (/=)

(unequal) will suffice, as one can be defined as the negation
of the other. Why not only (==)? Although it’s rare, you may
have something clever to do for each case that could make
equality checking faster for a particular datatype, so you’re
allowed to specify both if you want to. We won’t do that here
because (/=) is the negation of (==), and we won’t be working
with any clever datatypes.

First, we’ll work with a tiny, trivial datatype called...Trivial!

http://hackage.haskell.org/package/base
http://hackage.haskell.org/package/base
http://hackage.haskell.org/package/base/docs/Data-Eq.html
http://hackage.haskell.org/package/base/docs/Data-Eq.html
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data Trivial =

Trivial

With no deriving clause hanging off the butt of this datatype
declaration, we’ll have no typeclass instances of any kind. If we
try to load this up and test equality without adding anything
further, GHC will throw a type error:

Prelude> Trivial == Trivial

No instance for (Eq Trivial) arising

from a use of ‘==’

In the expression: Trivial == Trivial

In an equation for ‘it’: it = Trivial == Trivial

GHC can’t find an instance of Eq for our datatype Trivial.
We could’ve had GHC generate one for us using deriving Eq

or we could’ve written one, but we did neither, so none exists
and it fails at compile time. In some languages, this sort of
mistake doesn’t become known until your code is already in
the middle of executing.

Unlike other languages, Haskell does not provide universal
stringification (Show / print) or equality (Eq (value equality) or
pointer equality) as this is not always sound or safe, regardless
of what programming language you’re using.
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So we must write our own! Fortunately, with Trivial this
is...trivial. Keep your typeclass instances for a type in the same
file as that type (we’ll explain why later):

data Trivial =

Trivial'

instance Eq Trivial where

Trivial' == Trivial' = True

And that’s it! We wrote an instance that tells the compiler
how to test this datatype for equality. Data constructors and
type constructors often have the same name in Haskell, and
that can get confusing. We used the single quote at the end of
the data constructor here because they don’t have to have the
same name and it might make it easier to follow the examples.

If you load this up, you have only one possible expression
you can construct here:

Prelude> Trivial' == Trivial'

True

Let’s drill down a bit into how this instance stuff works:
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instance Eq Trivial where

-- [1] [2] [3] [4]

Trivial' == Trivial' = True

-- [5] [6] [7] [8]

instance Eq Trivial where

(==) Trivial' Trivial' = True

-- [ 9 ]

1. The keyword instance here begins a declaration of a type-
class instance. Typeclass instances are howyou tell Haskell
how equality, stringification (Show), orderability (Ord), enu-
meration (Enum) or other typeclasses should work for a
particular datatype. Without this instance, we can’t test
the values for equality even though the answer will never
vary in the case of this particular datatype.

2. The first name to follow the instance is the typeclass the
instance is providing. Here that is Eq.

3. The type the instance is being provided for. In this case,
we’re implementing the Eq typeclass for the Trivialdatatype.

4. The keyword where terminates the initial declaration and
beginning of the instance. What follows are the methods
(functions) being implemented.
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5. The data constructor (value) Trivial' is the first argument
to the == function we’re providing. Here we’re defining ==

using infix notation so the first argument is to the left.

6. The infix function ==, this is what we’re defining in this
declaration.

7. The second argument, which is the value Trivial'. Since
== is infix here, the second argument is to the right of ==.

8. The result of Trivial' == Trivial', that is, True.

9. We could’ve written the definition of (==) using prefix no-
tation instead of infix by wrapping the operator in paren-
theses. Note this is being shown as an alterative; you can’t
have two typeclass instances for the same type. Typeclass
instances are unique to a given type. You can try having
both in the same file, but you’ll get an error.

Okay, let’s stretch our legs a bit and try something a bit less
Trivial! We’ll make our own datatypes — one for the days of
the week and one for the date that makes use of the DayOfWeek

type:
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data DayOfWeek =

Mon | Tue | Weds | Thu | Fri | Sat | Sun

-- day of week and numerical day of month

data Date =

Date DayOfWeek Int

Since these are not prebaked datatypes in Haskell, they have
no typeclass instances at all. As they stand, there is nothing you
can do with them because no operations are defined for them.
Let’s fix that. The first Eq instance we’ll write is for DayOfWeek

and is a bit tedious to write out:

instance Eq DayOfWeek where

(==) Mon Mon = True

(==) Tue Tue = True

(==) Weds Weds = True

(==) Thu Thu = True

(==) Fri Fri = True

(==) Sat Sat = True

(==) Sun Sun = True

(==) _ _ = False

Now we’ll write an Eq instance for our Date type. This one is
more interesting:
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instance Eq Date where

(==) (Date weekday dayOfMonth)

(Date weekday' dayOfMonth') =

weekday == weekday'

&& dayOfMonth == dayOfMonth'

In the Eq instance for Date, we didn’t recapitulate how equal-
ity for DayOfWeek and Int values worked; we simply said that the
dates were equal if all of their constituent values were equal.
Note, also, that the compiler already expects the arguments
of Date to be a DayOfWeek value and an Int so we do not need to
specify that. Based on what it knows about those three types,
this is enough information for us to test Date values for equality.

Does it work?

Prelude> Date Thu 10 == Date Thu 10

True

Prelude> Date Thu 10 == Date Thu 11

False

Prelude> Date Thu 10 == Date Weds 10

False

It compiles, and it returns what we want after three cursory
checks — ship it!

We’ll point out one other thing about these types:
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Prelude> Date Thu 10

<interactive>:26:1:

No instance for (Show Date) arising from a use of ‘print’

In a stmt of an interactive GHCi command: print it

We wrote an Eq instance, so we can test the values for equal-
ity, but we can’t print them in the REPL because we provided
no Show instance. If you’d like to fix that, you can stick a deriving

Show clause on the end of each of the datatypes above.

Partial functions — not so strange danger

We’ve mentioned partial application of functions previously,
but the term partial function refers to something different. A
partial function is one that doesn’t handle all the possible cases,
so there are possible scenarios in which we haven’t defined
any way for the code to evaluate.

We need to take care to avoid partial functions in general
in Haskell, but this must be especially kept in mind when we
have a type with multiple cases such as DayOfWeek. What if we
had made a mistake in the Eq instance?
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data DayOfWeek =

Mon | Tue | Weds | Thu | Fri | Sat | Sun

instance Eq DayOfWeek where

(==) Mon Mon = True

(==) Tue Tue = True

(==) Weds Weds = True

(==) Thu Thu = True

(==) Fri Fri = True

(==) Sat Sat = True

(==) Sun Sun = True

What if the arguments are different? We forgot our uncon-
ditional case. This will appear to be fine whenever the argu-
ments are the same, but blow up in our faces when they’re
not:

Prelude> Mon == Mon

True

Prelude> Mon == Tue

*** Exception: code/derivingInstances.hs:

(19,3)-(25,23):

Non-exhaustive patterns in function ==

Well, that stinks. We definitely didn’t start learning Haskell
because we wanted stuff to blow up at runtime. So what gives?
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The good news is there is something you can do to get more
help from GHC on this. If we turn all warnings on with the
-Wall flag in our REPL (or in our build configuration), then
GHC will let us know when we’re not handling all cases:

Prelude> :set -Wall

Prelude> :l code/derivingInstances.hs

[1 of 1] Compiling DerivingInstances

code/derivingInstances.hs:19:3: Warning:

Pattern match(es) are non-exhaustive

In an equation for ‘==’:

Patterns not matched:

Mon Tue

Mon Weds

Mon Thu

Mon Fri

...

Ok, modules loaded: DerivingInstances.

You’ll find that if you fix your instance and provide the
fallback case that returns False, it’ll stop squawking about the
non-exhaustive patterns.

Partial functions are not only a concern with typeclass in-
stances, though. We will discuss this more in the next chapter,
but it’s also a concern with any function that doesn’t handle all
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possible inputs, such as this, that blows up anytime the input
isn’t 2:

f :: Int -> Bool

f 2 = True

If you compile or load this, you’ll get another warning (as-
suming you still have -Wall turned on). In this case, because
Int is a huge type with many values, it’s using notation that says
you’re not handling all inputs that aren’t the number 2:

Pattern match(es) are non-exhaustive

In an equation for ‘f’:

Patterns not matched:

GHC.Types.I# #x with #x `notElem` [2#]

If you add another case such that you’re handling one more
input, it will add that to the set of values you are handling:

f :: Int -> Bool

f 1 = True

f 2 = True

Pattern match(es) are non-exhaustive

In an equation for ‘f’:

Patterns not matched:

GHC.Types.I# #x with #x `notElem` [1#, 2#]
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f :: Int -> Bool

f 1 = True

f 2 = True

f 3 = True

Pattern match(es) are non-exhaustive

In an equation for ‘f’:

Patterns not matched:

GHC.Types.I# #x with #x `notElem` [1#, 2#, 3#]

So on and so forth. The real answer here is to have an
unconditional case that matches everything. The following
will compile without complaint and is not partial:

f :: Int -> Bool

f 1 = True

f 2 = True

f 3 = True

f _ = False

Another solution is to use a datatype that isn’t huge like Int

if you only have a few cases you want to consider.

-- Seriously. It's huge.

Prelude> minBound :: Int

-9223372036854775808
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Prelude> maxBound :: Int

9223372036854775807

If you want your data to describe only a handful of cases,
write them down in a sum type like the DayOfWeek datatype we
showed you earlier. Don’t use Int as an implicit sum type as C
programmers commonly do.

Sometimes we need to ask for more

When we’re writing an instance of a typeclass such as Eq for
something with polymorphic parameters, such as Identity

below, we’ll sometimes need to require our argument or argu-
ments to provide some typeclass instances for us in order to
write an instance for the datatype containing them:

data Identity a =

Identity a

instance Eq (Identity a) where

(==) (Identity v) (Identity v') = v == v'

What we want to do here is rely on whatever Eq instances the
argument to Identity (written as 𝑎 in the datatype declaration
and 𝑣 in the instance definition) has already. There is one
problem with this as it stands, though:
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No instance for (Eq a) arising from a use of ‘==’

Possible fix: add (Eq a) to the

context of the instance declaration

In the expression: v == v'

In an equation for ‘==’:

(==) (Identity v) (Identity v') = v == v'

In the instance declaration for ‘Eq (Identity a)’

The problem here is that 𝑣 and 𝑣′ are both of type 𝑎 but we
don’t know anything about 𝑎. In this case, we can’t assume
it has an Eq instance. However, we can use the same type-
class constraint syntax we saw with functions, in our instance
declaration:

instance Eq a => Eq (Identity a) where

(==) (Identity v) (Identity v') = v == v'

Now it’ll work because we know 𝑎 has to have an instance of
Eq. Additionally, Haskell will ensure we don’t attempt to check
equality with values that don’t have an Eq instance at compile
time:

Prelude> Identity NoEqInst == Identity NoEqInst

No instance for (Eq NoEqInst)

arising from a use of ‘==’
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In the expression:

Identity NoEqInst == Identity NoEqInst

In an equation for ‘it’:

it = Identity NoEqInst == Identity NoEqInst

We could ask for more than we need in order to obtain an
answer, such as below where we ask for an Ord instance for 𝑎,
but there’s no reason to do so since Eq requires less than Ord

and does enough for what we need here:

instance Ord a => Eq (Identity a) where

(==) (Identity v) (Identity v') =

compare v v' == EQ

That will compile, but it’s not clear why you’d do it. Maybe
you have your own secret reasons.

Exercises: Eq Instances

Write the Eq instance for the datatype provided.

1. It’s not a typo, we’re just being cute with the name.

data TisAnInteger =

TisAn Integer
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2. data TwoIntegers =

Two Integer Integer

3. data StringOrInt =

TisAnInt Int

| TisAString String

4. data Pair a =

Pair a a

5. data Tuple a b =

Tuple a b

6. data Which a =

ThisOne a

| ThatOne a

7. data EitherOr a b =

Hello a

| Goodbye b

6.6 Num

We have seen a lot of Num at this point, so we’ll try not to go
on too long about it. It is a typeclass implemented by most
numeric types. As we did with Eqwe will query the information
and examine its set of predefined functions:
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class Num a where

(+) :: a -> a -> a

(*) :: a -> a -> a

(-) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

And its list of instances (not quite complete):

instance Num Integer

instance Num Int

instance Num Float

instance Num Double

We’ve seen most of this information before, in one form
or another: common arithmetic functions with their type
signatures at the top (fromInteger is similar to fromIntegral but
restricted to Integer rather than all integral numbers) plus a list
of types that implement this typeclass, numeric types we’ve
looked at previously. No surprises here.

Integral

The typeclass called Integral has the following definition:
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class (Real a, Enum a) => Integral a where

quot :: a -> a -> a

rem :: a -> a -> a

div :: a -> a -> a

mod :: a -> a -> a

quotRem :: a -> a -> (a, a)

divMod :: a -> a -> (a, a)

toInteger :: a -> Integer

The typeclass constraint (Real a, Enum a) => means that any
type that implements Integral must already have instances for
Real and Enum typeclasses. In a very real sense the tuple syntax
here denotes the conjunction of typeclass constraints on your
type variables. An integral type must be both a real number
and enumerable and therefore may employ the methods of
each of those typeclasses. In turn, the Real typeclass itself re-
quires an instance of Num. So, the Integral typeclass may put
the methods of Real and Num into effect (in addition to those
of Enum). Since Real cannot override the methods of Num, this
typeclass inheritance is only additive and the ambiguity prob-
lems caused by multiple inheritance in some programming
languages — the so-called “deadly diamond of death” — are
avoided.

Exercises: Tuple Experiment Look at the types given for
quotRem and divMod. What do you think those functions do? Test



CHAPTER 6. LESS AD-HOC POLYMORPHISM 276

your hypotheses by playing with them in the REPL. We’ve
given you a sample to start with below:

Prelude> let ones x = snd (divMod x 10)

Fractional

Num is a superclass of Fractional. The Fractional typeclass is
defined as follows:

class (Num a) => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

This typeclass declaration creates a class named Fractional

which requires its type argument 𝑎 to have an instance of Num
in order to create an instance of Fractional. This is another
example of typeclass inheritance. Fractional applies to fewer
numbers than Num does, and instances of the Fractional class
can use the functions defined in Num, but not all Num can use
the functions defined in Fractional because nothing in Num’s
definition requires an instance of Fractional. There is a chart
at the end of the chapter to help you visualize this information.

We can see this with ordinary functions:
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First let’s consider this function, intentionally without a
type provided:

divideThenAdd x y = (x / y) + 1

We’ll load this with a type that asks only for a Num instance:

divideThenAdd :: Num a => a -> a -> a

divideThenAdd x y = (x / y) + 1

And you’ll get the type error:

Could not deduce (Fractional a)

arising from a use of ‘/’

from the context (Num a)

bound by the type signature for

divideThenAdd :: Num a => a -> a -> a

Now if we only cared about having the Num constraint, we
couldmodify our function to not use (/)which requires Fractional:

-- This works fine.

-- (+) and (-) are both provided by Num

subtractThenAdd :: Num a => a -> a -> a

subtractThenAdd x y = (x - y) + 1
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Or we can change the type rather than modifying the func-
tion itself:

-- This works fine.

divideThenAdd :: Fractional a

=> a -> a -> a

divideThenAdd x y = (x / y) + 1

Put on your thinking cap Why didn’t we need to make the
type of the function we wrote require both typeclasses? Why
didn’t we have to do this:

f :: (Num a, Fractional a) => a -> a -> a

Consider what it means for something to be a subset of a
larger set of objects.

6.7 Type-defaulting typeclasses

When you have a typeclass-constrained (ad hoc) polymorphic
value and need to evaluate it, the polymorphism must be re-
solved to a specific concrete type. The concrete type must
have an instance for all the required typeclass instances (that
is, if it is required to implement Num and Fractional then the
concrete type can’t be an Int). Ordinarily the concrete type
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would come from the type signature you’ve specified or from
type inference, such as when a Num a => a is used in an expres-
sion that expects an Integer which forces the polymorphic
number value to concretize as an Integer. But in some cases,
particularly when you’re working in the GHCi REPL, you will
not have specified a concrete type for a polymorphic value. In
those situations, the typeclass will default to a concrete type,
and the default types are already set in the libraries.

When we do this in the REPL:

Prelude> 1 / 2

0.5

Our result 0.5 appears the way it does because it defaults to
Double. Using the type assignment operator :: we can assign a
more specific type and circumvent the default to Double:

Prelude> 1 / 2 :: Float

0.5

Prelude> 1 / 2 :: Double

0.5

Prelude> 1 / 2 :: Rational

1 % 2

The Haskell Report4 specifies the following defaults relevant
to numerical computations:

4 The Haskell Report is the standard that specifies the language and standard libraries
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default Num Integer

default Real Integer

default Enum Integer

default Integral Integer

default Fractional Double

default RealFrac Double

default Floating Double

default RealFloat Double

Num, Real, etc., are typeclasses, and Integer and Double are
the types they default to. This type defaulting for Fractional

means that:

(/) :: Fractional a => a -> a -> a

changes to

(/) :: Double -> Double -> Double

if you don’t specify the concrete type desired for (/). A
similar example but for Integral would be

div :: Integral a => a -> a -> a

defaulting to

div :: Integer -> Integer -> Integer

for Haskell. The most recent version is Haskell Report 2010, which can be found at
https://www.haskell.org/onlinereport/haskell2010/.

https://www.haskell.org/onlinereport/haskell2010/
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The typeclass constraint is superfluous when the types are
concrete. On the other hand, you must specify which type-
classes you want type variables to have implemented. The use
of polymorphic values without the ability to infer a specific
type and no default rule will cause GHC to complain about an
ambiguous type.

The following will work because all the types below imple-
ment the Num typeclass:

Prelude> let x = 5 + 5 :: Int

Prelude> x

10

Prelude> let x = 5 + 5 :: Integer

Prelude> x

10

Prelude> let x = 5 + 5 :: Float

Prelude> x

10.0

Prelude> let x = 5 + 5 :: Double

Prelude> x

10.0

Now we can make this type more specific, and the process
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will be similar. In this case, let’s use Integer which implements
Num:

let x = 10 :: Integer

let y = 5 :: Integer

-- These are the declared types for these

-- functions, because they're from Num.

(+) :: Num a => a -> a -> a

(*) :: Num a => a -> a -> a

(-) :: Num a => a -> a -> a

Now any functions from Num are going to automatically get
specialized to Integer when we apply them to the 𝑥 or 𝑦 values:

Prelude> :t (x+)

(x+) :: Integer -> Integer

-- For

(+) :: Num a => a -> a -> a

-- When 'a' is Integer

(+) :: Integer -> Integer -> Integer

-- Apply the first argument

(x+) :: Integer -> Integer

-- Applying the second and last argument

(x+y) :: Integer
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-- Final result was Integer.

We can declare more specific (monomorphic) functions
from more general (polymorphic) functions:

let add = (+) :: Integer -> Integer -> Integer

We cannot go in the other direction, because we lost the
generality of Num when we specialized to Integer:

Prelude> :t id

id :: a -> a

Prelude> let numId = id :: Num a => a -> a

Prelude> let intId = numId :: Integer -> Integer

Prelude> let altNumId = intId :: Num a => a -> a

Could not deduce (a1 ~ Integer)

from the context (Num a)

bound by the inferred type of

altNumId :: Num a => a -> a

or from (Num a1)

bound by an expression type signature:

Num a1 => a1 -> a1

‘a1’ is a rigid type variable bound by

an expression type signature:
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Num a1 => a1 -> a1

Expected type: a1 -> a1

Actual type: Integer -> Integer

In the expression: intId :: Num a => a -> a

In an equation for ‘altNumId’:

altNumId = intId :: Num a => a -> a

The expected type and the actual type don’t match. Remember,
the actual type is the type we provided; the expected type
is what the compiler expects. Here, the actual type is more
concrete than the expected type. Types can be made more
specific, but not more general or polymorphic.

6.8 Ord

Next we’ll take a look at a typeclass called Ord. We’ve previously
noted that this typeclass covers the types of things that can be
put in order. If you use :info for Ord in your REPL, you will
find a very large number of instances for this typeclass. We’re
going to pare it down a bit and focus on the essentials, but, as
always, we encourage you to explore this further on your own:

Prelude> :info Ord



CHAPTER 6. LESS AD-HOC POLYMORPHISM 285

class Eq a => Ord a where

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool

(>=) :: a -> a -> Bool

(>) :: a -> a -> Bool

(<=) :: a -> a -> Bool

max :: a -> a -> a

min :: a -> a -> a

instance Ord a => Ord (Maybe a)

instance (Ord a, Ord b) => Ord (Either a b)

instance Ord Integer

instance Ord a => Ord [a]

instance Ord Ordering

instance Ord Int

instance Ord Float

instance Ord Double

instance Ord Char

instance Ord Bool

Notably, at the top, we have another typeclass constraint.
Ord is constrained by Eq because if you’re going to compare
items in a list and put them in order, you need a way to de-
termine if they are equal. So, Ord requires Eq and its methods.
The functions that come standard in this class have to do with
ordering. Some of them will give you a result of Bool, and
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we’ve played a bit with those functions. Let’s see what a few
others do:

Prelude> compare 7 8

LT

Prelude> compare 4 (-4)

GT

Prelude> compare 4 4

EQ

Prelude> compare "Julie" "Chris"

GT

Prelude> compare True False

GT

Prelude> compare True True

EQ

The compare function works for any of the types listed above
that implement the Ord typeclass, including Bool, but unlike
the <, >, >= and <= operators, this returns an Ordering value
instead of a Bool value.

You may notice that True is greater than False. Proximally
this is due to how the Bool datatype is defined: False | True.
There may be a more interesting underlying reason if you
prefer to ponder the philosophical implications.

The max and min functions work in a similarly straightfor-
ward fashion for any type that implements this typeclass:
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Prelude> max 7 8

8

Prelude> min 10 (-10)

-10

Prelude> max (3, 4) (2, 3)

(3,4)

Prelude> min [2, 3, 4, 5] [3, 4, 5, 6]

[2,3,4,5]

Prelude> max "Julie" "Chris"

"Julie"

By looking at the type signature, we can see that these func-
tions have two parameters. If you want to use these to deter-
mine the maximum or minimum of three values, you can nest
them:

Prelude> max 7 (max 8 9)

9

If you try to give it too few arguments, you will get this
strange-seeming message:

Prelude> max "Julie"

No instance for (Show ([Char] -> [Char]))

-- [1] [2] [ 3 ]

arising from a use of ‘print’
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-- [4]

In a stmt of an interactive GHCi command: print it

-- [ 5 ]

1. Haskell couldn’t find an instance of a typeclass for a value
of a given type.

2. The typeclass it couldn’t find an instance for was Show, the
typeclass that allows GHCi to print values in your terminal.
More on this in the following sections.

3. It couldn’t find an instance of Show for the type String ->

String. Nothing with type (->) should have a Show instance
as a general rule because (->) denotes a function rather
than a constant value.

4. We wanted an instance of Show because we (indirectly)
invoked print which has type print :: Show a => a -> IO

() — note the constraint for Show.

5. The interactive GHCi command print it invoked print

on our behalf.

Any time we ask GHCi to print a return value in our ter-
minal, we are indirectly invoking print, which has the type
Show a => a -> IO (). The first argument to print must have an
instance of Show. The error message is because max applied to
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a single String argument needs another argument before it’ll
return a String (aka [Char]) value that is Show-able or printable.
Until we apply it to a second argument, it’s still a function,
and a function has no instance of Show. The request to print

a function, rather than a constant value, results in this error
message.

Ord instances

We’ll see more examples of writing instances as we proceed
in the book and explain more thoroughly how to write your
own datatypes. We wrote some Eq instances earlier. Now we’ll
practice our instance-writing skills (this is one of the most
necessary skills in Haskell) by writing Ord instances.

When you derive Ord instances for a datatype, they rely on
the way the datatype is defined, but if you write your own
instance, you can define the behavior you want. We’ll use the
days of the week again to demonstrate:

data DayOfWeek =

Mon | Tue | Weds | Thu | Fri | Sat | Sun

deriving (Ord, Show)

We only derived Ord and Show there because you should still
have the Eq instance we wrote for this datatype in scope. If you
don’t, you have two options: bring it back into scope by putting
it into the file you’re currently using, or derive an Eq instance
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for the datatype now by adding it inside the parentheses. You
can’t have an Ord instance unless you also have an Eq instance,
so the compiler will complain if you don’t do one (not both)
of those two things.

Values to the left are less than values to the right, as if they
were placed on a number line:

Prelude> Mon > Tue

False

Prelude> Sun > Mon

True

Prelude> compare Tue Weds

LT

But if we wanted to express that Friday is always the best
day, we can write our own Ord instance to express that:

data DayOfWeek =

Mon | Tue | Weds | Thu | Fri | Sat | Sun

deriving (Eq, Show)

instance Ord DayOfWeek where

compare Fri Fri = EQ

compare Fri _ = GT

compare _ Fri = LT

compare _ _ = EQ
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Now, if we compare Friday to any other day, Friday is always
greater. All other days, you notice, are equal in value:

Prelude> compare Fri Sat

GT

Prelude> compare Sat Mon

EQ

Prelude> compare Fri Mon

GT

Prelude> compare Sat Fri

LT

Prelude> Mon > Fri

False

Prelude> Fri > Sat

True

But we did derive an Eq instance above, so we do get the
expected equality behavior:

Prelude> Sat == Mon

False

Prelude> Fri == Fri

True

A few things to keep in mind about writing Ord instances:
First, it is wise to ensure that your Ord instances agree with your
Eq instances, whether the Eq instances are derived or manually
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written. If x == y, then compare x y should return EQ. Also, you
want your Ord instances to define a sensible total order. You
ensure this in part by covering all cases and not writing partial
instances, as we noted above with Eq. In general, your Ord

instance should be written such that, when compare x y returns
LT, then compare y x returns GT.

Ord implies Eq

The following isn’t going to typecheck for reasons we already
covered:

check' :: a -> a -> Bool

check' a a' = a == a'

The error we get mentions that we need Eq, which makes
sense!

No instance for (Eq a) arising from a use of ‘==’

Possible fix:

add (Eq a) to the context of

the type signature for check' :: a -> a -> Bool

In the expression: a == a'

In an equation for ‘check'’: check' a a' = a == a'

But what if we add Ord instead of Eq as it asks?
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check' :: Ord a => a -> a -> Bool

check' a a' = a == a'

It should compile. Now, Ord isn’t what GHC asked for, so
why did it work? It worked because anything that provides an
instance of Ord must by definition also already have an instance
of Eq. How do we know? As we said above, logically it makes
sense that you can’t order things without the ability to check
for equality, but we can also check :info Ord in GHCi:

Prelude> :info Ord

class Eq a => Ord a where

... buncha noise we don't care about...

The class definition of Ord says that any 𝑎 which wants to
define an Ord instance must already provide an Eq instance. We
can say that Eq is a superclass of Ord.

Usually, you want the minimally sufficient set of constraints
on all your functions — so we would use Eq instead of Ord if the
above example was “real” code — but we did this so you could
get an idea of how constraints and superclassing in Haskell
work.

Exercises: Will They Work?

Next, take a look at the following code examples and try to
decide if they will work, what result they will return if they do,
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and why or why not (be sure, as always, to test them in your
REPL once you have decided on your answer):

1. max (length [1, 2, 3])

(length [8, 9, 10, 11, 12])

2. compare (3 * 4) (3 * 5)

3. compare "Julie" True

4. (5 + 3) > (3 + 6)

6.9 Enum

A typeclass known as Enum that we have mentioned previously
seems similar to Ord but is slightly different. This typeclass
covers types that are enumerable, therefore have known pre-
decessors and successors. We shall try not to belabor the point,
because you are probably developing a good idea of how to
query and make use of typeclass information:

Prelude> :info Enum

class Enum a where

succ :: a -> a

pred :: a -> a

toEnum :: Int -> a

fromEnum :: a -> Int
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enumFrom :: a -> [a]

enumFromThen :: a -> a -> [a]

enumFromTo :: a -> a -> [a]

enumFromThenTo :: a -> a -> a -> [a]

instance Enum Ordering

instance Enum Integer

instance Enum Int

instance Enum Char

instance Enum Bool

instance Enum ()

instance Enum Float

instance Enum Double

Numbers and characters are known to have predictable
successors and predecessors, so these are paradigmatic cases
of enumerability:

Prelude> succ 4

5

Prelude> pred 'd'

'c'

Prelude> succ 4.5

5.5

You can also see that some of these functions return a result
of a list type. They take a starting value and build a list with
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the succeeding items of the same type:

Prelude> enumFromTo 3 8

[3,4,5,6,7,8]

Prelude> enumFromTo 'a' 'f'

"abcdef"

Finally, let’s take a short look at enumFromThenTo:

Prelude> enumFromThenTo 1 10 100

[1,10,19,28,37,46,55,64,73,82,91,100]

Take a look at the resulting list and see if you can find the
pattern: what does this function do? What happens if we give
it the values 0 10 100 instead? How about 'a' 'c' 'z'?

6.10 Show

Show is a typeclass that provides for the creating of human-
readable string representations of structured data. GHCi uses
Show to create String values it can print in the terminal.

Show is not a serialization format. Serialization is how data
is rendered to a textual or binary format for persistence or
communicating with other computers over a network. An
example of persistence would be saving data to a file on disk.
Show is not suitable for any of these purposes; it’s expressly for
human readability.
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The typeclass information looks like this (truncated):

class Show a where

showsPrec :: Int -> a -> ShowS

show :: a -> String

showList :: [a] -> ShowS

instance Show a => Show [a]

instance Show Ordering

instance Show a => Show (Maybe a)

instance Show Integer

instance Show Int

instance Show Char

instance Show Bool

instance Show ()

instance Show Float

instance Show Double

Importantly, we see that various number types, Bool values,
tuples, and characters are all already instances of Show. That is,
they have a defined ability to be printed to the screen. There is
also a function show which takes a polymorphic 𝑎 and returns
it as a String, allowing it to be printed.
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Printing and side effects

When you ask GHCi to return the result of an expression and
print it to the screen, you are indirectly invoking a function
called print that we encountered briefly in the chapter about
printing and again in the section about Ord and the error mes-
sage that results from passing the max function too few argu-
ments. As understanding print is important to understanding
this typeclass, we’re going to digress a bit and talk about it in
more detail.

Haskell is a pure functional programming language. The
functional part of that comes from the fact that programs are
written as functions, similar to mathematical equations, in
which an operation is applied to some arguments to produce
a result. The pure part of our description of Haskell means
expressions in Haskell can be expressed exclusively in terms
of a lambda calculus.

It may not seem obvious that printing results to the screen
could be a source of worry. The function is not just applied
to the arguments that are in its scope but also asked to affect
the world outside its scope in some way, namely by showing
you its result on a screen. This is known as a side effect, a po-
tentially observable result apart from the value the expression
evaluates to. Haskell manages effects by separating effectful
computations from pure computations in ways that preserve
the predictability and safety of function evaluation. Impor-
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tantly, effect-bearing computations themselves become more
composable and easier to reason about. The benefits of ex-
plicit effects include the fact that it makes it relatively easy to
reason about and predict the results of our functions.

What sets Haskell apart from most other functional pro-
gramming languages is that it introduced and refined a means
of writing ordinary programs that talk to the outside world
without adding anything to the pure lambda calculus it is
founded on. This property — being lambda calculus and
nothing more — is what makes Haskell a purely functional
programming language.

The print function is sometimes invoked indirectly byGHCi,
but its type explicitly reveals that it is effectful. Up to now,
we’ve been covering over how this works, but it’s time to dive
a bit deeper.

print is defined in the Prelude standard as a function to out-
put “a value of any printable type to the standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation
and adds a newline.” Let’s look at the type of print:

Prelude> :t print

print :: Show a => a -> IO ()

As we see, print takes an argument 𝑎 that must be a type with
an instance of the Show typeclass and returns an IO () result.
This result is an IO action that returns a value of the type ().
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We saw this IO () result previously when we talked about
printing strings. We also noted that it is the obligatory type
of main in a source code file. This is because running main only
produces side effects. indexmain@main

Stated as simply as possible, an I/O (input/output, frequently
written ‘IO’ without a slash; when referring to the Haskell
datatype, there is no slash) action is an action that, when per-
formed, has side effects, including reading from input and
printing to the screen and will contain a return value. The
() denotes an empty tuple, which we refer to as unit. Unit
is a value, and also a type that has only this one inhabitant,
that essentially represents nothing. Printing a string to the
terminal doesn’t have a meaningful return value. But an IO

action, like any expression in Haskell, can’t return nothing; it
must return something. So we use this empty tuple to rep-
resent the return value at the end of our I/O action. That is,
the print function will first do the I/O action of printing the
string to the terminal and then complete the action, marking
an end to the execution of the function and a delimitation of
the side effects, by returning this empty nothing tuple. It does
not print the empty tuple to the screen, but it is implicitly
there. The simplest way to think about the difference between
a value with a typical type like String and the same type but
from IO such as with IO String is that IO actions are formulas.
When you have a value of type IO String it’s more of ameans of
producing a String, which may require performing side effects
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along the way before you get your String value.
This is a String value:

myVal :: String

This value is a method or means of obtaining a value, by
performing effects or I/O, of type String:

ioString :: IO String

An IO action is performedwhenwe call main for our program,
as we have seen. But we also perform an IO action when we
invoke print implicitly or explicitly. indexmain@main

Working with Show

Up to now, we have only been deriving typeclass instances
for Show because deriving usually gives us the result we want
without a lot of fuss. Having a Show instance is crucial to being
able to print anything to the terminal, so we’re going to look at
some examples of why Show is important and how it is imple-
mented. Invoking the Show typeclass also invokes its methods,
specifically a method of taking your values and turning them
into values that can be printed to the screen.

A minimal implementation of an instance of Show only re-
quires that show or showsPrec be implemented, as in the follow-
ing example:
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data Mood = Blah

instance Show Mood where

show _ = "Blah"

Prelude> Blah

Blah

Here’s what happens in GHCi when you define a datatype
and ask GHCi to show it without the instance for the Show

typeclass:

Prelude> data Mood = Blah

Prelude> Blah

No instance for (Show Mood) arising

from a use of ‘print’

In a stmt of an interactive GHCi command: print it

Next let’s look at how you define a datatype to have an in-
stance of Show. We can derive the Show instance for Mood because
it’s one of the typeclasses GHC supports deriving instances for
by default:

Prelude> data Mood = Blah deriving Show

Prelude> Blah

Blah
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And, in fact, most of the time that’s what you’ll do for your
own datatypes. In the chapter on building projects, we will
need to write a custom instance for Show, though, so that should
give you something exciting to look forward to.

6.11 Read

The Read typeclass...well, it’s...there. You’ll notice that, like Show,
a lot of types have instances of Read. This typeclass is essentially
the opposite of Show. Where Show takes things and turns them
into human-readable strings, Read takes strings and turns them
into things. Like Show, it’s not a serialization format. So, what’s
the problem? We gave that dire warning against using Read

earlier in the chapter, but this doesn’t seem like a big deal,
right?

The problem is in the String type. A String is a list, which
could be empty in some cases, or stretch on to infinity in other
cases.

We can begin to understand this by examining the types:

Prelude> :t read

read :: Read a => String -> a

There’s no way Read a => String -> a will always work. Let’s
consider a type like Integerwhich has a Read instance. We are in
no way guaranteed that the Stringwill be a valid representation
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of an Integer value. A String value can be any text. That’s way
too big of a type for things we want to parse into numbers!
We can prove this for ourselves in the REPL:

Prelude> read "1234567" :: Integer

1234567

Prelude> read "BLAH" :: Integer

*** Exception: Prelude.read: no parse

That exception is a runtime error and means that read is a
partial function, a function that doesn’t return a proper value
as a result for all possible inputs. We have ways of cleaning
this up we’ll explain and demonstrate later. We should strive
to avoid writing or using such functions in Haskell because
Haskell gives us the tools necessary to avoid senseless sources
of errors in our code.

6.12 Instances are dispatched by type

We’ve said a few times, without explaining it, that typeclasses
are dispatched by type, but it’s an important thing to under-
stand. Typeclasses are defined by the set of operations and
values all instances will provide. Typeclass instances are unique
pairings of the typeclass and a type. They define the ways to
implement the typeclass methods for that type.

We’re going to walk through some code to illustrate what
this all means. The first thing you will see is that we’ve written
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our own typeclass and instances for demonstration purposes.
Those details aren’t important for understanding this code.
Just remember:

• a typeclass defines a set of functions and/or values;

• types have instances of that typeclass;

• the instances specify the ways that type uses the functions
of the typeclass.

This is vacuous and silly. This is only to make a point. Please
do not write typeclasses like this:

class Numberish a where

fromNumber :: Integer -> a

toNumber :: a -> Integer

-- pretend newtype is data for now

newtype Age =

Age Integer

deriving (Eq, Show)

instance Numberish Age where

fromNumber n = Age n

toNumber (Age n) = n
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newtype Year =

Year Integer

deriving (Eq, Show)

instance Numberish Year where

fromNumber n = Year n

toNumber (Year n) = n

Then suppose we write a function using this typeclass and
the two types and instances:

sumNumberish :: Numberish a => a -> a -> a

sumNumberish a a' = fromNumber summed

where integerOfA = toNumber a

integerOfAPrime = toNumber a'

summed =

integerOfA + integerOfAPrime

Now let us think about this for a moment. The class def-
inition of Numberish doesn’t define any terms or code we can
compile and execute, only types. The code lives in the in-
stances for Age and Year. So how does Haskell know where to
find code?

Prelude> sumNumberish (Age 10) (Age 10)

Age 20
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In the above, it knew to use the instance of Numberish for Age

because it could see that our arguments to sumNumberish were
of type Age. We can see this with the type inference, too:

Prelude> :t sumNumberish

sumNumberish :: Numberish a => a -> a -> a

Prelude> :t sumNumberish (Age 10)

sumNumberish (Age 10) :: Age -> Age

After the first parameter is applied to a value of type Age, it
knows that all other occurrences of type Numberish a => a must
be Age.

To see a case where we’re not providing enough information
to Haskell for it to identify a concrete type with which to get
the appropriate instance, we’re going to change our typeclass
and associated instances:

(This is even worse than the last one. Don’t use typeclasses
to define default values. Seriously. Haskell ninjas will find you
and replace your toothpaste with muddy chalk.)

class Numberish a where

fromNumber :: Integer -> a

toNumber :: a -> Integer

defaultNumber :: a
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instance Numberish Age where

fromNumber n = Age n

toNumber (Age n) = n

defaultNumber = Age 65

instance Numberish Year where

fromNumber n = Year n

toNumber (Year n) = n

defaultNumber = Year 1988

Then in the REPL, we can see that in some cases, there’s no
way for Haskell to know what we want!

Prelude> defaultNumber

No instance for (Show a0) arising

from a use of ‘print’

The type variable ‘a0’ is ambiguous

Note: there are several potential instances:

instance Show a => Show (Maybe a)

instance Show Ordering

instance Show Integer

...plus 24 others

This fails because it has no idea what type defaultNumber is
other than that it’s provided for by Numberish’s instances. But
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the good news is, even if it’s a value and doesn’t take any argu-
ments, we have a means of telling Haskell what we want:

Prelude> defaultNumber :: Age

Age 65

Prelude> defaultNumber :: Year

Year 1988

Just assign the type you expect and it works fine! Here,
Haskell is using the type assertion to dispatch, or specify, what
typeclass instance we want to get our defaultNumber from.

Why not write a typeclass like this? For reasons we’ll explain
when we talk about Monoid, it’s important that your typeclasses
have laws and rules about how they work. Numberish is a bit...
arbitrary. There are better ways to express what it does in
Haskell than a typeclass. Functions and values alone suffice
here.

6.13 Gimme more operations

We talked about the different kinds of polymorphism in type
signatures — constrained versus parametric. Having no con-
straint on our term-level values means they could be any type,
but there isn’t much we can do with them. The methods and
operations are in the typeclasses, and so we get more utility
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by specifying typeclass constraints. If your types are more
general than your terms are, then you need to constrain your
types with the typeclasses that provide the operations you
want to use. We looked at some examples of this in the sec-
tions above about Integral and Fractional, but in this section,
we’ll be more specific about how to modify type signatures to
fit the terms.

We’ll start by looking at some examples of times when we
need to change our types because they’re more general than
our terms allow:

add :: a -> a -> a

add x y = x + y

If you load it up, you’ll get the following error:

No instance for (Num a) arising from a use of ‘+’

Possible fix:

add (Num a) to the context of

the type signature for add :: a -> a -> a

Fortunately, this is one of those cases where GHC knows
precisely what the problem is and how to remedy it. We need
to add a Num constraint to the type 𝑎. But why? Because our
function can’t accept a value of strictly any type. We need
something that has an instance of Num because the (+) function
comes from Num:
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add :: Num a => a -> a -> a

add x y = x + y

With the constraint added to the type, it works fine! What
if we use a method from another operation?

addWeird :: Num a => a -> a -> a

addWeird x y =

if x > 1

then x + y

else x

We get another error, but once again GHC helps us out, so
long as we resist the pull of tunnel vision5 and look at what it’s
telling us:

Could not deduce (Ord a) arising from a use of ‘>’

from the context (Num a)

bound by the type signature for

addWeird :: Num a => a -> a -> a

Possible fix:

add (Ord a) to the context of

the type signature for

addWeird :: Num a => a -> a -> a

5All programmers experience this. Just slow down and you’ll be okay.
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The problem is that having a Num constraint on our type 𝑎
isn’t enough. Num doesn’t imply Ord. Given that, we have to add
another constraint which is what GHC told us to do:

addWeird :: (Ord a, Num a) => a -> a -> a

addWeird x y =

if x > 1

then x + y

else x

Now this should typecheck because our constraints are ask-
ing that 𝑎 have instances of Num and Ord.

Concrete types imply all the typeclasses they
provide

We’ll be repurposing some examples from earlier in the chap-
ter, modifying them to all have a concrete type in the place of
𝑎:
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add :: Int -> Int -> Int

add x y = x + y

addWeird :: Int -> Int -> Int

addWeird x y =

if x > 1

then x + y

else x

check' :: Int -> Int -> Bool

check' a a' = a == a'

These will all typecheck! This is because the Int type has
the typeclasses Num, Eq, and Ord all implemented. We don’t need
to say Ord Int => Int -> Int -> Int because it doesn’t add any
information. A concrete type either has a typeclass instance or
it doesn’t — adding the constraint means nothing. A concrete
type always implies the typeclasses that are provided for it.

There are some caveats to keep in mind here when it comes
to using concrete types. One of the nice things about para-
metricity and typeclasses is that you are being explicit about
what you mean to do with your data which means you are
less likely to make a mistake. Int is a big datatype with many
inhabitants and many typeclasses and operations defined for
it — it could be easy to make a function that does something
unintended. Whereas if we were to write a function, even if we



CHAPTER 6. LESS AD-HOC POLYMORPHISM 314

had Int values in mind for it, which used a polymorphic type
constrained by the typeclass instances we wanted, we could
ensure we only used the operations we intended. This isn’t a
panacea, but it can be worth avoiding concrete types for these
(and other) reasons sometimes.

6.14 Chapter Exercises

Multiple choice

1. The Eq class

a) includes all types in Haskell

b) is the same as the Ord class

c) makes equality tests possible

d) only includes numeric types

2. The typeclass Ord

a) allows any two values to be compared

b) is a subclass of Eq

c) is a superclass of Eq

d) has no instance for Bool

3. Suppose the typeclass Ord has an operator >. What is the
type of >?
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a) Ord a => a -> a -> Bool

b) Ord a => Int -> Bool

c) Ord a => a -> Char

d) Ord a => Char -> [Char]

4. In x = divMod 16 12

a) the type of 𝑥 is Integer

b) the value of 𝑥 is undecidable

c) the type of 𝑥 is a tuple

d) 𝑥 is equal to 12 / 16

5. The typeclass Integral includes

a) Int and Integer numbers

b) integral, real, and fractional numbers

c) Schrodinger’s cat

d) only positive numbers

Does it typecheck?

For this section of exercises, you’ll be practicing looking for
type and typeclass errors.

For example, printIt will not work because functions like
𝑥 have no instance of Show, the typeclass that lets you convert
things to Strings (usually for printing):
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x :: Int -> Int

x blah = blah + 20

printIt :: IO ()

printIt = putStrLn (show x)

Here’s the type error you get if you try to load the code:

No instance for (Show (Int -> Int)) arising

from a use of ‘show’

In the first argument of ‘putStrLn’, namely ‘(show x)’

In the expression: putStrLn (show x)

In an equation for ‘printIt’: printIt = putStrLn (show x)

It’s saying it can’t find an implementation of the typeclass
Show for the type Int -> Int, which makes sense. Nothing with
the function type constructor (->) has an instance of Show6 by
default in Haskell.

Examine the following code and decide whether it will type-
check. Then load it in GHCi and see if you were correct. If
it doesn’t typecheck, try to match the type error against your
understanding of why it didn’t work. If you can, fix the error
and re-run the code.

6 For an explanation and justification of why functions in Haskell cannot have a
Show instance, see the wiki page on this topic. https://wiki.haskell.org/Show_instance_for_
functions

https://wiki.haskell.org/Show_instance_for_functions
https://wiki.haskell.org/Show_instance_for_functions
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1. Does the following code typecheck? If not, why not?

data Person = Person Bool

printPerson :: Person -> IO ()

printPerson person = putStrLn (show person)

2. Does the following typecheck? If not, why not?

data Mood = Blah

| Woot deriving Show

settleDown x = if x == Woot

then Blah

else x

3. If you were able to get settleDown to typecheck:

a) What values are acceptable inputs to that function?

b) What will happen if you try to run settleDown 9? Why?

c) What will happen if you try to run Blah > Woot? Why?

4. Does the following typecheck? If not, why not?
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type Subject = String

type Verb = String

type Object = String

data Sentence =

Sentence Subject Verb Object

deriving (Eq, Show)

s1 = Sentence "dogs" "drool"

s2 = Sentence "Julie" "loves" "dogs"

Given a datatype declaration, what can we do?

Given the following datatype definitions:

data Rocks =

Rocks String deriving (Eq, Show)

data Yeah =

Yeah Bool deriving (Eq, Show)

data Papu =

Papu Rocks Yeah

deriving (Eq, Show)
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Which of the following will typecheck? For the ones that
don’t typecheck, why don’t they?

1. phew = Papu "chases" True

2. truth = Papu (Rocks "chomskydoz")

(Yeah True)

3. equalityForall :: Papu -> Papu -> Bool

equalityForall p p' = p == p'

4. comparePapus :: Papu -> Papu -> Bool

comparePapus p p' = p > p'

Match the types

We’re going to give you two types and their implementations.
Then we’re going to ask you if you can substitute the second
type for the first. You can test this by typing the first declaration
and its type into a file and editing in the new one, loading to
see if it fails. Don’t guess, test all your answers!

1. For the following definition.

a) i :: Num a => a

i = 1

b) Try replacing the type signature with the following:
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i :: a

After you’ve formulated your own answer, then tested
that answer and believe you understand why you were
right or wrong, make sure to use GHCi to check what
type GHC infers for the definitions we provide without
a type assigned. For example, for this one, you’d type
in:

Prelude> let i = 1

Prelude> :t i

-- Result elided intentionally.

2. a) f :: Float

f = 1.0

b) f :: Num a => a

3. a) f :: Float

f = 1.0

b) f :: Fractional a => a

4. Hint for the following: type :info RealFrac in your REPL.

a) f :: Float

f = 1.0

b) f :: RealFrac a => a
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5. a) freud :: a -> a

freud x = x

b) freud :: Ord a => a -> a

6. a) freud' :: a -> a

freud' x = x

b) freud' :: Int -> Int

7. a) myX = 1 :: Int

sigmund :: Int -> Int

sigmund x = myX

b) sigmund :: a -> a

8. a) myX = 1 :: Int

sigmund' :: Int -> Int

sigmund' x = myX

b) sigmund' :: Num a => a -> a

9. a) You’ll need to import sort from Data.List.

jung :: Ord a => [a] -> a

jung xs = head (sort xs)

b) jung :: [Int] -> Int

10. a) young :: [Char] -> Char

young xs = head (sort xs)
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b) young :: Ord a => [a] -> a

11. a) mySort :: [Char] -> [Char]

mySort = sort

signifier :: [Char] -> Char

signifier xs = head (mySort xs)

b) signifier :: Ord a => [a] -> a

Type-Kwon-Do Two: Electric Typealoo

Round Two! Same rules apply — you’re trying to fill in terms
(code) which’ll fit the type. The idea with these exercises is that
you’ll derive the implementation from the type information.
You’ll probably need to use stuff from Prelude.

1. chk :: Eq b => (a -> b) -> a -> b -> Bool

chk = ???

2. -- Hint: use some arithmetic operation to

-- combine values of type 'b'. Pick one.

arith :: Num b

=> (a -> b)

-> Integer

-> a

-> b

arith = ???
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6.15 Chapter Definitions

1. Typeclass inheritance is when a typeclass has a superclass.
This is a way of expressing that a typeclass requires another
typeclass to be available for a given type before you can
write an instance.

class Num a => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

Here the typeclass Fractional inherits from Num. We could
also say that Num is a superclass of Fractional. The long
and short of it is that if you want to write an instance of
Fractional for some 𝑎, that type 𝑎, must already have an
instance of Num before you may do so.
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-- Even though in principle

-- this could work, it will fail because

-- Nada doesn't have a Num instance

newtype Nada =

Nada Double deriving (Eq, Show)

instance Fractional Nada where

(Nada x) / (Nada y) = Nada (x / y)

recip (Nada n) = Nada (recip n)

fromRational r = Nada (fromRational r)

Then if you try to load it:

No instance for (Num Nada)

arising from the superclasses

of an instance declaration

In the instance declaration for

‘Fractional Nada’

You need a Num instance first. Can’t write one that makes
sense? Then you’re not allowed to have a Fractional in-
stance either. Them’s the rules.

2. Effects are how we refer to observable actions programs may
take other than compute a value. If a function modifies
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some state or interacts with the outside world in a manner
that can be observed, then we say it has an effect on the
world.

3. IO is the type for values whose evaluation bears the possi-
bility of causing side effects, such as printing text, reading
text input from the user, reading or writing files, or con-
necting to remote computers. This will be explained in
muchmore depth in the chapter on IO.

4. An instance is the definition of how a typeclass should
work for a given type. Instances are unique for a given
combination of typeclass and type.

5. In Haskell we have derived instances so that obvious or com-
mon typeclasses, such as Eq, Enum, Ord, and Show can have
the instances generated based only on how the datatype
is defined. This is so programmers can make use of these
conveniences without writing the code themselves, over
and over.
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6.16 Typeclass inheritance, partial

This is not a complete chart of typeclass inheritance. It illus-
trates the relationship between a few of the typeclasses we’ve
talked about in this chapter. You can see, for example, that
the subclass Fractional inherits from the superclass Num but not
vice versa. While many types have instances of Show and Read,
they aren’t superclasses, so we’ve left them out of the chart for
clarity.

Figure 6.1: Chart of some typeclasses and their parentage.
Only the typeclasses seen so far are included.

6.17 Follow-up resources

1. P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad hoc.
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http://www.cse.iitk.ac.in/users/karkare/courses/2010/cs653/

Papers/ad-hoc-polymorphism.pdf

2. Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones,
and Philip L. Wadler. Typeclasses in Haskell.
http://ropas.snu.ac.kr/lib/dock/HaHaJoWa1996.pdf

http://www.cse.iitk.ac.in/users/karkare/courses/2010/cs653/Papers/ad-hoc-polymorphism.pdf
http://www.cse.iitk.ac.in/users/karkare/courses/2010/cs653/Papers/ad-hoc-polymorphism.pdf
http://ropas.snu.ac.kr/lib/dock/HaHaJoWa1996.pdf


Chapter 7

More functional patterns

I would like to be able to
always…divide the things
up into as many pieces as
I can, each of which I
understand separately. I
would like to understand
the way of adding things
up, independently of
what it is I’m adding up.

Gerald Sussman
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7.1 Make it func-y

You might be asking yourself what this chapter is all about:
haven’t we been talking about functions all along? We have,
but as you might guess from the fact that Haskell is a functional
programming language, there is more to say — so much more!

A function is an instruction for producing an output from
an input, or argument. Functions are applied to arguments
which binds their parameters to values. The fully applied
function with its arguments is then evaluated to produce the
output or result. In this chapter we will demonstrate

• Haskell functions are first-class entities that

• can be values in expressions, lists, or tuples;

• can be passed as arguments to a function;

• can be returned from a function as a result;

• make use of syntactic patterns.

7.2 Arguments and parameters

As you know from our discussion of currying, functions in
Haskell may appear to have multiple parameters but this is
only the surface appearance; in fact, all functions take one
argument and return one result. We construct functions in
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Haskell through various syntactic means of denoting that an
expression takes arguments. Functions are defined by the fact
that they can be applied to an argument and return a result.

All Haskell values can be arguments to functions. A value
that can be used as an argument to a function is a first-class
value. In Haskell, this includes functions, which can be argu-
ments to more functions still. Not all programming languages
allow this, but hopefully the earlier discussion of the function
type and currying have given an idea of how and why this
works.

Setting parameters

You name parameters to functions in Haskell by declaring
them between the name of the function, which is always at
the left margin, and the equals sign, separating the name from
both the function name and the equals sign with white space.
The name is a variable, and when we apply the function to
an argument, the value of the argument is bound, or unified,
with the named parameter in our function definition.

First we’ll define a value with no parameters:

myNum :: Integer

myNum = 1

myVal = myNum
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If we query the type of myVal:

Prelude> :t myVal

myVal :: Integer

The value myVal has the same type as myNum because it is equal
to it. We can see from the type that it’s a value without any
parameters, so we can’t apply it to anything.

Now let’s introduce a parameter named 𝑓 :

myNum :: Integer

myNum = 1

myVal f = myNum

And let’s see how that changed the type:

Prelude> :t myVal

myVal :: t -> Integer

Bywriting 𝑓 after myValweparameterized myVal, which changes
the type from Integer to t -> Integer. The type 𝑡 is polymor-
phic because we don’t do anything with it — it could be any-
thing. We didn’t do anything with 𝑓 so the maximally poly-
morphic type was inferred. If we do something with 𝑓 , the
type will change:
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Prelude> let myNum = 1 :: Integer

Prelude> let myVal f = f + myNum

Prelude> :t myVal

myVal :: Integer -> Integer

Now it knows 𝑓 has to be of type Integer because we added
it to myNum.

We can tell a simple value from a function in part because
a value is not applied to any arguments, while functions nec-
essarily have parameters that can be applied to arguments.

Although Haskell functions only take one argument per
function, we can declare multiple parameters in a term-level
function definition:

myNum :: Num a => a

myNum = 1

-- [1]

myVal :: Num a => a -> a

myVal f = f + myNum

-- [2]

stillAFunction :: [a] -> [a] -> [a] -> [a]

stillAFunction a b c = a ++ b ++ c

-- [ 3 ]
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1. Declaration of a value of type Num a => a. We can tell it’s
not a function because no parameters are named between
the name of the declared value and the =, so it accepts no
arguments, and the value 1 is not a function.

2. Here 𝑓 is a name for a parameter to the function myVal. It
represents the possibility of being applied to, or bound
to, an input value. The function type is Num a => a -> a.
If you assign the type Integer to myNum, as we had above,
myNum and myVal would have the types Integer and Integer

-> Integer, respectively.

3. Here 𝑎, 𝑏, and 𝑐 represent parameters for the function.
The underlying logic is of nested functions each applied
to one argument, rather than one function taking several
arguments, but this is how it appears at term level.

Notice what happens to the types as we name more param-
eters:

Prelude> let myVal f g = myNum

Prelude> :t myVal

myVal :: t -> t1 -> Integer

Prelude> let myVal f g h = myNum

Prelude> :t myVal

myVal :: t -> t1 -> t2 -> Integer



CHAPTER 7. MORE FUNCTIONAL PATTERNS 334

Here the types are t, t1, and t2 which could be different
types. They are allowed but not required to be different types.
They’re all polymorphic because we gave the type inference
nothing to go on with respect to what type they could be. The
type variables are different because nothing in our code is
preventing them from varying, so they are potentially dif-
ferent types. The inference infers the most polymorphic type
that works.

Binding variables to values

Let’s consider how the binding of variables works. Applying
a function binds its parameters to values. Type parameters
become bound to a type, and function variables are bound
to a value. The binding of variables concerns not only the
application of function arguments, but also things like let

expressions and where clauses. Consider the following function:

addOne :: Integer -> Integer

addOne x = x + 1

We don’t know the result until the addOne function is applied
to an Integer value argument. When addOne is applied to a
value, we say that 𝑥 is now bound to the value the function was
applied to. Until a function’s arguments have been applied,
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thereby binding the parameters to values, we cannot make use
of the result of the function.

addOne 1 -- x is now bound to 1

addOne 1 = 1 + 1

= 2

addOne 10 -- x is bound to 10

addOne 10 = 10 + 1

= 11

In addition to binding variables through function applica-
tion, we can use let expressions to declare and bind variables
as well:

bindExp :: Integer -> String

bindExp x =

let y = 5 in

"the integer was: " ++ show x

++ " and y was: " ++ show y

In show y, 𝑦 is in scope because the let expression binds the
variable 𝑦 to 5. 𝑦 is only in scope inside the let expression. Let’s
see something that won’t work:
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bindExp :: Integer -> String

bindExp x =

let z = y + x in

let y = 5 in

"the integer was: "

++ show x ++ " and y was: "

++ show y ++ " and z was: "

++ show z

You should see an error, “Not in scope: ‘y’”. We are trying
to make 𝑧 equal a value constructed from 𝑥 and 𝑦. 𝑥 is in
scope because the function argument is visible anywhere in
the function. However, 𝑦 is bound in the expression that let z

= … wraps, so it’s not in scope yet — that is, it’s not visible to
the main function.

In some cases, function arguments are not visible in the
function if they have been shadowed. Let’s look at a case of
shadowing:

bindExp :: Integer -> String

bindExp x =

let x = 10; y = 5 in

"the integer was: " ++ show x

++ " and y was: " ++ show y

If you apply this to an argument, you’ll notice the result
never changes:
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Prelude> bindExp 9001

"the integer was: 10 and y was: 5"

This is because the reference to 𝑥 arising from the argument
𝑥 was shadowed by the 𝑥 from the let binding. The definition
of 𝑥 that is innermost in the code (where the function name at
the left margin is the outside) takes precedence because Haskell
is lexically scoped. Lexical scoping means that resolving the
value for a named entity depends on the location in the code
and the lexical context, for example in let and where clauses.
Among other things, this makes it easier to know what values
referred to by name are and where they come from. Let’s
annotate the previous example and we’ll see what is meant
here:

bindExp :: Integer -> String

bindExp x = let x = 10

-- [1] [2]

y = 5

in "x: " ++ show x

-- [3]

++ " y: " ++ show y

1. The parameter 𝑥 introduced in the definition of bindExp.
This gets shadowed by the 𝑥 in [2].
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2. This is a let-binding of 𝑥 and shadows the definition of 𝑥
introduced as an argument at [1].

3. A use of the 𝑥 bound by [2]. Given Haskell’s static (lexical)
scoping it will always refer to the 𝑥 defined as x = 10 in the
let binding!

You can also see the effect of shadowing a name in scope in
GHCi using the let statements you’ve been kicking around all
along:

Prelude> let x = 5

Prelude> let y = x + 5

Prelude> y

10

Prelude> y * 10

100

Prelude> let z y = y * 10

Prelude> x

5

Prelude> y

10

Prelude> z 9

90

-- but

Prelude> z y
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100

Note that while 𝑦 is bound in GHCi’s scope to x + 5, the
introduction of z y = y * 10 creates a new inner scope which
shadowed the name 𝑦. Now, when we call 𝑧, GHCi will use the
value we pass as 𝑦 to evaluate the expression, not necessarily
the value 10 from the let statement y = x + 5. Using 𝑦 as an ar-
gument to 𝑧, as in the last example, means the value of 𝑦 from
the outer scope is passed to 𝑧 as an argument. The lexically
innermost binding for a variable of a particular name always
takes precedence. It does not matter that the 𝑦 in 𝑧’s parame-
ters has the same name as the 𝑦 from earlier in GHCi: 𝑦 will
always be bound to the value that 𝑧 is applied to. (Incidentally,
the seeming-sequentiality of defining things in GHCi is, under
the hood, a never-ending series of nested lambda expressions,
similar to the way functions can seem to accept multiple argu-
ments but are, at root, a series of nested functions).

7.3 Anonymous functions

We have already seen how to write anonymous functions using
the lambda syntax represented by a backslash. Anonymous
means “without a name” and that gives us a clue to why we have
this syntax — to construct functions and use them without
giving them a name.
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For example, earlierwe looked at this named, i.e., not anony-
mous, function:

triple :: Integer -> Integer

triple x = x * 3

And here is the same function but with anonymous function
syntax:

(\x -> x * 3) :: Integer -> Integer

You need the parentheses for the type assertion :: Integer

-> Integer to apply to the entire anonymous function and not
just the Num a => a value 3. You can give this function a name,
making it not anonymous anymore, in GHCi like this:

Prelude> :{

*Main| let trip :: Integer -> Integer

*Main| trip = \x -> x*3

*Main| :}

Prelude>

Similarly, to apply an anonymous function we’ll often need
to wrap it in parentheses so that our intent is clear:

Prelude> (\x -> x * 3) 5

15

Prelude> \x -> x * 3 1
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Could not deduce (Num (a0 -> a))

arising from the ambiguity check for ‘it’

from the context

(Num (a1 -> a), Num a1, Num a)

bound by the inferred type for ‘it’:

(Num (a1 -> a), Num a1, Num a) => a -> a

at <interactive>:9:1-13

The type variable ‘a0’ is ambiguous

When checking that ‘it’

has the inferred type ‘forall a a1.

(Num (a1 -> a), Num a1, Num a) =>

a -> a’

Probable cause:

the inferred type is ambiguous

The type error Could not deduce (Num (a0 -> a)) is because
you can’t use Num a => a values as if they were functions. To
the computer, it looks like you’re trying to use 3 as a function
and apply 3 to 1. Here the it referred to is 3 1 which it thinks
is 3 applied to 1 as if 3 were a function.1

1In GHCi error messages, it refers to the last expression you entered.
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Exercises: Grab Bag

Note the following exercises are from source code files, not
written for use directly in the REPL. Of course, you can change
them to test directly in the REPL if you prefer.

1. Which (two or more) of the following are equivalent?

a) mTh x y z = x * y * z

b) mTh x y = \z -> x * y * z

c) mTh x = \y -> \z -> x * y * z

d) mTh = \x -> \y -> \z -> x * y * z

2. The type of mTh (above) is Num a => a -> a -> a -> a.
Which is the type of mTh 3?

a) Integer -> Integer -> Integer

b) Num a => a -> a -> a -> a

c) Num a => a -> a

d) Num a => a -> a -> a

3. Next, we’ll practice writing anonymous lambda syntax.

For example, one could rewrite:

addOne x = x + 1

Into:
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addOne = \x -> x + 1

Try to make it so it can still be loaded as a top-level def-
inition by GHCi. This will make it easier to validate your
answers.

a) Rewrite the f function in the where clause.

addOneIfOdd n = case odd n of

True -> f n

False -> n

where f n = n + 1

b) Rewrite the following to use anonymous lambda syn-
tax:

addFive x y = (if x > y then y else x) + 5

c) Rewrite the following so that it doesn’t use anony-
mous lambda syntax:

mflip f = \x -> \y -> f y x

The utility of lambda syntax

You’re going to see this anonymous syntax a lot as we proceed
through the book, but right now it may not seem to be that
useful — it’s just another way to write functions.

You most often use this syntax when you’re passing a func-
tion in as an argument to a higher-order function (more on
this soon!) and that’s the only place in your program where
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that particular function will be used. If you’re never going to
call it, then it doesn’t need to be given a name.

We won’t go into a lot of detail about this yet, but named
entities and anonymous entities evaluate a bit differently in
Haskell, and that can be one reason to use an anonymous
function in some cases.

7.4 Pattern matching

Pattern matching is an integral and ubiquitous feature of
Haskell — so integral and ubiquitous that we’ve been using it
throughout the book without saying anything about it. Once
you start, you can’t stop.
Pattern matching is a way of matching values against pat-

terns and, where appropriate, binding variables to successful
matches. It is worth noting here that patterns can include things
as diverse as undefined variables, numeric literals, and list syn-
tax. As we will see, pattern matching matches on any and all
data constructors.

Pattern matching allows you to expose data and dispatch
different behaviors based on that data in your function defini-
tions by deconstructing values to expose their inner workings.
There is a reason we describe values as “data constructors”, al-
though we haven’t explored that much yet. Pattern matching
also allows us to write functions that can decide between two
or more possibilities based on which value it matches.
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Patterns are matched against values, or data constructors,
not types. Matching a pattern may fail, proceeding to the next
available pattern to match or succeed. When a match suc-
ceeds, the variables exposed in the pattern are bound. Pattern
matching proceeds from left to right and outside to inside.

We can pattern match on numbers. In the following exam-
ple, when the Integer argument to the function equals 2, this
returns True, otherwise, False:

isItTwo :: Integer -> Bool

isItTwo 2 = True

isItTwo _ = False

You can enter the same function directly into GHCi using
the :{ and :} block syntax, enter :} and “return” to end the
block.

Prelude> :{

*Main| let isItTwo :: Integer -> Bool

*Main| isItTwo 2 = True

*Main| isItTwo _ = False

*Main| :}

Note the use of the underscore _ after the match against the
value 2. This is a means of defining a universal pattern that
never fails to match, a sort of “anything else” case.
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Prelude> isItTwo 2

True

Prelude> isItTwo 3

False

Handling all the cases

The order of pattern matches matters! The following version
of the function will always return False because it will match
the “anything else” case first — and match it to everything —
so nothing will get through that to match with the pattern you
do want to match:

isItTwo :: Integer -> Bool

isItTwo _ = False

isItTwo 2 = True

<interactive>:9:33: Warning:

Pattern match(es) are overlapped

In an equation for ‘isItTwo’:

isItTwo 2 = ...

Prelude> isItTwo 2

False

Prelude> isItTwo 3

False



CHAPTER 7. MORE FUNCTIONAL PATTERNS 347

Try to order your patterns from most specific to least spe-
cific, particularly as it concerns the use of _ to unconditionally
match any value. Unless you get fancy, you should be able
to trust GHC’s pattern match overlap warning and should
triple-check your code when it complains.

What happens if we forget to match a case in our pattern?

isItTwo :: Integer -> Bool

isItTwo 2 = True

Notice that now our function can only pattern match on the
value 2. This is an incomplete pattern match because it can’t
match any other data. Incomplete pattern matches applied to
data they don’t handle will return bottom, a non-value used to
denote that the program cannot return a value or result. This
will throw an exception, which if unhandled, will make your
program fail:

Prelude> isItTwo 2

True

Prelude> isItTwo 3

*** Exception: :50:33-48:

Non-exhaustive patterns

in function isItTwo

We’re going to get well acquainted with the idea of bottom
in upcoming chapters. For now, it’s enough to know that this
is what you get when you don’t handle all the possible data.



CHAPTER 7. MORE FUNCTIONAL PATTERNS 348

Fortunately, there’s a way to know at compile time when
your pattern matches are non-exhaustive and don’t handle
every case:

Prelude> :set -Wall

Prelude> :{

*Main| let isItTwo :: Integer -> Bool

*Main| isItTwo 2 = True

*Main| :}

<interactive>:28:5: Warning:

This binding for ‘isItTwo’ shadows

the existing binding

defined at <interactive>:20:5

<interactive>:28:5: Warning:

Pattern match(es) are non-exhaustive

In an equation for ‘isItTwo’:

Patterns not matched:

#x with #x `notElem` [2#]

By turning on all warnings with -Wall, we’re now told ahead
of time that we’ve made a mistake. Do not ignore the warnings
GHC provides for you!
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Pattern matching against data constructors

Pattern matching serves a couple of purposes. It enables us to
vary what our functions do given different inputs. It also allows
us to unpack and expose the contents of our data. The values
True and False don’t have any other data to expose, but some
data constructors have parameters, and pattern matching can
let us expose and make use of the data in their arguments.

The next example uses newtype which is a special case of data
declarations. newtype is different in that it permits only one
constructor and only one field. We will talk about newtypemore
later. For now, we want to focus on how pattern matching can
be used to expose the contents of data and specify behavior
based on that data:
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-- registeredUser1.hs

module RegisteredUser where

newtype Username =

Username String

newtype AccountNumber =

AccountNumber Integer

data User =

UnregisteredUser

| RegisteredUser Username AccountNumber

With the type User, we can use pattern matching to ac-
complish two things. First, User is a sum with two construc-
tors, UnregisteredUser and RegisteredUser. We can use pattern
matching to dispatch our function differently depending on
which value we get. Then with the RegisteredUser construc-
tor we see that it is a product of two newtypes, Username and
AccountNumber. We can use pattern matching to break down
not only RegisteredUser’s contents, but also that of the newtypes
if all the constructors are in scope. Let’s write a function to
pretty-print User values:
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-- registeredUser2.hs

module RegisteredUser where

newtype Username =

Username String

newtype AccountNumber =

AccountNumber Integer

data User =

UnregisteredUser

| RegisteredUser Username AccountNumber

printUser :: User -> IO ()

printUser UnregisteredUser =

putStrLn "UnregisteredUser"

printUser (RegisteredUser

(Username name)

(AccountNumber acctNum)) =

putStrLn $ name ++ " " ++ show acctNum

Note that you can continue the pattern on the next line if it
gets too long. Next, let’s load this into the REPL and look at
the types:

Prelude> :l code/registeredUser2.hs
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...

Prelude> :t RegisteredUser

RegisteredUser :: Username

-> AccountNumber

-> User

Prelude> :t Username

Username :: String -> Username

Prelude> :t AccountNumber

AccountNumber :: Integer -> AccountNumber

Notice how the type of RegisteredUser is a function that con-
structs a User out of two arguments: Username and AccountNumber.
This is what we mean when we refer to a value as a “data con-
structor.”

Now, let’s use our functions. The argument names are te-
dious to type in, but they were chosen to ensure clarity. Passing
the function an UnregisteredUser returns the expected value:

Prelude> printUser UnregisteredUser

UnregisteredUser

The following, though, asks it to match on data constructor
RegisteredUser and allows us to construct a User out of the String
“callen” and the Integer 10456:

Prelude> let myUser = Username "callen"

Prelude> let myAcct = AccountNumber 10456
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Prelude> :{

*Main| let rUser =

*Main| RegisteredUser myUser myAcct

*Main| :}

Prelude> printUser rUser

callen 10456

Through the use of pattern matching, we were able to un-
pack the RegisteredUser value of the User type and vary behav-
ior over the different constructors of types.

This idea of unpacking and dispatching on data is impor-
tant, so let us examine another example. First, we’re going to
write a couple of new datatypes. Writing your own datatypes
won’t be fully explained until a later chapter, but most of the
structure here should be familiar already. We have a sum type
called WherePenguinsLive:

data WherePenguinsLive =

Galapagos

| Antarctica

| Australia

| SouthAfrica

| SouthAmerica

deriving (Eq, Show)

And a product type called Penguin. We haven’t given product
types much attention yet, but for now you can think of Penguin
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as a type with only one value, Peng, and that value is a sort of
box that contains a WherePenguinsLive value:

data Penguin =

Peng WherePenguinsLive

deriving (Eq, Show)

Given these datatypes, we will write a couple functions for
processing the data:

-- is it South Africa? If so, return True

isSouthAfrica :: WherePenguinsLive -> Bool

isSouthAfrica SouthAfrica = True

isSouthAfrica Galapagos = False

isSouthAfrica Antarctica = False

isSouthAfrica Australia = False

isSouthAfrica SouthAmerica = False

But that is redundant. We can use _ to indicate an uncondi-
tional match on a value we don’t care about. The following is
better (more concise, easier to read) and does the same thing:

isSouthAfrica' :: WherePenguinsLive -> Bool

isSouthAfrica' SouthAfrica = True

isSouthAfrica' _ = False

We can also use pattern matching to unpack Penguin values
to get at the WherePenguinsLive value it contains:
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gimmeWhereTheyLive :: Penguin

-> WherePenguinsLive

gimmeWhereTheyLive (Peng whereitlives) =

whereitlives

Try using the gimmeWhereTheyLive function on some test data.
When you enter the name of the penguin (note the lowercase),
it will unpack the Peng value to return the WherePenguinsLive

that’s inside:

humboldt = Peng SouthAmerica

gentoo = Peng Antarctica

macaroni = Peng Antarctica

little = Peng Australia

galapagos = Peng Galapagos

Now a more elaborate example. We’ll expose the contents
of Peng and match on what WherePenguinLives value we care
about in one pattern match:

galapagosPenguin :: Penguin -> Bool

galapagosPenguin (Peng Galapagos) = True

galapagosPenguin _ = False

antarcticPenguin :: Penguin -> Bool

antarcticPenguin (Peng Antarctica) = True

antarcticPenguin _ = False
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In this final function, the (||) operator is an or function that
will return True if either value is True:

antarcticOrGalapagos :: Penguin -> Bool

antarcticOrGalapagos p =

(galapagosPenguin p)

|| (antarcticPenguin p)

Note that we’re using pattern matching to accomplish two
things here. We’re using it to unpack the Penguin datatype.
We’re also specifying which WherePenguinsLive value we want
to match on.

Pattern matching tuples

You can also use pattern matching rather than functions for
operating on the contents of tuples. Remember this example
from Chapter 4?

f :: (a, b) -> (c, d) -> ((b, d), (a, c))

f = undefined

When you did that exercise, you may have written it like
this:

f :: (a, b) -> (c, d) -> ((b, d), (a, c))

f x y = ((snd x, snd y), (fst x, fst y))
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But we can use pattern matching on tuples to make a some-
what cleaner version of it:

f :: (a, b) -> (c, d) -> ((b, d), (a, c))

f (a, b) (c, d) = ((b, d), (a, c))

One nice thing about this is that the tuple syntax allows the
function to look a great deal like its type. Let’s look at more
examples of pattern matching on tuples. Note that the second
example below is not a pattern match but the others are:
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-- matchingTuples1.hs

module TupleFunctions where

-- These have to be the same type because

-- (+) is a -> a -> a

addEmUp2 :: Num a => (a, a) -> a

addEmUp2 (x, y) = x + y

-- addEmUp2 could also be written like so

addEmUp2Alt :: Num a => (a, a) -> a

addEmUp2Alt tup = (fst tup) + (snd tup)

fst3 :: (a, b, c) -> a

fst3 (x, _, _) = x

third3 :: (a, b, c) -> c

third3 (_, _, x) = x

Prelude> :l code/matchingTuples1.hs

[1 of 1] Compiling TupleFunctions

Ok, modules loaded: TupleFunctions.

Now we’re going to use GHCi’s :browse to see a list of the
type signatures and functions we loaded from the module
TupleFunctions:
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Prelude> :browse TupleFunctions

addEmUp2 :: Num a => (a, a) -> a

addEmUp2Alt :: Num a => (a, a) -> a

fst3 :: (a, b, c) -> a

third3 :: (a, b, c) -> c

Prelude> addEmUp2 (10, 20)

30

Prelude> addEmUp2Alt (10, 20)

30

Prelude> fst3 ("blah", 2, [])

"blah"

Prelude> third3 ("blah", 2, [])

[]

Sweet. Let’s do some exercises. Pausing to exercise keeps
the muscles flexible, even the mental ones.

Exercises: Variety Pack

1. Given the following declarations

k (x, y) = x

k1 = k ((4-1), 10)

k2 = k ("three", (1 + 2))

k3 = k (3, True)
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a) What is the type of k?

b) What is the type of k2? Is it the same type as k1 or k3?

c) Of k1, k2, k3, which will return the number 3 as the
result?

2. Fill in the definition of the following function:

-- Remember: Tuples have the

same syntax for their

-- type constructors and

-- their data constructors.

f :: (a, b, c)

-> (d, e, f)

-> ((a, d), (c, f))

f = undefined

7.5 Case expressions

Case expressions are away, similar in some respects to if-then-else,
of making a function return a different result based on differ-
ent inputs. You can use case expressions with any datatype that
has visible data constructors. When we consider the datatype
Bool:
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data Bool = False | True

-- [1] [2] [3]

1. Type constructor, we only use this in type signatures, not
in term-level code like case expressions.

2. Data constructor for the value of Bool named False — we
can match on this.

3. Data constructor for the value of Bool named True — we
can match on this as well.

Any time we case match or pattern match on a sum type
like Bool, we should define how we handle each constructor
or provide a default that matches all of them. In fact, we must
handle both cases or use a function that handles both or we
will have written a partial function that can throw an error
at runtime. There is rarely a good reason to do this: write
functions that handle all possible inputs!

Let’s start by looking at an if-then-else expression that we
saw in a previous chapter:

if x + 1 == 1 then "AWESOME" else "wut"

We can rewrite this as a case expression, matching on the
constructors of Bool:
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funcZ x =

case x + 1 == 1 of

True -> "AWESOME"

False -> "wut"

Note that while the syntax is considerably different here,
the results will be the same. Be sure to load it in the REPL and
try it out.

We could also write a case expression to tell us whether or
not something is a palindrome:

pal xs =

case xs == reverse xs of

True -> "yes"

False -> "no"

The above can also be written with a where clause in cases
where you might need to reuse the 𝑦:

pal' xs =

case y of

True -> "yes"

False -> "no"

where y = xs == reverse xs

In either case, the function will first check if the input string
is equal to the reverse of it. If that returns True, then the string
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is a palindrome, so your function says, “yes.” If not, then it’s
not.

Here is one more example, also matching on the data con-
structors from Bool, and you can compare its syntax to the
if-then-else version we’ve seen before:

-- greetIfCool3.hs

module GreetIfCool3 where

greetIfCool :: String -> IO ()

greetIfCool coolness =

case cool of

True ->

putStrLn "eyyyyy. What's shakin'?"

False ->

putStrLn "pshhhh."

where cool =

coolness == "downright frosty yo"

So far, the case expressions we’ve looked at rely on a straight-
forward pattern match with True and False explicitly. In an
upcoming section, we’ll look at another way to write a case
expression.
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Exercises: Case Practice

We’re going to practice using case expressions by rewriting
functions. Some of these functions you’ve seen in previous
chapters (and some you’ll see later using different syntax yet
again!), but you’ll be writing new versions now. Please note
these are all written as they would be in source code files, and
we recommend you write your answers in source files and
then load into GHCi to check, rather than trying to do them
directly into the REPL.

First, rewrite if-then-else expressions into case expressions.

1. The following should return x when x is greater than y.

functionC x y = if (x > y) then x else y

2. The following will add 2 to even numbers and otherwise
simply return the input value.

ifEvenAdd2 n = if even n then (n+2) else n

The next exercise doesn’t have all the cases covered. See
if you can fix it.

3. The following compares a value, x, to zero and returns an
indicator for whether x is a postive number or negative
number. But what if x is 0? You may need to play with
the compare function a bit to find what to do.
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nums x =

case compare x 0 of

LT -> -1

GT -> 1

7.6 Higher-order functions

Higher-order functions (HOFs) are functions that accept func-
tions as arguments. Functions are values — why couldn’t they
be passed around like any other values? This is an important
component of functional programming and gives us a way to
combine functions efficiently.

Let’s examine a standard higher-order function, flip:

Prelude> :t flip

flip :: (a -> b -> c) -> b -> a -> c

-- using (-) as our (a -> b -> c)

Prelude> (-) 10 1

9

Prelude> let fSub = flip (-)

Prelude> fSub 10 1

-9

Prelude> fSub 5 10

5
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The first parameter of flip is a function, such as (-), that
itself has two parameters. flip flips the order of the arguments.

We can implement flip like this, using the variable 𝑓 to
represent the function (a -> b -> c):

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

Alternately, it could’ve been written as:

myFlip :: (a -> b -> c) -> b -> a -> c

myFlip f = \ x y -> f y x

There’s no difference in what flip and myFlip do: one de-
clares parameters in the function definition, and the other
declares them instead in the anonymous function value being
returned. But what makes flip a higher-order function? Well,
it’s this:

flip :: (a -> b -> c) -> b -> a -> c

[ 1 ]

flip f x y = f y x

[2] [3]

1. When we want to express a function argument within a
function type, we must use parentheses to nest it.

2. The argument 𝑓 is the function a -> b -> c.
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3. We apply 𝑓 to 𝑥 and 𝑦 but flip will flip the order of ap-
plication and apply 𝑓 to 𝑦 and then 𝑥 instead of the usual
order.

To better understand how HOFs work syntactically, it’s
worth remembering how parentheses associate in type signa-
tures.

Let’s look at the type of the following function:

returnLast :: a -> b -> c -> d -> d

returnLast _ _ _ d = d

If we explicitly parenthesize returnLast, it must match the
associativity of ->, which is right-associative. The following
parenthesization works fine. Note that this makes the default
currying explicit:

returnLast' :: a -> (b -> (c -> (d -> d)))

returnLast' _ _ _ d = d

However, this will not work. This is not how -> associates:

returnBroke :: (((a -> b) -> c) -> d) -> d

returnBroke _ _ _ d = d

If you attempt to load returnBroke, you’ll get a type error.
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Couldn't match expected type

‘t0 -> t1 -> t2 -> t2’

with actual type ‘d’

‘d’ is a rigid type variable bound by

the type signature for

returnBroke :: (((a -> b) -> c) -> d) -> d

Relevant bindings include

returnBroke :: (((a -> b) -> c) -> d) -> d

The equation(s) for ‘returnBroke’

have four arguments,

but its type ‘(((a -> b) -> c) -> d) -> d’

has only one

This type error is telling us that the type of returnBroke only
specifies one argument that has the type ((a -> b) -> c) -> d,
yet our function definition seems to expect four arguments.
The type signature of returnBroke specifies a single function as
the sole argument to returnBroke.2

We can have a type that is parenthesized in that fashion as
long as we want to do something different than what returnLast
does:

2 Fun fact: returnBroke is an impossible function.
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returnAfterApply :: (a -> b) -> a -> c -> b

returnAfterApply f a c = f a

What we’re doing here is parenthesizing to the left so that
we can refer to a separate function, with its own parameters
and result, as an argument to our top level function. Here the
(a -> b) is the 𝑓 argument we use to produce a value of type 𝑏
from a value of type 𝑎.

One reason we want HOFs is to manipulate how functions
are applied to arguments. To understand another reason, let’s
revisit the compare function from the Ord typeclass:

Prelude> :t compare

compare :: Ord a => a -> a -> Ordering

Prelude> :info Ordering

data Ordering = LT | EQ | GT

Prelude> compare 10 9

GT

Prelude> compare 9 9

EQ

Prelude> compare 9 10

LT

Now we’ll write a function that makes use of this:
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data Employee = Coder

| Manager

| Veep

| CEO

deriving (Eq, Ord, Show)

reportBoss :: Employee -> Employee -> IO ()

reportBoss e e' =

putStrLn $ show e ++

" is the boss of " ++

show e'

employeeRank :: Employee

-> Employee

-> IO ()

employeeRank e e' =

case compare e e' of

GT -> reportBoss e e'

-- [ 1 ]

EQ -> putStrLn "Neither employee\

\ is the boss"

-- [ 2 ]

LT -> (flip reportBoss) e e'

-- [ 3 ]
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The case in the employeeRank function is a case expression.
This function says: case expression

1. In the case of comparing 𝑒 and 𝑒′ and finding 𝑒 is greater
than 𝑒′, return reportBoss e e'.

2. In the case of finding them equal, return the string “Nei-
ther employee is the boss.”

3. In the case of finding 𝑒 less than 𝑒′, flip the function reportBoss.
This could also have been written reportBoss e' e.

The compare function uses the behavior of the Ord instance
defined for a given type in order to compare them. In this
case, our data declaration lists them in order from Coder in
the lowest rank and CEO in the top rank, so compare will use that
ordering to evaluate the result of the function.

If we load this up and try it out:

Prelude> employeeRank Veep CEO

CEO is the boss of Veep

That’s probably true in most companies! Being industrious
programmers, we naturally want to refactor this a bit to be
more flexible — notice how we change the type of employeeRank:
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data Employee = Coder

| Manager

| Veep

| CEO

deriving (Eq, Ord, Show)

reportBoss :: Employee -> Employee -> IO ()

reportBoss e e' =

putStrLn $ show e ++

" is the boss of " ++

show e'

employeeRank :: ( Employee

-> Employee

-> Ordering )

-> Employee

-> Employee

-> IO ()

employeeRank f e e' =

case f e e' of

GT -> reportBoss e e'

EQ -> putStrLn "Neither employee\

\ is the boss"

LT -> (flip reportBoss) e e'
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Now our employeeRank function will accept a function argu-
ment with the type Employee -> Employee -> Ordering, which we
named 𝑓 , in the place where we had compare before. You’ll no-
tice we have the same case expressions here again. We can get
the same behavior we had last time by passing it compare as the
function argument:

Prelude> employeeRank compare Veep CEO

CEO is the boss of Veep

Prelude> employeeRank compare CEO Veep

CEO is the boss of Veep

But since we’re clever hackers, we can subvert the hierarchy
with a comparison function that does something a bit different
with the following code:
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data Employee = Coder

| Manager

| Veep

| CEO

deriving (Eq, Ord, Show)

reportBoss :: Employee -> Employee -> IO ()

reportBoss e e' =

putStrLn $ show e ++

" is the boss of " ++

show e'

codersRuleCEOsDrool :: Employee

-> Employee

-> Ordering

codersRuleCEOsDrool Coder Coder = EQ

codersRuleCEOsDrool Coder _ = GT

codersRuleCEOsDrool _ Coder = LT

codersRuleCEOsDrool e e' =

compare e e'

employeeRank :: ( Employee

-> Employee

-> Ordering )

-> Employee

-> Employee

-> IO ()

employeeRank f e e' =

case f e e' of

GT -> reportBoss e e'

EQ -> putStrLn "Neither employee\

\ is the boss"

LT -> (flip reportBoss) e e'
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Herewe’ve created a new function that changes the behavior
of the normal compare function by pattern matching on our
data constructor, Coder. In a case where Coder is the first value
(and the second value is anything — note the underscore used
as a catchall), the result will be GT or greater than. In a case
where Coder is the second value passed, this function will return
LT, or less than. In any case where Coder is not one of the values,
compare will exhibit its normal behavior. The case expression
in the employeeRank function is otherwise unchanged.

And here’s how that works:

Prelude> employeeRank compare Coder CEO

CEO is the boss of Coder

Prelude> let cs = codersRuleCEOsDrool

Prelude> employeeRank cs Coder CEO

Coder is the boss of CEO

Prelude> employeeRank cs CEO Coder

Coder is the boss of CEO

If we use compare as our 𝑓 argument, then the behavior
is unchanged. If, on the other hand, we use our new func-
tion, codersRuleCEOsDrool as the 𝑓 argument, then the behavior
changes and we unleash anarchy in the cubicle farm.

We were able to rely on the behavior of compare but make
changes in the part we wanted to change. This is the value of
HOFs. They give us the beginnings of a powerful method for
reusing and composing code.
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Exercises: Artful Dodgy

Given the following definitions tell us what value results from
further applications. When you’ve written down at least some
of the answers and think you know what’s what, type the def-
initions into a file and load them in GHCi to test your answers.

-- Types not provided,

-- try filling them in yourself.

dodgy x y = x + y * 10

oneIsOne = dodgy 1

oneIsTwo = (flip dodgy) 2

1. For example, given the expression dodgy 1 0, what do you
think will happen if we evaluate it? If you put the def-
initions in a file and load them in GHCi, you can do the
following to see the result.

Prelude> dodgy 1 0

1

Now attempt to determine what the following expressions
reduce to. Do it in your head, verify in your REPL after
you think you have an answer.

2. dodgy 1 1
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3. dodgy 2 2

4. dodgy 1 2

5. dodgy 2 1

6. oneIsOne 1

7. oneIsOne 2

8. oneIsTwo 1

9. oneIsTwo 2

10. oneIsOne 3

11. oneIsTwo 3

7.7 Guards

We have played around with booleans and expressions that
evaluate to their truth value including if-then-else expressions
which rely on boolean evaluation to decide between two out-
comes. In this section, we will look at another syntactic pattern
called guards that relies on truth values to decide between two
or more possible results.
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if-then-else

Let’s begin with a quick review of what we learned about
if-then-else expressions in the Basic Datatypes chapter. Note,
if-then-else is not guards! This is review, before moving on to
guards themselves. The pattern is this:

if <condition>

then <result if True>

else <result if False>

where the if condition is an expression that results in a Bool

value. We saw how this allows us to write functions like this:

Prelude> let x = 0

Prelude> let a = "AWESOME"

Prelude> let w = "wut"

Prelude> if (x + 1 == 1) then a else w

"AWESOME"

The next couple of examples will demonstrate how to use
the multiline block syntax for an if expression:

-- alternately

Prelude> let x = 0

Prelude> :{

Prelude| if (x + 1 == 1)

Prelude| then "AWESOME"
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Prelude| else "wut"

Prelude| :}

"AWESOME"

The indentation isn’t required:

Prelude> let x = 0

Prelude> :{

Prelude| if (x + 1 == 1)

Prelude| then "AWESOME"

Prelude| else "wut"

Prelude| :}

"AWESOME"

In the exercises at the end of Chapter 4, you were asked to
write a function called myAbs that returns the absolute value of
a real number. You would have implemented that function
with an if-then-else expression similar to the following:

myAbs :: Integer -> Integer

myAbs x = if x < 0 then (-x) else x

We’re going to look at another way to write this using guards.

Writing guard blocks

Guard syntax allows us to write compact functions that allow
for two or more possible outcomes depending on the truth of
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the conditions. Let’s start by looking at how we would write
myAbs with a guard block instead of with an if-then-else:

myAbs :: Integer -> Integer

myAbs x

| x < 0 = (-x)

| otherwise = x

Notice that each guard has its own equals sign. We didn’t
put one after the argument in the first line of the function def-
inition because each case needs its own expression to return
if its branch succeeds. Now we’ll enumerate the components
for clarity:

myAbs :: Integer -> Integer

myAbs x

-- [1] [2]

| x < 0 = (-x)

-- [3] [4] [5] [6]

| otherwise = x

-- [7] [8] [9] [10]

1. The name of our function, myAbs still comes first.

2. There is one parameter named 𝑥.

3. Here’s where it gets different. Rather than an = imme-
diately after the introduction of any parameter(s), we’re
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starting a new line and using the pipe | to begin a guard
case.

4. This is the expression we’re using to test to see if this
branch should be evaluated or not. The guard case ex-
pression between the | and = must evaluate to Bool.

5. The = denotes that we’re declaring what expression to
return should our x < 0 be True.

6. Then after the = we have the expression (-x) which will
be returned if x < 0.

7. Another new line and a | to begin a new guard case.

8. otherwise is another name for True, used here as a fallback
case in case x < 0 was False.

9. Another = to begin declaring the expression to return if
we hit the otherwise case.

10. We kick 𝑥 back out if it wasn’t less than 0.

Let’s see how this evaluates:

Prelude> myAbs (-10)

10

Prelude> myAbs 10

10
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In the first example, when it is passed a negative number
as an argument, it looks at the first guard and sees that (-10)
is indeed less than 0, evaluates that as True, and so returns
the result of (-x), in this case, (-(-10)) or 10. In the second
example, it looks at the first guard, sees that 10 does not meet
that condition, so it is False, and goes to the next guard. The
otherwise is always True, so it returns 𝑥, in this case, 10. Guards
always evaluate sequentially, so your guards should be ordered
from the case that is most restrictive to the case that is least
restrictive.

Let’s look next at a function that will have more than two
possible outcomes, in this case the results of a test of sodium
(Na) levels in the blood. We want a function that looks at the
numbers (the numbers represent mEq/L or milliequivalents
per liter) and tells us if the blood sodium levels are normal or
not:

bloodNa :: Integer -> String

bloodNa x

| x < 135 = "too low"

| x > 145 = "too high"

| otherwise = "just right"

We can incorporate different types of expressions into the
guard block, as long as each guard can be evaluated to a Bool

value. For example, the following takes 3 numbers and tells
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you if the triangle whose sides they measure is a right triangle
or not (using the Pythagorean theorem):

-- c is the hypotenuse of

-- the triangle.

isRight :: (Num a, Eq a)

=> a -> a -> a -> String

isRight a b c

| a^2 + b^2 == c^2 = "RIGHT ON"

| otherwise = "not right"

And the following function will take your dog’s age and tell
you how old your dog is in human years:

dogYrs :: Integer -> Integer

dogYrs x

| x <= 0 = 0

| x <= 1 = x * 15

| x <= 2 = x * 12

| x <= 4 = x * 8

| otherwise = x * 6

Why the different numbers? Because puppies reach matu-
rity much faster than human babies do, so a year-old puppy
isn’t equivalent to a 6- or 7-year-old child (there is more com-
plexity to this conversion than this function uses, because
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other factors such as the size of the dog play a role as well. You
can certainly experiment with that if you like).

We can also use where declarations within guard blocks. Let’s
say you gave a test that had 100 questions and you wanted a
simple function for translating the number of questions the
student got right into a letter grade:

avgGrade :: (Fractional a, Ord a)

=> a -> Char

avgGrade x

| y >= 0.9 = 'A'

| y >= 0.8 = 'B'

| y >= 0.7 = 'C'

| y >= 0.59 = 'D'

| y < 0.59 = 'F'

where y = x / 100

No surprises there. Notice the variable 𝑦 is introduced, not
as an argument to the named function but in the guard block
and is defined in the where clause. By defining it there, it is in
scope for all the guards above it. There were 100 problems on
the hypothetical test, so any 𝑥 we give it will be divided by 100
to return the letter grade.

Also notice we left out the otherwise; we could have used it
for the final case but chose instead to use less than. That is fine
because in our guards we’ve handled all possible values. It is
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important to note that GHCi cannot always tell you when you
haven’t accounted for all possible cases, and it can be difficult
to reason about it, so it is wise to use otherwise in your final
guard.

Remember: You can use :set -Wall in GHCi to turn on
warnings, and then it will tell you if you have non-exhaustive
patterns.

Exercises: Guard Duty

1. It is probably clear to youwhyyouwouldn’t put an otherwise

in your top-most guard, but try it with avgGrade anyway
and see what happens. It’ll be more clear if you rewrite
it as an otherwise match: | otherwise = 'F'. What happens
now if you pass a 90 as an argument? 75? 60?

2. What happens if you take avgGrade as it is written and
reorder the guards? Does it still typecheck and work the
same? Try moving | y >= 0.7 = 'C' and passing it the
argument 90, which should be an ‘A.’ Does it return an ‘A’?

3. The following function returns

pal xs

| xs == reverse xs = True

| otherwise = False

a) xs written backwards when it’s True
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b) True when xs is a palindrome

c) False when xs is a palindrome

d) False when xs is reversed

4. What types of arguments can pal take?

5. What is the type of the function pal?

6. The following function returns

numbers x

| x < 0 = -1

| x == 0 = 0

| x > 0 = 1

a) the value of its argument plus or minus 1

b) the negation of its argument

c) an indication of whether its argument is a positive or
negative number or zero

d) binary machine language

7. What types of arguments can numbers take?

8. What is the type of the function numbers?
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7.8 Function composition

Function composition is a type of higher-order function that
allows us to combine functions such that the result of applying
one function gets passed to the next function as an argument.
It is a very concise style, in keeping with the terse functional
style Haskell is known for. At first, it seems complicated and
difficult to unpack, but once you get the hang of it, it’s fun!
Let’s begin by looking at the type signature and what it means:

(.) :: (b -> c) -> (a -> b) -> a -> c

-- [1] [2] [3] [4]

1. is a function from 𝑏 to 𝑐, passed as an argument (thus the
parentheses).

2. is a function from 𝑎 to 𝑏.

3. is a value of type 𝑎, the same as [2] expects as an argument.

4. is a value of type 𝑐, the same as [1] returns as a result.

Then with the addition of one set of parentheses:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

-- [1] [2] [3]

In English:
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1. given a function 𝑏 to 𝑐

2. given a function 𝑎 to 𝑏

3. return a function 𝑎 to 𝑐.

The result of (a -> b) is the argument of (b -> c) so this is
how we get from an 𝑎 argument to a 𝑐 result. We’ve stitched
the result of one function into being the argument of another.

Next let’s start looking at composed functions and how
to read and work with them. The basic syntax of function
composition looks like this:

(f . g) x = f (g x)

This composition operator, (.), takes two functions here,
named 𝑓 and 𝑔. The 𝑓 function corresponds to the (b -> c) in
the type signature, while the 𝑔 function corresponds to the
(a -> b). The 𝑔 function is applied to the (polymorphic) 𝑥
argument. The result of that application then passes to the 𝑓
function as its argument. The 𝑓 function is in turn applied to
that argument and evaluated to reach the final result.

Let’s go step by step through this transformation. We can
think of the (.) or composition operator as being a way of
pipelining data through multiple functions. The following
composed functions will first add the values in the list together
and then negate the result of that:
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Prelude> negate . sum $ [1, 2, 3, 4, 5]

-15

-- which is evaluated like this

negate . sum $ [1, 2, 3, 4, 5]

-- note: this code works as well

negate (sum [1, 2, 3, 4, 5])

negate (15)

-15

Notice that we did this directly in our REPL, because the
composition operator is already in scope in Prelude. The sum
of the list is 15. That result gets passed to the negate function
and returns a result of (-15).

You may be wondering why we need the $ operator. You
might remember way back when we talked about the prece-
dence of various operators that we said that operator has a
lower precedence than an ordinary function call (white space,
usually). Ordinary function application has a precedence of
10 (out of 10). The composition operator has a precedence of
9. If we left white space as our function application, this would
be evaluated like this:

negate . sum [1, 2, 3, 4, 5]

negate . 15
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Because function application has a higher precedence than
the composition operator, that function application would
happen before the two functions composed. We’d be trying to
pass a numeric value where our composition operator needs a
function. By using the $ we signal that application to the argu-
ments should happen after the functions are already composed.

We can also parenthesize it instead of using the $ operator.
In that case, it looks like this:

Prelude> (negate . sum) [1, 2, 3, 4, 5]

-15

The choice of whether to use parentheses or the dollar sign
isn’t important; it is a question of style and ease of writing and
reading.

The next example uses two functions, take and reverse, and
is applied to an argument that is a list of numbers from 1 to 10.
What we expect to happen is that the list will first be reversed
(from 10 to 1) and then the first 5 elements of the new list will
be returned as the result.

Prelude> take 5 . reverse $ [1..10]

[10,9,8,7,6]

Given the next bit of code, how could we rewrite it to use
function composition instead of parentheses?
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Prelude> take 5 (enumFrom 3)

[3,4,5,6,7]

We know that we will have to eliminate the parentheses,
add the composition operator, and add the $ operator. It will
then look like this:

Prelude> take 5 . enumFrom $ 3

[3,4,5,6,7]

You may also define it this way, which is more similar to
how composition is written in source files:

Prelude> let f x = take 5 . enumFrom $ x

Prelude> f 3

[3,4,5,6,7]

You may be wondering why bother with this if it simply
does the same thing as nesting functions in parentheses. One
reason is that it is quite easy to compose more than two func-
tions this way.

The filter odd function is new for us, but it simply filters the
odd numbers (you can change it to filter even if you wish) out
of the list that enumFrom builds for us. Finally, take will return
as the result only the number of elements we have specified
as the argument of take. Feel free to experiment with varying
any of the arguments.
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Prelude> take 5 . filter odd . enumFrom $ 3

[3,5,7,9,11]

As you compose more functions, you can see that nesting
all the parentheses would become tiresome. This operator
allows us to do away with that. It also allows us to write in an
even more terse style known as “pointfree.”

7.9 Pointfree style

Pointfree refers to a style of composing functions without
specifying their arguments. The “point” in “pointfree” refers
to the arguments, not (as it may seem) to the function compo-
sition operator. In some sense, we add “points” (the operator)
to be able to drop points (arguments). Quite often, pointfree
code is tidier on the page and easier to read as it helps the
reader focus on the functions rather than the data that is being
shuffled around.

We said above that function composition looks like this:

(f . g) x = f (g x)

As you put more functions together, composition can make
them easier to read. For example, (f. g. h) x can be easier
to read than f (g (h x)) and it also brings the focus to the
functions rather than the arguments. Pointfree is an extension
of that idea but now we drop the argument altogether:
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f . g = \x -> f (g x)

f . g . h = \x -> f (g (h x))

To see what this looks like in practice, we’ll start by rewriting
in pointfree style some of the functions we used in the section
above:

Prelude> let f = negate . sum

Prelude> f [1, 2, 3, 4, 5]

-15

Notice that when we define our function 𝑓 we don’t spec-
ify that there will be any arguments. Yet when we apply the
function to an argument, the same thing happens as before.

How would we rewrite:

f :: Int -> [Int] -> Int

f z xs = foldr (+) z xs

as a pointfree function?

Prelude> let f = foldr (+)

Prelude> f 0 [1..5]

15

And now because we named the function, it can be reused
with different arguments.
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Here is another example of a short pointfree function and
its result. It involves a new use of filter that uses the Bool

operator ==. Look at it carefully and, on paper or in your head,
walk through the evaluation process involved:

Prelude> let f = length . filter (== 'a')

Prelude> f "abracadabra"

5

Next, we’ll look at a set of functions that work together, in a
single module, and rely on both composition and pointfree
style:

-- arith2.hs

module Arith2 where

add :: Int -> Int -> Int

add x y = x + y

addPF :: Int -> Int -> Int

addPF = (+)

addOne :: Int -> Int

addOne = \x -> x + 1

addOnePF :: Int -> Int

addOnePF = (+1)
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main :: IO ()

main = do

print (0 :: Int)

print (add 1 0)

print (addOne 0)

print (addOnePF 0)

print ((addOne . addOne) 0)

print ((addOnePF . addOne) 0)

print ((addOne . addOnePF) 0)

print ((addOnePF . addOnePF) 0)

print (negate (addOne 0))

print ((negate . addOne) 0)

print ((addOne . addOne . addOne

. negate . addOne) 0)

Take your time and work through what each function is
doing, whether on paper or in your head. Then load this code
as a source file and run it in GHCi and see if your results were
accurate.

You should now have a good understanding of how you
can use (.) to compose functions. It’s important to remember
that the functions in composition are applied from right to
left, like a Pacman munching from the right side, reducing the
expressions as he goes.
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7.10 Demonstrating composition

You may recall back in Chapter 3 we mentioned that the func-
tions print and putStr seem similar on the surface but behave
differently because they have different underlying types. Let’s
take a closer look at that now.

First, putStrLn and putStr have the same type:

putStr :: String -> IO ()

putStrLn :: String -> IO ()

But the type of print is different:

print :: Show a => a -> IO ()

They all return a result of IO () for reasons we discussed
in the previous chapter. But the parameters here are quite
different. The first two take Strings as arguments, while print

has a constrained polymorphic parameter, Show a => a. The
first two work fine if we need to display values that are already
of type String. But how do we display numbers (or other non-
string values)? First we have to convert those numbers to
strings, then we can print the strings.

You may also recall a function from our discussion of the
Show typeclass called show. Here’s the type of show again:

show :: Show a => a -> String
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Fortunately, it was understood that combining putStrLn and
show would be a common pattern, so the function named print

is the composition of show and putStrLn. We do it this way
because it’s simpler. The printing function concerns itself only
with printing, while the stringification function concerns itself
only with that.

Here are two ways to implement print with putStrLn and
show:

print :: Show a => a -> IO ()

print a = putStrLn (show a)

-- using the . operator for

-- composing functions.

(.) :: (b -> c) -> (a -> b) -> a -> c

-- we can write print as:

print :: Show a => a -> IO ()

print a = (putStrLn . show) a

Now let’s go step by step through this use of (.), putStrLn,
and show:
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(.) :: (b -> c) -> (a -> b) -> a -> c

putStrLn :: String -> IO ()

-- [1] [2]

show :: Show a => a -> String

-- [3] [4]

putStrLn . show :: Show a => a -> IO ()

-- [5] [6]

(.) :: (b -> c) -> (a -> b) -> a -> c

-- [1] [2] [3] [4] [5] [6]

-- If we replace the variables with

-- the specific types they take on

-- in this application of (.)

(.) :: Show a => (String -> IO ())

-> (a -> String)

-> a -> IO ()
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(.) :: (b -> c)

-- (String -> IO ())

-> (a -> b)

-- (a -> String)

-> a -> c

-- a -> IO ()

1. is the string that putStrLn accepts as an argument.

2. is the IO () that putStrLn returns, that is, performing the
side effect of printing and returning unit.

3. is 𝑎 that must implement the Show typeclass; this is the Show

a => a from the show function which is a method on the
Show typeclass.

4. is the string that show returns. This is what the Show a => a

value got stringified into.

5. is the Show a => a the final composed function expects.

6. is the IO () the final composed function returns.

We can now make it pointfree. When we are working with
functions primarily in terms of composition rather than appli-
cation, the pointfree version can sometimes (not always) be
more elegant.
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Here’s the previous version of the function:

print :: Show a => a -> IO ()

print a = (putStrLn . show) a

And here’s the pointfree version of print:

print :: Show a => a -> IO ()

print = putStrLn . show

The point of print is to compose putStrLn and show so that
we don’t have to call show on its argument ourselves. That is,
print is principally about the composition of two functions,
so it comes out nicely as a pointfree function. Saying that
we could apply putStrLn . show to an argument in this case is
redundant.

7.11 Chapter Exercises

Multiple choice

1. A polymorphic function

a) changes things into sheep when invoked

b) has multiple arguments

c) has a concrete type
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d) may resolve to values of different types, depending
on inputs

2. Two functions named f and g have types Char -> String

and String -> [String] respectively. The composed func-
tion g . f has the type

a) Char -> String

b) Char -> [String]

c) [[String]]

d) Char -> String -> [String]

3. A function f has the type Ord a => a -> a -> Bool and we
apply it to one numeric value. What is the type now?

a) Ord a => a -> Bool

b) Num -> Num -> Bool

c) Ord a => a -> a -> Integer

d) (Ord a, Num a) => a -> Bool

4. A function with the type (a -> b) -> c

a) requires values of three different types

b) is a higher-order function

c) must take a tuple as its first argument

d) has its parameters in alphabetical order
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5. Given the following definition of f, what is the type of f
True?

f :: a -> a

f x = x

a) f True :: Bool

b) f True :: String

c) f True :: Bool -> Bool

d) f True :: a

Let’s write code

1. The following function returns the tens digit of an integral
argument.

tensDigit :: Integral a => a -> a

tensDigit x = d

where xLast = x `div` 10

d = xLast `mod` 10

a) First, rewrite it using divMod.

b) Does the divMod version have the same type as the
original version?

c) Next, let’s change it so that we’re getting the hundreds
digit instead. You could start it like this (though that
may not be the only possibility):
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hunsD x = d2

where d = undefined

...

2. Implement the function of the type a -> a -> Bool -> a

once each using a case expression and once with a guard.

foldBool :: a -> a -> Bool -> a

foldBool =

error

"Error: Need to implement foldBool!"

The result is semantically similar to if-then-else expres-
sions but syntactically quite different. Here is the pattern
matching version to get you started:

foldBool3 :: a -> a -> Bool -> a

foldBool3 x _ False = x

foldBool3 _ y True = y

3. Fill in the definition. Note that the first argument to our
function is also a function which can be applied to values.
Your second argument is a tuple, which can be used for
pattern matching:

g :: (a -> b) -> (a, c) -> (b, c)

g = undefined
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4. For this next exercise, you’ll experiment with writing
pointfree versions of existing code. This involves some
new information, so read the following explanation care-
fully.

Typeclasses are dispatched by type. Read is a typeclass like
Show, but it is the dual or “opposite” of Show. In general, the
Read typeclass isn’t something you should plan to use a
lot, but this exercise is structured to teach you something
about the interaction between typeclasses and types.

The function read in the Read typeclass has the type:

read :: Read a => String -> a

Notice a pattern?

read :: Read a => String -> a

show :: Show a => a -> String

Write the following code into a source file. Then load it
and run it in GHCi to make sure you understand why the
evaluation results in the answers you see.
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-- arith4.hs

module Arith4 where

-- id :: a -> a

-- id x = x

roundTrip :: (Show a, Read a) => a -> a

roundTrip a = read (show a)

main = do

print (roundTrip 4)

print (id 4)

5. Next, write a pointfree version of roundTrip. (n.b., This
refers to the function definition, not to its application in
main.)

6. We will continue to use the code in module Arith4 for this
exercise as well.

When we apply show to a value such as (1 :: Int), the 𝑎 that
implements Show is Int, so GHC will use the Int instance
of the Show typeclass to stringify our Int of 1.

However, read expects a String argument in order to re-
turn an 𝑎. The String argument that is the first argument
to read tells the function nothing about what type the de-
stringified result should be. In the type signature roundTrip
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currently has, it knows because the type variables are the
same, so the type that is the input to show has to be the
same type as the output of read.

Your task now is to change the type of roundTrip in Arith4 to
(Show a, Read b) => a -> b. How might we tell GHC which
instance of Read to dispatch against the String now? Make
the expression print (roundTrip 4) work. You will only
need the has the type syntax of :: and parentheses for
scoping.

7.12 Chapter Definitions

1. Binding or bound is a common word used to indicate con-
nection, linkage, or association between two objects. In
Haskell we’ll use it to talk about what value a variable has,
e.g., a parameter variable is bound to an argument value,
meaning the value is passed into the parameter as input
and each occurrence of that named parameter will have
the same value. Bindings as a plurality will usually refer
to a collection of variables and functions which can be
referenced by name.

blah :: Int

blah = 10

Here the variable blah is bound to the value 10.
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2. An anonymous function is a function which is not bound to
an identifier and is instead passed as an argument to an-
other function and/or used to construct another function.
See the following examples.

\x -> x

-- anonymous version of id

id x = x

-- not anonymous, it's bound to 'id'

3. Currying is the process of transforming a function that
takes multiple arguments into a series of functions which
each take one argument and return one result. This is ac-
complished through the nesting. In Haskell, all functions
are curried by default. You don’t need to do anything
special yourself.
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-- curry and uncurry already

-- exist in Prelude

curry' :: ((a, b) -> c) -> a -> b -> c

curry' f a b = f (a, b)

uncurry' :: (a -> b -> c) -> ((a, b) -> c)

uncurry' f (a, b) = f a b

-- uncurried function,

-- takes a tuple of its arguments

add :: (Int, Int) -> Int

add (x, y) = x + y

add' :: Int -> Int -> Int

add' = curry' add

A function that appears to take two arguments is two func-
tions that each take one argument and return one result.
What makes this work is that a function can return another
function.
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f a b = a + b

-- is equivalent to

f = \a -> (\b -> a + b)

4. Pattern matching is a syntactic way of deconstructing prod-
uct and sum types to get at their inhabitants. With re-
spect to products, pattern matching gives you the means
for destructuring and exposing the contents of products,
binding one or more values contained therein to names.
With sums, pattern matching lets you discriminate which
inhabitant of a sum you mean to handle in that match.
It’s best to explain pattern matching in terms of how
datatypes work, so we’re going to use terminology that
you may not fully understand yet. We’ll cover this more
deeply soon.

-- nullary data constructor,

-- not a sum or product.

-- Just a single value.

data Blah = Blah

Pattern matching on Blah can only do one thing.

blahFunc :: Blah -> Bool

blahFunc Blah = True
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data Identity a =

Identity a

deriving (Eq, Show)

Identity is a unary data constructor. Still not a product,
only contains one value.

-- when you pattern match on Identity

-- you can unpack and expose the 'a'

unpackIdentity :: Identity a -> a

unpackIdentity (Identity x) = x

-- But you can choose to ignore

-- the contents of Identity

ignoreIdentity :: Identity a -> Bool

ignoreIdentity (Identity _) = True

-- or ignore it completely since

-- matching on a non-sum data constructor

-- changes nothing.

ignoreIdentity' :: Identity a -> Bool

ignoreIdentity' _ = True
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data Product a b =

Product a b

deriving (Eq, Show)

Now we can choose to use none, one, or both of the values
in the product of 𝑎 and 𝑏:

productUnpackOnlyA :: Product a b -> a

productUnpackOnlyA (Product x _) = x

productUnpackOnlyB :: Product a b -> b

productUnpackOnlyB (Product _ y) = y

Or we can bind them both to a different name:

productUnpack :: Product a b -> (a, b)

productUnpack (Product x y) = (x, y)

What happens if you try to bind the values in the product
to the same name?

data SumOfThree a b c =

FirstPossible a

| SecondPossible b

| ThirdPossible c

deriving (Eq, Show)
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Now we can discriminate by the inhabitants of the sum
and choose to do different things based on which con-
structor in the sum they were.

sumToInt :: SumOfThree a b c -> Integer

sumToInt (FirstPossible _) = 0

sumToInt (SecondPossible _) = 1

sumToInt (ThirdPossible _) = 2

-- We can selectively ignore

-- inhabitants of the sum

sumToInt :: SumOfThree a b c -> Integer

sumToInt (FirstPossible _) = 0

sumToInt _ = 1

-- We still need to handle

-- every possible value

Pattern matching is about your data.

5. Bottom is a non-value used to denote that the program
cannot return a value or result. The most elemental
manifestation of this is a program that loops infinitely.
Other forms can involve things like writing a function
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that doesn’t handle all of its inputs and fails on a pattern
match. The following are examples of bottom:

-- If you apply this to any values,

-- it'll recurse indefinitely.

f x = f x

-- It'll a'splode if you pass a False value

dontDoThis :: Bool -> Int

dontDoThis True = 1

-- morally equivalent to

definitelyDontDoThis :: Bool -> Int

definitelyDontDoThis True = 1

definitelyDontDoThis False = error "oops"

-- don't use error.

-- We'll show you a better way soon.

Bottom can be useful as a canary for signaling when code
paths are being evaluated. We usually do this to determine
how lazy a program is or isn’t. You’ll see a lot of this in
our chapter on non-strictness later on.

6. Higher-order functions are functions which themselves take
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functions as arguments or return functions as results. Due
to currying, technically any function that appears to take
more than one argument is higher order in Haskell.
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-- Technically higher order

-- because of currying

Int -> Int -> Int

-- See? Returns another function

-- after applying the first argument

Int -> (Int -> Int)

-- The rest of the following examples are

-- types of higher order functions

(a -> b) -> a -> b

(a -> b) -> [a] -> [b]

(Int -> Bool) -> [Int] -> [Bool]

-- also higher order, this one

-- takes a function argument which itself

-- is higher order as well.

((a -> b) -> c) -> [a] -> [c]

7. Composition is the application of a function to the result
of having applied another function. The composition op-
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erator is a higher-order function as it takes the functions
it composes as arguments and then returns a function of
the composition:

(.) :: (b -> c) -> (a -> b) -> a -> c

-- is

(.) :: (b -> c) -> (a -> b) -> (a -> c)

-- or

(.) :: (b -> c) -> ((a -> b) -> (a -> c))

-- can be implemented as

comp :: (b -> c) -> ((a -> b) -> (a -> c))

comp f g x = f (g x)

The function 𝑔 is applied to 𝑥, 𝑓 is applied to the result of
g x.

8. Pointfree is programming tacitly, or without mentioning
arguments by name. This tends to look like “plumby”
code where you’re routing data around implicitly or leav-
ing off unnecessary arguments thanks to currying. The
“point” referred to in the term pointfree is an argument.
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-- not pointfree

blah x = x

addAndDrop x y = x + 1

reverseMkTuple a b = (b, a)

reverseTuple (a, b) = (b, a)

-- pointfree versions of the above

blah = id

addAndDrop = const . (1 +)

reverseMkTuple = flip (,)

reverseTuple = uncurry (flip (,))

To see more examples like this, check out the Haskell Wiki
page on Pointfree at https://wiki.haskell.org/Pointfree.

7.13 Follow-up resources

1. Paul Hudak; John Peterson; Joseph Fasel. A Gentle In-
troduction to Haskell, chapter on case expressions and
pattern matching.
https://www.haskell.org/tutorial/patterns.html

2. Simon Peyton Jones. The Implementation of Functional
Programming Languages, pages 53-103.
http://research.microsoft.com/en-us/um/people/simonpj/papers/

slpj-book-1987/index.htm

https://wiki.haskell.org/Pointfree
https://www.haskell.org/tutorial/patterns.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/index.htm
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3. Christopher Strachey. Fundamental Concepts in Pro-
gramming Languages, page 11 for explanation of curry-
ing.
http://www.cs.cmu.edu/~crary/819-f09/Strachey67.pdf

4. J.N. Oliveira. An introduction to pointfree programming.
http://www.di.uminho.pt/~jno/ps/iscalc_1.ps.gz

5. Manuel Alcino Pereira da Cunha. Point-free Program
Calculation.
http://www4.di.uminho.pt/~mac/Publications/phd.pdf

http://www.cs.cmu.edu/~crary/819-f09/Strachey67.pdf
http://www.di.uminho.pt/~jno/ps/iscalc_1.ps.gz
http://www4.di.uminho.pt/~mac/Publications/phd.pdf
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Recursion

Imagine a portion of the
territory of England has
been perfectly levelled,
and a cartographer traces
a map of England. The
work is perfect. There is
no particular of the
territory of England,
small as it can be, that has
not been recorded in the
map. Everything has its
own correspondence.
The map, then, must
contain a map of the map,
that must contain a map
of the map of the map,
and so on to infinity.

Jorge Luis Borges, citing
Josiah Royce

419
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8.1 Recursion

Recursion is defining a function in terms of itself via self-
referential expressions. It means that the function will con-
tinue to call itself and repeat its behavior until some condition
is met to return a result. It’s an important concept in Haskell
and in mathematics because it gives us a means of express-
ing indefinite or incremental computation without forcing us
to explicitly repeat ourselves and allowing the data we are
processing to decide when we are done computing.

Recursion is a natural property of many logical and math-
ematical systems, including human language. That there is
no limit on the number of expressible, valid sentences in hu-
man language is due to recursion. A sentence in English can
have another sentence nested within it. Sentences can be
roughly described as structures which have a noun phrase, a
verb phrase, and optionally another sentence. This possibility
for unlimited nested sentences is recursive and enables the
limitless expressibility therein. Recursion is a means of ex-
pressing code that must take an indefinite number of steps to
return a result.

But the lambda calculus does not appear on the surface
to have any means of recursion, because of the anonymity
of expressions. How do you call something without a name?
Being able to write recursive functions, though, is essential to
Turing completeness. We use a combinator — known as the Y
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combinator or fixed-point combinator — to write recursive
functions in the lambda calculus. Haskell has native recursion
ability based on the same principle as the Y combinator.

It is important to have a solid understanding of the behavior
of recursive functions. In later chapters, we will see that, in
fact, it is not often necessary to write our own recursive func-
tions, as many standard higher-order functions have built-in
recursion. But without understanding the systematic behav-
ior of recursion itself, it can be difficult to reason about those
HOFs. In this chapter, we will

• explore what recursion is and how recursive functions
evaluate;

• go step-by-step through the process of writing recursive
functions;

• have fun with bottom.

8.2 Factorial!

One of the classic introductory functions for demonstrating
recursion in functional languages is factorial. In arithmetic,
you might’ve seen expressions like 4!. The bang you’re seeing
next to the number 4 is the notation for the factorial function.

Let’s evaluate 4!:
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4! = 4 * 3 * 2 * 1

12 * 2 * 1

24 * 1

24

4! = 24

Now let’s do it the silly way in Haskell:

fourFactorial :: Integer

fourFactorial = 4 * 3 * 2 * 1

This will return the correct result, but it only covers one
possible result for factorial. This is less than ideal. We want
to express the general idea of the function, not encode specific
inputs and outputs manually.

Now we’ll look at some broken code to introduce the con-
cept of a base case:

-- This won't work. It never stops.

brokenFact1 :: Integer -> Integer

brokenFact1 n = n * brokenFact1 (n - 1)

Let’s apply this to 4 and see what happens:



CHAPTER 8. FUNCTIONS THAT CALL THEMSELVES 423

brokenFact1 4 =

4 * (4 - 1)

* ((4 - 1) - 1)

* (((4 - 1) - 1) - 1)

... this series never stops

The way we can stop a recursive expression is by having a
base case that stops the self-application to further arguments.
Understanding this is critical for writing functions which are
correct and terminate properly. Here’s what this looks like for
factorial:

module Factorial where

factorial :: Integer -> Integer

factorial 0 = 1

factorial n = n * factorial (n - 1)

brokenFact1 4 =

4 * (4 - 1)

* ((4 - 1) - 1)

* (((4 - 1) - 1) - 1)

* ((((4 - 1) - 1) - 1) - 1)

* (((((4 - 1) - 1) - 1) - 1) - 1)

... never stops
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But the base case factorial 0 = 1 in the fixed version gives
our function a stopping point, so the reduction changes:

-- Changes to

-- n = n * factorial (n - 1)

factorial 4 =

4 * factorial (4 - 1)

-- evaluate (-) applied to 4 and 1

4 * factorial 3

-- evaluate factorial applied to 3

-- expands to 3 * factorial (3 - 1)

4 * 3 * factorial (3 - 1)

-- beta reduce (-) applied to 3 and 1

4 * 3 * factorial 2

-- evaluate factorial applied to 2

4 * 3 * 2 * factorial (2 - 1)

-- evaluate (-) applied to 2 and 1

4 * 3 * 2 * factorial 1

-- evaluate factorial applied to 1

4 * 3 * 2 * 1 * factorial (1 - 1)
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-- evaluate (-) applied to 1 and 1

-- we know factorial 0 = 1

-- so we evaluate that to 1

4 * 3 * 2 * 1 * 1

-- And when we evaluate

-- our multiplications

24

Making our base case an identity value for the function
(multiplication in this case) means that applying the function
to that case doesn’t change the result of previous applications.

Another way to look at recursion

In the last chapter, we looked at a higher-order function called
composition. Function composition is a way of tying two (or
more) functions together such that the result of applying the
first function gets passed as an argument to the next function.
This is the same thing recursive functions are doing — taking
the result of the first application of the function and passing it
to the next function — except in the case of recursive functions,
the first result gets passed back to the same function rather than
a different one, until it reaches the base case and terminates.
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Where function composition as we normally think of it is
static and definite, recursive compositions are indefinite. The
number of times the function may be applied depends on the
arguments to the function, and the applications can be infinite
if a stopping point is not clearly defined.

Let’s recall that function composition has the following
type:

(.) :: (b -> c) -> (a -> b) -> a -> c

And when we use it like this:

take 5 . filter odd . enumFrom $ 3

we know that the first result will be a list generated by
enumFrom which will be passed to filter odd, giving us a list of
only the odd results, and that list will be passed to take 5 and
our final result will be the first five members of that list. Thus,
results get piped through a series of functions.

Recursion is self-referential composition.1 We apply a func-
tion to an argument, then pass that result on as an argument
to a second application of the same function and so on.

Now look again at how the compose function (.) is written:

(.) :: (b -> c) -> (a -> b) -> a -> c

(.) f g = \x -> f (g x)

1 Many thanks to George Makrydakis for discussing this with us.
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A programming language, such as Haskell, that is built
purely on lambda calculus has one verb for expressing compu-
tations that can be evaluated: apply. We apply a function to an
argument. Applying a function to an argument and potentially
doing something with the result is all we can do, no matter
what syntactic conveniences we construct to make it seem that
we are doing more than that. While we give function compo-
sition a special name and operator to point up the pattern and
make it convenient to use, it’s only a way of saying:

• given two functions, 𝑓 and 𝑔, as arguments to (.),

• when we get an argument 𝑥, apply 𝑔 to 𝑥,

• then apply 𝑓 to the result of (g x); or,

• to rephrase, in code:

(.) f g = \x -> f (g x)

With function recursion, you might notice that it is func-
tion application in the same way that composition is. The
difference is that instead of a fixed number of applications,
recursive functions rely on inputs to determine when to stop
applying functions to successive results. Without a specified
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stopping point, the result of (g x) will keep being passed back
to 𝑔 indefinitely.2

Let’s look at some code to see the similarity in patterns:

inc :: Num a => a -> a

inc = (+1)

three = inc . inc . inc $ 0

-- different syntax, same thing

three' = (inc . inc . inc) 0

Our composition of inc bakes the number of applications
into the source code. We don’t presently have a means of
changing how many times we want it to apply inc without
writing a new function.

So, we might want to make a general function that can apply
inc an indefinite number of times and allow us to specify as
an argument how many times it should be applied:

incTimes :: (Eq a, Num a) => a -> a -> a

incTimes 0 n =

n

incTimes times n =

1 + (incTimes (times - 1) n)

2 Because Haskell is built on pure lambda calculus, recursion is implemented in the
language through the Y, or fixed-point combinator. You can read a very good explanation
of that at http://mvanier.livejournal.com/2897.html if you are interested in knowing how it
works.

http://mvanier.livejournal.com/2897.html
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Here, 𝑡𝑖𝑚𝑒𝑠 is a variable representing the number of times
the incrementing function (not called inc here but written as
1 + in the function body) should be applied to the argument
𝑛. If we want to apply it zero times, it will return our 𝑛 to us.
Otherwise, the incrementing function will be applied as many
times as we’ve declared:

Prelude> incTimes 10 0

10

Prelude> incTimes 5 0

5

Prelude> incTimes 5 5

10

--does this look familiar?

In a function such as this, the looming threat of unending
recursion is minimized because the number of times to apply
the function is an argument to the function itself, and we’ve
defined a stopping point: when (times - 1) is equal to zero, it
returns 𝑛 and that’s all the applications we get.

We can abstract the recursion out of incTimes, too:
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applyTimes :: (Eq a, Num a) =>

a -> (b -> b) -> b -> b

applyTimes 0 f b = b

applyTimes n f b = f (applyTimes (n-1) f b)

incTimes' :: (Eq a, Num a) => a -> a -> a

incTimes' times n = applyTimes times (+1) n

When we do, we can make the composition more obvious
in applyTimes:

applyTimes :: (Eq a, Num a) =>

a -> (b -> b) -> b -> b

applyTimes 0 f b =

b

applyTimes n f b =

f . applyTimes (n-1) f $ b

We’re recursively composing our function 𝑓 with applyTimes

(n-1) f however many subtractions it takes to get n to 0!

Intermission: Exercise

Write out the evaluation of the following. It might be a little
less noisy if you do so with the form that didn’t use (.).

applyTimes 5 (+1) 5
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8.3 Bottom

⊥ or bottom is a term used in Haskell to refer to computations
that do not successfully result in a value. The two main vari-
eties of bottom are computations that failed with an error or
those that failed to terminate. In logic, ⊥ corresponds to false.
Let us examine a few ways by which we can have bottom in
our programs:

Prelude> let x = x in x

*** Exception: <<loop>>

Here GHCi detected that let x = x in x was never going
to return and short-circuited the never-ending computation.
This is an example of bottom because it was never going to
return a result. Note that if you’re using a Windows com-
puter, this example may freeze your GHCi and not throw an
exception.

Next let’s define a function that will return an exception:

f :: Bool -> Int

f True = error "blah"

f False = 0

And let’s try that out in GHCi:

Prelude> f False
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0

Prelude> f True

*** Exception: blah

In the first case, when we evaluated f False and got 0, that
didn’t result in a bottom value. But, when we evaluated f True,
we got an exception which is a means of expressing that a
computation failed. We got an exception because we specified
that this value should return an error. But this, too, is an
example of bottom.

Another example of a bottom would be a partial function.
Let’s consider a rewrite of the previous function:

f :: Bool -> Int

f False = 0

This has the same type and returns the same output. What
we’ve done is elided the f True = error "blah" case from the
function definition. This is not a solution to the problem with
the previous function, but it will give us a different exception.
We can observe this for ourselves in GHCi:

Prelude> let f :: Bool -> Int; f False = 0

Prelude> f False

0

Prelude> f True

*** Exception: 6:23-33:
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Non-exhaustive patterns in function f

The error value is still there, but our language implemen-
tation is making it the fallback case because we didn’t write
a total function, that is, a function which handles all of its in-
puts. Because we failed to define ways to handle all potential
inputs, for example through an “otherwise” case, the previous
function was really:

f :: Bool -> Int

f False = 0

f _ = error $ "*** Exception: "

++ "Non-exhaustive"

++ "patterns in function f"

A partial function is one which does not handle all of its
inputs. A total function is one that does. How do we make our
𝑓 into a total function? One way is with the use of the datatype
Maybe.

data Maybe a = Nothing | Just a

The Maybe datatype can take an argument. In the first case,
Nothing, there is no argument; this is our way to say that there
is no result or data from the function without hitting bottom.
The second case, Just a takes an argument and allows us to
return the data we’re wanting. Maybemakes all uses of nil values
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and most uses of bottom unnecessary. Here’s how we’d use it
with 𝑓 :

f :: Bool -> Maybe Int

f False = Just 0

f _ = Nothing

Note that the type and both cases all change. Not only do
we replace the error with the Nothing value from Maybe, but we
also have to wrap 0 in the Just constructor from Maybe. If we
don’t do so, we’ll get a type error when we try to load the code,
as you can see:

f :: Bool -> Maybe Int

f False = 0

f _ = Nothing

Prelude> :l code/brokenMaybe1.hs

[1 of 1] Compiling Main

code/brokenMaybe1.hs:3:11:

No instance for (Num (Maybe Int))

arising from the literal ‘0’

In the expression: 0

In an equation for ‘f’: f False = 0
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This type error is because, as before, 0 has the type Num a

=> a, so it’s trying to get an instance of Num for Maybe Int. We
can clarify our intent a bit:

f :: Bool -> Maybe Int

f False = 0 :: Int

f _ = Nothing

And then get a better type error in the bargain:

Prelude> :l code/brokenMaybe2.hs

[1 of 1] Compiling Main

code/brokenMaybe2.hs:3:11:

Couldn't match expected type

‘Maybe Int’ with actual type ‘Int’

In the expression: 0 :: Int

In an equation for ‘f’: f False = 0 :: Int

We’ll explain Maybe in more detail a bit later.

8.4 Fibonacci numbers

Another classic demonstration of recursion in functional pro-
gramming is a function that calculates the 𝑛th number in a
Fibonacci sequence. The Fibonacci sequence is a sequence
of numbers in which each number is the sum of the previous
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two: 1, 1, 2, 3, 5, 8, 13, 21, 34... and so on. It’s an indefinite
computation that relies on adding two of its own members, so
it’s a perfect candidate for a recursive function. We’re going to
walk through the steps of how we would write such a function
for ourselves to get a better understanding of the reasoning
process.

1. Consider the types

The first thing we’ll consider is the possible type signature
for our function. The Fibonacci sequence only involves
positive whole numbers. The argument to our Fibonacci
function is going to be a positive whole number, because
we’re trying to return the value that is the 𝑛th member of
the Fibonacci sequence. Our result will also be a positive
whole number, since that’s what Fibonacci numbers are.
We would be looking, then, for values that are of the Int or
Integer types. We could use one of those concrete types
or use a typeclass for constrained polymorphism. Specif-
ically, we want a type signature that takes one integral
argument and returns one integral result. So, our type
signature will look something like this:

fibonacci :: Integer -> Integer

-- or

fibonacci :: Integral a => a -> a

2. Consider the base case
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It may sometimes be difficult to determine your base case
up front, but it’s worth thinking about. For one thing,
you do want to ensure that your function will terminate.
For another thing, giving serious consideration to your
base case is a valuable part of understanding how your
function works. Fibonacci numbers are positive integers,
so a reasonable base case is zero. When the recursive
process hits zero, it should terminate.

The Fibonacci sequence is a bit trickier than some, though,
because it needs two base cases. The sequence has to start
off with two numbers, since two numbers are involved in
computing the next. The next number after zero is 1, and
we add zero to 1 to start the sequence so those will be our
base cases:

fibonacci :: Integral a => a -> a

fibonacci 0 = 0

fibonacci 1 = 1

3. Consider the arguments

We’ve already determined that the argument to our func-
tion, the value to which the function is applied, is an inte-
gral number and represents the member of the sequence
we want to be evaluated. That is, we want to pass a value
such as 10 to this function and have it calculate the 10th
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number in the Fibonacci sequence. We only need to have
one variable as a parameter to this function then.

But that argument will also be used as arguments within
the function due to the recursive process. Every Fibonacci
number is the result of adding the preceding two numbers.
So, in addition to a variable 𝑥, we will need to use (x - 1)

and (x - 2) to get both the numbers before our argument.

fibonacci :: Integral a => a -> a

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci x = (x - 1) (x - 2)

-- note: this doesn't work yet.

4. Consider the recursion

All right, now we come to the heart of the matter. In what
way will this function refer to itself and call itself? Look at
what we’ve worked out so far: what needs to happen next
to produce a Fibonacci number? One thing that needs
to happen is that (x - 1) and (x - 2) need to be added
together to produce a result. Try simply adding those two
together and running the function that way.
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fibonacci :: Integral a => a -> a

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci x = (x - 1) + (x - 2)

If you pass the value 6 to that function, what will happen?

Prelude> fibonacci 6

9

Why? Because ((6 - 1) + (6 - 2)) equals 9. But this isn’t how
we calculate Fibonacci numbers! The sixth member of the
Fibonacci sequence is not ((6 - 1) + (6 - 2)). What we want is
to add the fifth member of the Fibonacci sequence to the
fourth member. That result will be the sixth member of
the sequence. We do this by making the function refer to
itself. In this case, we have to specify that both (x - 1) and
(x - 2) are themselves Fibonacci numbers, so we have to
call the function to itself twice.

fibonacci :: Integral a => a -> a

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci x =

fibonacci (x - 1) + fibonacci (x - 2)
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Now, if we apply this function to the value 6, we will get a
different result:

Prelude> fibonacci 6

8

Why? Because it evaluates this recursively:

fibonacci 6 = fibonacci 5 + fibonacci 4

fibonacci 5 = fibonacci 4 + fibonacci 3

fibonacci 4 = fibonacci 3 + fibonacci 2

fibonacci 3 = fibonacci 2 + fibonacci 1

fibonacci 2 = fibonacci 1 + fibonacci 0

Zero and 1 have been defined as being equal to zero and
1. So here our recursion stops, and it starts adding the
result:

fibonacci 0 + 0

fibonacci 1 + 1

fibonacci 2 + (1 + 0 =) 1

fibonacci 3 + (1 + 1 =) 2



CHAPTER 8. FUNCTIONS THAT CALL THEMSELVES 441

fibonacci 4 + (1 + 2 =) 3

fibonacci 5 = (2 + 3 =) 5

fibonacci 6 = (3 + 5 =) 8

It can be daunting at first to think how you would write a
recursive function and what it means for a function to call
itself. But as you can see, it’s useful when the function will
make reference to its own results in a repeated fashion.

8.5 Integral division from scratch

Many people learned multiplication by memorizing multi-
plication tables, usually up to 10x10 or 12x12 (dozen). In fact,
one can perform multiplication in terms of addition, repeated
over and over. Similarly, one can define integral division in
terms of subtraction.

Let’s think through our recursive division function one step
at a time. First, let’s consider the types we would want to use for
such a function and see if we can construct a reasonable type
signature. When we divide numbers, we have a numerator
and a denominator. When we evaluate 10 / 5 to get the answer
2, 10 is the numerator, 5 the denominator, and 2 the quotient.
So we have at least three numbers here. So, perhaps a type
like Integer -> Integer -> Integer would be suitable. You could
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even add some type synonyms to make it more obvious if you
wished:

dividedBy :: Integer -> Integer -> Integer

dividedBy = div

-- changes to

type Numerator = Integer

type Denominator = Integer

type Quotient = Integer

dividedBy :: Numerator

-> Denominator

-> Quotient

dividedBy = div

The type keyword, instead of the more familiar data or
newtype, declares a type synonym, or type alias. Those are all
Integer types, but we can give them different names to make
them easier for human eyes to distinguish in type signatures.

For this example, we didn’t write out the recursive imple-
mentation of dividedBy we had in mind. As it turns out, when
we write the function, we will want to change the final type sig-
nature a bit, for reasons we’ll see in a minute. Sometimes the
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use of type synonyms can improve the clarity and purpose of
your type signatures, so this is something you’ll see, especially
in more complex code. For our relatively simple function, it
may not be necessary.

Next, let’s think through our base case. The way we divide in
terms of subtraction is by stopping when our result of having
subtracted repeatedly is lower than the divisor. If it divides
evenly, it’ll stop at 0:

Solve 20 divided by 4

-- [1] [2]

-- [1]: Dividend or numerator

-- [2]: Divisor or denominator

-- Result is quotient

20 divided by 4 == 20 - 4, 16

- 4, 12

- 4, 8

- 4, 4

- 4, 0

-- 0 is less than 4, so we stopped.

-- We subtracted 5 times, so 20 / 4 == 5

Otherwise, we’ll have a remainder. Let’s look at a case where
it doesn’t divide evenly:

Solve 25 divided by 4
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25 divided by 4 == 25 - 4, 21

- 4, 17

- 4, 13

- 4, 9

- 4, 5

- 4, 1

-- we stop at 1, because it's less than 4

In the case of 25 divided by 4, we subtracted 4 six times and
had 1 as our remainder. We can generalize this process of di-
viding whole numbers, returning the quotient and remainder,
into a recursive function which does the repeated subtraction
and counting for us. Since we’d like to return the quotient
and the remainder, we’re going to return the 2-tuple (,) as the
result of our recursive function.

dividedBy :: Integral a => a -> a -> (a, a)

dividedBy num denom = go num denom 0

where go n d count

| n < d = (count, n)

| otherwise =

go (n - d) d (count + 1)

We’ve changed the type signature from the one we had
originally worked out, both to make it more polymorphic
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(Integral a => a versus Integer) and also to return the tuple
instead of just an integer.

Here we used a common Haskell idiom called a go function.
This allows us to define a function via a where-clause that can
accept more arguments than the top-level function dividedBy

does. In this case, the top-level function takes two arguments,
num and denom, but we need a third argument in order to keep
track of howmany timeswedo the subtraction. That argument
is called count and is defined with a starting value of zero and
is incremented by 1 every time the otherwise case is invoked.

There are two branches in our go function. The first case
is the most specific; when the numerator 𝑛 is less than the
denominator 𝑑, the recursion stops and returns a result. It
is not significant that we changed the argument names from
𝑛𝑢𝑚 and 𝑑𝑒𝑛𝑜𝑚 to 𝑛 and 𝑑. The go function has already been
applied to those arguments in the definition of dividedBy so
the 𝑛𝑢𝑚, 𝑑𝑒𝑛𝑜𝑚, and 0 are bound to 𝑛, 𝑑, and 𝑐𝑜𝑢𝑛𝑡 in the where

clause.
The result is a tuple of 𝑐𝑜𝑢𝑛𝑡 and the last value for 𝑛. This is

our base case that stops the recursion and gives a final result.
Here’s an example of how dividedBy expands but with the

code inlined:
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dividedBy 10 2

-- first we'll do this the previous way,

-- but we'll keep track of how many

-- times we subtracted.

10 divided by 2 ==

10 - 2, 8 (subtracted 1 time)

- 2, 6 (subtracted 2 times)

- 2, 4 (subtracted 3 times)

- 2, 2 (subtracted 4 times)

- 2, 0 (subtracted 5 times)

Since the final number was 0, there’s no remainder. We
subtracted five times. So 10 / 2 == 5.

Now we’ll expand the code:

dividedBy 10 2 =

go 10 2 0

| 10 < 2 = ...

-- false, skip this branch

| otherwise = go (10 - 2) 2 (0 + 1)

-- otherwise is literally the value True

-- so if first branch fails,

-- this always succeeds
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go 8 2 1

-- 8 isn't < 2, so the otherwise branch

go (8 - 2) 2 (1 + 1)

-- n == 6, d == 2, count == 2

go 6 2 2

go (6 - 2) 2 (2 + 1)

-- 6 isn't < 2, so the otherwise branch

-- n == 4, d == 2, count == 3

go 4 2 3

go (4 - 2) 2 (3 + 1)

-- 4 isn't < 2, so the otherwise branch

-- n == 2, d == 2, count == 4

go 2 2 4

go (2 - 2) 2 (4 + 1)

-- 2 isn't < 2, so the otherwise branch

-- n == 0, d == 2, count == 5
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go 0 2 5

-- the n < d branch is finally evaluated

-- because 0 < 2 is true

-- n == 0, d == 2, count == 5

| 0 < 2 = (5, 0)

(5, 0)

The result of 𝑐𝑜𝑢𝑛𝑡 is the quotient, that is, how many times
you can subtract 2 from 10. In a case where there was a remain-
der, that number would be the final value for your numerator
and would be returned as the remainder.

8.6 Chapter Exercises

Review of types

1. What is the type of [[True, False], [True, True], [False,

True]]?

a) Bool

b) mostly True

c) [a]

d) [[Bool]]

2. Which of the following has the same type as [[True, False],

[True, True], [False, True]]?
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a) [(True, False), (True, True), (False, True)]

b) [[3 == 3], [6 > 5], [3 < 4]]

c) [3 == 3, 6 > 5, 3 < 4]

d) ["Bool", "more Bool", "Booly Bool!"]

3. For the following function

func :: [a] -> [a] -> [a]

func x y = x ++ y

which of the following is true?

a) x and y must be of the same type

b) x and y must both be lists

c) if x is a String then y must be a String

d) all of the above

4. For the func code above, which is a valid application of
func to both of its arguments?

a) func "Hello World"

b) func "Hello" "World"

c) func [1, 2, 3] "a, b, c"

d) func ["Hello", "World"]
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Reviewing currying

Given the following definitions, tell us what value results from
further applications.

cattyConny :: String -> String -> String

cattyConny x y = x ++ " mrow " ++ y

-- fill in the types

flippy = flip cattyConny

appedCatty = cattyConny "woops"

frappe = flippy "haha"

1. What is the value of appedCatty "woohoo!" ? Try to deter-
mine the answer for yourself, then test in the REPL.

2. frappe "1"

3. frappe (appedCatty "2")

4. appedCatty (frappe "blue")

5. cattyConny (frappe "pink")

(cattyConny "green" (appedCatty "blue"))

6. cattyConny (flippy "Pugs" "are") "awesome"
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Recursion

1. Write out the steps for reducing dividedBy 15 2 to its final
answer according to the Haskell code.

2. Write a function that recursively sums all numbers from
1 to n, n being the argument. So that if n was 5, you’d add
1 + 2 + 3 + 4 + 5 to get 15. The type should be (Eq a, Num a)

=> a -> a.

3. Write a function that multiplies two integral numbers
using recursive summation. The type should be (Integral

a) => a -> a -> a.

Fixing dividedBy

Our dividedBy function wasn’t quite ideal. For one thing. It
was a partial function and doesn’t return a result (bottom)
when given a divisor that is 0 or less.

Using the pre-existing div function we can see how negative
numbers should be handled:

Prelude> div 10 2

5

Prelude> div 10 (-2)

-5

Prelude> div (-10) (-2)

5
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Prelude> div (-10) (2)

-5

The next issue is how to handle zero. Zero is undefined for
division in math, so we ought to use a datatype that lets us say
there was no sensible result when the user divides by zero. If
you need inspiration, consider using the following datatype
to handle this.

data DividedResult =

Result Integer

| DividedByZero

McCarthy 91 function

We’re going to describe a function in English, then in math
notation, then show you what your function should return for
some test inputs. Your task is to write the function in Haskell.

The McCarthy 91 function yields 𝑥 − 10 when 𝑥 > 100 and 91
otherwise. The function is recursive.

𝑀𝐶(𝑛) =
⎧{
⎨{⎩

𝑛 − 10 if 𝑛 > 100

𝑀𝐶(𝑀𝐶(𝑛 + 11)) if 𝑛 ≤ 100

mc91 = undefined

You haven’t seen map yet, but all you need to know right
now is that it applies a function to each member of a list and
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returns the resulting list. It’ll be explained in more detail in
the next chapter.

Prelude> map mc91 [95..110]

[91,91,91,91,91,91,91,92,93,94,95,96,97,98,99,100]

Numbers into words

module WordNumber where

import Data.List (intersperse)

digitToWord :: Int -> String

digitToWord n = undefined

digits :: Int -> [Int]

digits n = undefined

wordNumber :: Int -> String

wordNumber n = undefined

Here undefined is a placeholder to show you where you need
to fill in the functions. The n to the right of the function names
is the argument which will be an integer.

Fill in the implementations of the functions above so that
wordNumber returns the English word version of the Int value.
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You will first write a function that turns integers from 0-9 into
their corresponding English words, ”one,” ”two,” and so on.
Then you will write a function that takes the integer, separates
the digits, and returns it as a list of integers. Finally you will
need to apply the first function to the list produced by the sec-
ond function and turn it into a single string with interspersed
hyphens.

We’ve laid out multiple functions for you to consider as you
tackle the problem. You may not need all of them, depend-
ing on how you solve it — these are suggestions. Play with
them and look up their documentation to understand them
in deeper detail.

You will probably find this difficult.

div :: Integral a => a -> a -> a

mod :: Integral a => a -> a -> a

map :: (a -> b) -> [a] -> [b]

concat :: [[a]] -> [a]

intersperse :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

(:[]) :: a -> [a]

Also consider:

Prelude> div 135 10

13
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Prelude> mod 135 10

5

Prelude> div 13 10

1

Prelude> mod 13 10

3

Here is what your output should look in the REPL when it’s
working:

Prelude> wordNumber 12324546

"one-two-three-two-four-five-four-six"

Prelude>

8.7 Definitions

1. Recursion is a means of computing results that may require
an indefinite amount of work to obtain through the use of
repeated function application. Most recursive functions
that terminate or otherwise do useful work will often have
a case that calls itself and a base case that acts as a backstop
of sorts for the recursion.
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-- not recursive

lessOne :: Int -> Int

lessOne n = n - 1

-- recursive

zero :: Int -> Int

zero 0 = 0

zero n = zero (n - 1)



Chapter 9

Lists

If the doors of perception
were cleansed, everything
would appear to man as it
is - infinite.

William Blake

457
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9.1 Lists

Lists do double duty in Haskell. The first purpose lists serve
is as a way to refer to and process a collection or plurality of
values. The second is as an infinite series of values, usually
generated by a function, which allows them to act as a stream
datatype.

In this chapter, we will:

• explain list’s datatype and how to pattern match on lists;

• practice many standard library functions for operating
on lists;

• learn about the underlying representations of lists;

• see what that representation means for their evaluation;

• and do a whole bunch of exercises!

9.2 The list datatype

The list datatype in Haskell is defined like this:

data [] a = [] | a : [a]

Here [] is the type constructor for lists as well as the data
constructor for the empty list. The [] data constructor is a
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nullary constructor because it takes no arguments. The second
data constructor, in contrast, has arguments. (:) is an infix
operator usually called ‘cons’ (short for construct). Here cons
takes a value of type 𝑎 and a list of type [a] and evaluates to
[a].

Whereas the list datatype as a whole is a sum type, as we can
tell from the | in the definition, the second data constructor (:)
`cons` is a product because it takes two arguments. Remember,
a sum type can be read as an “or” as in the Bool datatype where
you get False or True. A product is like an “and.” We’re going
to talk more about sum and product types in another chapter,
but for now it will suffice to recognize that a : [a] constructs
a value from two arguments, by adding the 𝑎 to the front of
the list [a]. The list datatype is a sum type, though, because
it is either an empty list or a single value with more list — not
both.

In English, one can read this as:

data [] a = [] | a : [a]

-- [1] [2] [3] [4] [5] [6]

1. The datatype with the type constructor []

2. takes a single type constructor argument ‘a’

3. at the term level can be constructed via

4. nullary constructor []
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5. or it can be constructed by

6. data constructor (:) which is a product of a value of the
type a we mentioned in the type constructor and a value
of type [a], that is, “more list.”

The cons constructor (:) is an infix data constructor and
goes between the two arguments 𝑎 and [a] that it accepts. Since
it takes two arguments, it is a product of those two arguments,
like the tuple type (a, b). Unlike a tuple, however, this con-
structor is recursive because it mentions its own type [a] as
one of the members of the product.

If you’re an experienced programmer or took a CS class at
some point, you may be familiar with singly-linked lists. This
is a fair description of the list datatype in Haskell, although
average case performance in some situations changes due
to nonstrict evaluation; however, it can contain infinite data
which makes it also work as a stream datatype, but one that has
the option of ending the stream with the [] data constructor.

9.3 Pattern matching on lists

We know we can pattern match on data constructors, and the
data constructors for lists are no exceptions. Here we match
on the first argument to the infix (:) constructor, ignoring the
rest of the list, and return that value:
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Prelude> let myHead (x : _) = x

Prelude> :t myHead

myHead :: [t] -> t

Prelude> myHead [1, 2, 3]

1

We can do the opposite as well:

Prelude> let myTail (_ : xs) = xs

Prelude> :t myTail

myTail :: [t] -> [t]

Prelude> myTail [1, 2, 3]

[2,3]

We do need to be careful with functions like these. Neither
myHead nor myTail has a case to handle an empty list — if we try
to pass them an empty list as an argument, they can’t pattern
match:

Prelude> myHead []

*** Exception:

Non-exhaustive patterns

in function myHead

Prelude> myTail []

*** Exception:

Non-exhaustive patterns
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in function myTail

The problem is that the type [a] -> a of myHead is deceptive
because the [a] type doesn’t guarantee that it’ll have an 𝑎 value.
It’s not guaranteed that the list will have at least one value, so
myTail can fail as well. One possibility is putting in a base case:

myTail :: [a] -> [a]

myTail [] = []

myTail (_ : xs) = xs

In that case, our function now evaluates like this:

Prelude> myTail [1..5]

[2,3,4,5]

Prelude> myTail []

[]

Using Maybe A better way to handle this situation is with a
datatype called Maybe. We’ll save a full treatment of Maybe for
a later chapter, but this should give you some idea of how it
works. The idea here is that it makes your failure case explicit,
and as programs get longer and more complex that can be
quite useful.

Let’s try an example using Maybe with myTail. Instead of
having a base case that returns an empty list, the function
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written with Maybe would return a result of Nothing. As we can
see below, the Maybe datatype has two potential values, Nothing
or Just a:

Prelude> :info Maybe

data Maybe a = Nothing | Just a

Rewriting myTail to use Maybe is fairly straightforward:

safeTail :: [a] -> Maybe [a]

safeTail [] = Nothing

safeTail (x:[]) = Nothing

safeTail (_:xs) = Just xs

Notice that our function is still pattern matching on the list.
We’ve made the second base case safeTail (x:[]) = Nothing to
reflect the fact that if your list has only one value inside it, its
tail is an empty list. If you leave this case out, then this function
will return Just [] for lists that have only a head value. Take
a few minutes to play around with this and see how it works.
Then see if you can rewrite the myHead function above using
Maybe.

Later in the book, we’ll also cover a datatype called NonEmpty

which always has at least one value and avoids the empty list
problem.
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9.4 List’s syntactic sugar

Haskell has some syntactic sugar to accommodate the use of
lists, so that you can write:

Prelude> [1, 2, 3] ++ [4]

[1, 2, 3, 4]

Rather than:

Prelude> (1 : 2 : 3 : []) ++ 4 : []

[1,2,3,4]

The syntactic sugar is here to allow building lists in terms
of the successive applications of ‘cons‘ (:) to a value without
having to tediously type it all out.

When we talk about lists, we often talk about them in terms
of “cons cells” and spines. The syntactic sugar obscures this
underlying construction, but looking at the desugared ver-
sion above may make it more clear. The cons cells are the
list datatype’s second data constructor, a : [a], the result of
recursively prepending a value to “more list.” The cons cell is
a conceptual space that values may inhabit.

The spine is the connective structure that holds the cons
cells together and in place. As we will soon see, this structure
nests the cons cells rather than ordering them in a right-to-
left row. Because different functions may treat the spine and
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the cons cells differently, it is important to understand this
underlying structure.

9.5 Using ranges to construct lists

There are several ways we can construct lists. One of the
simplest is with ranges. The basic syntax is to make a list that
has the element you want to start the list from followed by
two dots followed by the value you want as the final element
in the list. Here are some examples using the range syntax,
followed by the desugared equivalents using functions from
the Enum typeclass:

Prelude> [1..10]

[1,2,3,4,5,6,7,8,9,10]

Prelude> enumFromTo 1 10

[1,2,3,4,5,6,7,8,9,10]

Prelude> [1,2..10]

[1,2,3,4,5,6,7,8,9,10]

Prelude> enumFromThenTo 1 2 10

[1,2,3,4,5,6,7,8,9,10]

Prelude> [1,3..10]

[1,3,5,7,9]

Prelude> enumFromThenTo 1 3 10
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[1,3,5,7,9]

Prelude> [2,4..10]

[2,4,6,8,10]

Prelude> enumFromThenTo 2 4 10

[2,4,6,8,10]

Prelude> ['t'..'z']

"tuvwxyz"

Prelude> enumFromTo 't' 'z'

"tuvwxyz"

The types of the functions underlying the range syntax are:

enumFrom :: Enum a

=> a -> [a]

enumFromThen :: Enum a

=> a -> a -> [a]

enumFromTo :: Enum a

=> a -> a -> [a]

enumFromThenTo :: Enum a

=> a -> a -> a -> [a]

All of these functions require that the type being “ranged”
have an instance of the Enum typeclass. The first two functions,
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enumFrom and enumFromThen, generate lists of indefinite, possibly
infinite, length. For it to create an infinitely long list, you
must be ranging over a type that has no upper bound in its
enumeration. Integer is such a type. You can make Integer

values as large as you have memory to describe.
Be aware that enumFromTo must have its first argument be

lower than the second argument:

Prelude> enumFromTo 3 1

[]

Prelude> enumFromTo 1 3

[1,2,3]

Otherwise you’ll get an empty list.

Exercise: EnumFromTo

Some things you’ll want to know about the Enum typeclass:

Prelude> :info Enum

class Enum a where

succ :: a -> a

pred :: a -> a

toEnum :: Int -> a

fromEnum :: a -> Int

enumFrom :: a -> [a]

enumFromThen :: a -> a -> [a]
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enumFromTo :: a -> a -> [a]

enumFromThenTo :: a -> a -> a -> [a]

Prelude> succ 0

1

Prelude> succ 1

2

Prelude> succ 'a'

'b'

Write your own enumFromTo definitions for the types pro-
vided. Do not use range syntax to do so. It should return the
same results as if you did [start..stop]. Replace the undefined,
an value which results in an error when evaluated, with your
own definition.
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eftBool :: Bool -> Bool -> [Bool]

eftBool = undefined

eftOrd :: Ordering

-> Ordering

-> [Ordering]

eftOrd = undefined

eftInt :: Int -> Int -> [Int]

eftInt = undefined

eftChar :: Char -> Char -> [Char]

eftChar = undefined

9.6 Extracting portions of lists

In this section, we’ll take a look at some useful functions for
extracting portions of a list and dividing lists into parts. The
first three functions have similar type signatures, taking Int

arguments and applying them to a list argument:

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a], [a])
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We have seen examples of some of the above functions in
previous chapters, but they are common and useful enough
they deserve review.

The take function takes the specified number of elements
out of a list and returns a list containing just those elements.
As you can see it takes one argument that is an Int and applies
that to a list argument. Here’s how it works:

Prelude> take 7 ['a'..'z']

"abcdefg"

Prelude> take 3 [1..10]

[1,2,3]

Prelude> take 3 []

[]

Notice that when we pass it an empty list as an argument,
it returns an empty list. These lists use the syntactic sugar
for building lists with ranges. We can also use take with a list-
building function, such as enumFrom. Reminder: enumFrom can
generate an infinite list if the type of list inhabitants is, such
as Integer, an infinite set. But as long as we’re only taking a
certain number of elements from that, it won’t generate an
infinite list:

Prelude> take 10 (enumFrom 10)
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[10,11,12,13,14,15,16,17,18,19]

The drop function is similar to take but drops the specified
number of elements off the beginning of the list. Again, we
can use it with ranges or list-building functions:

Prelude> drop 5 [1..10]

[6,7,8,9,10]

Prelude> drop 8 ['a'..'z']

"ijklmnopqrstuvwxyz"

Prelude> drop 4 []

[]

Prelude> drop 2 (enumFromTo 10 20)

[12,13,14,15,16,17,18,19,20]

The splitAt function cuts a list into two parts at the element
specified by the Int and makes a tuple of two lists:

Prelude> splitAt 5 [1..10]

([1,2,3,4,5],[6,7,8,9,10])

Prelude> splitAt 10 ['a'..'z']

("abcdefghij","klmnopqrstuvwxyz")
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Prelude> splitAt 5 []

([],[])

Prelude> splitAt 3 (enumFromTo 5 15)

([5,6,7],[8,9,10,11,12,13,14,15])

The higher-order functions takeWhile and dropWhile are a bit
different, as you can see from the type signatures:

takeWhile :: (a -> Bool) -> [a] -> [a]

dropWhile :: (a -> Bool) -> [a] -> [a]

So these take and drop items out of a list that meet some
condition, as we can see from the presence of Bool. takeWhile
will take elements out of a list that meet that condition and
then stop when it meets the first element that doesn’t satisfy
the condition:

Take the elements that are less than 3:

Prelude> takeWhile (<3) [1..10]

[1,2]

Take the elements that are less than 8:

Prelude> takeWhile (<8) (enumFromTo 5 15)

[5,6,7]
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The next example returns an empty list because it stops
taking as soon as the condition isn’t met, which in this case is
the first element:

Prelude> takeWhile (>6) [1..10]

[]

In the final example above, why does it only return a single
𝑎?

Prelude> takeWhile (=='a') "abracadabra"

"a"

Now, we’ll look at dropWhile whose behavior is probably
predictable based on the functions and type signatures we’ve
already seen in this section. We will use the same arguments
as we used with takeWhile so the difference between them is
easy to see:

Prelude> dropWhile (<3) [1..10]

[3,4,5,6,7,8,9,10]

Prelude> dropWhile (<8) (enumFromTo 5 15)

[8,9,10,11,12,13,14,15]

Prelude> dropWhile (>6) [1..10]

[1,2,3,4,5,6,7,8,9,10]
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Prelude> dropWhile (=='a') "abracadabra"

"bracadabra"

Exercises: Thy Fearful Symmetry

1. Using takeWhile and dropWhile, write a function that takes a
string and returns a list of strings, using spaces to separate
the elements of the string into words, as in the following
sample:

Prelude> myWords "sheryl wants fun"

["wallfish", "wants", "fun"]

2. Next, write a function that takes a string and returns a list
of strings, using newline separators to break up the string
as in the following (your job is to fill in the undefined
function):
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module PoemLines where

firstSen = "Tyger Tyger, burning bright\n"

secondSen = "In the forests of the night\n"

thirdSen = "What immortal hand or eye\n"

fourthSen = "Could frame thy fearful\

\ symmetry?"

sentences = firstSen ++ secondSen

++ thirdSen ++ fourthSen

-- putStrLn sentences -- should print

-- Tyger Tyger, burning bright

-- In the forests of the night

-- What immortal hand or eye

-- Could frame thy fearful symmetry?

-- Implement this

myLines :: String -> [String]

myLines = undefined
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-- What we want 'myLines sentences'

-- to equal

shouldEqual =

[ "Tyger Tyger, burning bright"

, "In the forests of the night"

, "What immortal hand or eye"

, "Could frame thy fearful symmetry?"

]

-- The main function here is a small test

-- to ensure you've written your function

-- correctly.

main :: IO ()

main =

print $

"Are they equal? "

++ show (myLines sentences

== shouldEqual)

3. Now let’s look at what those two functions have in com-
mon. Try writing a new function that parameterizes the
character you’re breaking the string argument on and
rewrite myWords and myLines using it.
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9.7 List comprehensions

List comprehensions are a means of generating a new list
from a list or lists. They come directly from the concept of
set comprehensions in mathematics, including similar syntax.
They must have at least one list, called the generator, that gives
the input for the comprehension, that is, provides the set of
items from which the new list will be constructed. They may
have conditions to determine which elements are drawn from
the list and/or functions applied to those elements.

Let’s start by looking at a very simple example:

[ x^2 | x <- [1..10]]

-- [1] [2] [ 3 ]

1. This is the output function that will apply to the members
of the list we indicate.

2. The pipe here designates the separation between the out-
put function and the input.

3. This is the input set: a generator list and a variable that
represents the elements that will be drawn from that list.
This says, “from a list of numbers from 1-10, take (<-)

each element as an input to the output function.”

In plain English, that list comprehension will produce a
new list that includes the square of every number from 1 to 10:



CHAPTER 9. THIS THING AND SOMEMORE STUFF 478

Prelude> [x^2 | x <- [1..10]]

[1,4,9,16,25,36,49,64,81,100]

Now we’ll look at some ways to vary what elements are
drawn from the generator list(s).

Adding predicates

List comprehensions can optionally take predicates that limit
the elements drawn from the generator list. The predicates
must evaluate to Bool values, as in other condition-placing
function types we’ve looked at (for example, guards). Then the
items drawn from the list and passed to the output function
will only be those that met the True case in the predicate.

For example, let’s say we wanted a similar list comprehen-
sion as we used above, but this time we wanted our new list to
contain the squares of only the even numbers while ignoring
the odds. In that case, we put a comma after our generator list
and add the condition:

Prelude> [x^2 | x <- [1..10], rem x 2 == 0]

[4,16,36,64,100]

Here we’ve specified that the only elements to take from
the generator list as 𝑥 are those that, when divided by 2, have
a remainder of zero — that is, even numbers.
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We can also write list comprehensions that have multiple
generators. One thing to note is that the rightmost generator
will be exhausted first, then the second rightmost, and so on.

For example, let’s say you wanted to make a list of 𝑥 to
the 𝑦 power, instead of squaring all of them as we did above.
Separate the two inputs with a comma as below:

Prelude> [x^y | x <- [1..5], y <- [2, 3]]

[1,1,4,8,9,27,16,64,25,125]

When we examine the resulting list, we see that it is each
𝑥 value first to the second power and then to the third power,
followed by the next 𝑥 value to the second and then to the
third and so on, ending with the result of 5^2 and 5^3. We are
applying the function to each possible pairing of values from
the two lists we’re binding values out of. It begins by trying
to get a value out of the leftmost generator, from which we’re
getting 𝑥.

We could put a condition on that, too. Let’s say we only
want to return the list of values that are less than 200. We add
another comma and write our predicate:

Prelude> :{

Prelude| [x ^ y |

Prelude| x <- [1..10],

Prelude| y <- [2, 3],

Prelude| x ^ y < 200]
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Prelude| :}

[1,1,4,8,9,27,16,64,25,125,36,49,64,81,100]

We can use multiple generators to turn two lists into a list
of tuples containing those elements as well. The generator
lists don’t even have to be of the same length or, due to the
nature of the tuple type, even the same type:

Prelude> :{

Prelude| [(x, y) |

Prelude| x <- [1, 2, 3],

Prelude| y <- [6, 7]]

Prelude| :}

[(1,6),(1,7),(2,6),(2,7),(3,6),(3,7)]

Prelude> :{

Prelude| [(x, y) |

Prelude| x <- [1, 2, 3],

Prelude| y <- ['a', 'b']]

Prelude| :}

[(1,'a'),(1,'b'),(2,'a'),

(2,'b'),(3,'a'),(3,'b')]

Again the pattern is that it generates every possible tuple
for the first 𝑥 value, then it moves to the next 𝑥 value and so
on.
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Recall that the first list comprehension we looked at gen-
erated a list of all the values of 𝑥^2 when 𝑥 is a number from
1-10. Let’s say you wanted to use that list in another list com-
prehension. First, you’d want to give that list a name. Let’s call
it mySqr:

Prelude> let mySqr = [x^2 | x <- [1..10]]

Now we can use that list as the generator for another list
comprehension. Here, we will limit our input values to those
that are less than 4 for the sake of brevity:

Prelude> let mySqr = [x^2 | x <- [1..10]]

Prelude> :{

Prelude| [(x, y) |

Prelude| x <- mySqr,

Prelude| y <- [1..3], x < 4]

Prelude| :}

[(1,1),(1,2),(1,3)]

Exercises: Comprehend Thy Lists

Take a look at the following functions, figure what you think
the output lists will be, and then run them in your REPL to
verify (note that you will need the mySqr list from above in
scope to do this):

[x | x <- mySqr, rem x 2 == 0]
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[(x, y) | x <- mySqr,

y <- mySqr,

x < 50, y > 50]

take 5 [ (x, y) | x <- mySqr,

y <- mySqr,

x < 50, y > 50 ]

List comprehensions with Strings

It’s worth remembering that strings are lists, so list comprehen-
sions can also be used with strings. We’re going to introduce
a standard function called elem1 that tells you whether an el-
ement is in a list or not. It evaluates to a Bool value, so it is
useful as a predicate in list comprehensions:

Prelude> :t elem

elem :: Eq a => a -> [a] -> Bool

Prelude> elem 'a' "abracadabra"

True

Prelude> elem 'a' "Julie"

False

In the first case, ‘a’ is an element of “abracadabra” so that
evaluates to True, but in the second case, there is no ‘a’ in

1 Reminder, pretend Foldable in the type of elem means it’s a list until we cover Foldable
later.
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“Julie” so we get a False result. As you can see from the type
signature, elem doesn’t only work with characters and strings,
but that’s what we’ll use it for here. Let’s see if we can write a
list comprehension to remove all the lowercase letters from
a string. Here our condition is that we only want to take 𝑥
from our generator list when it meets the condition that it is
an element of the list of capital letters:

Prelude> :{

Prelude| [x |

Prelude| x <- "Three Letter Acronym",

Prelude| elem x ['A'..'Z']]

Prelude| :}

"TLA"

Let’s see if we can now generalize this into an acronym
generator that will accept different strings as inputs, instead of
forcing us to rewrite the whole list comprehension for every
string we might want to feed it. We will do this by naming
a function that will take one argument and use that as the
generator string for our list comprehension. So the function
argument and the generator string will need to be the same
thing:

Prelude> :{

Prelude| let acro xs =

Prelude| [x | x <- xs,
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Prelude| elem x ['A'..'Z']]

Prelude| :}

We use 𝑥𝑠 for our function argument to indicate to ourselves
that it’s a list, that the 𝑥 is plural. It doesn’t have to be; you
could use a different variable there and obtain the same result.
It is idiomatic to use a “plural” variable for list arguments, but
it is not necessary.

All right, so we have our acro function with which we can
generate acronyms from any string:

Prelude> acro "Self Contained Underwater Breathing Apparatus"

"SCUBA"

Prelude> acro "National Aeronautics and Space Administration"

"NASA"

Given the above, what do you think this function would do:

Prelude> let myString xs = [x | x <- xs, elem x "aeiou"]

Exercises: Square Cube

Given the following:

Prelude> let mySqr = [x^2 | x <- [1..5]]

Prelude> let myCube = [y^3 | y <- [1..5]]

1. First write an expression that will make tuples of the out-
puts of mySqr and myCube.
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2. Now alter that expression so that it only uses the x and y
values that are less than 50.

3. Apply another function to that list comprehension to
determine how many tuples inhabit your output list.

9.8 Spines and nonstrict evaluation

As we have seen, lists are a recursive series of cons cells a : [a]

terminated by the empty list [], but we want a way to visu-
alize this structure in order to understand the ways lists get
processed. When we talk about data structures in Haskell, par-
ticularly lists, sequences, and trees, we talk about them having
a spine. This is the connective structure that ties the collection
of values together. In the case of a list, the spine is usually tex-
tually represented by the recursive cons (:) operators. Given
the data: [1, 2, 3], we get a list that looks like:

1 : 2 : 3 : []

or

1 : (2 : (3 : []))

:

/ \

1 :

/ \
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2 :

/ \

3 []

The problem with the 1 : (2 : (3 : [])) representation we
used earlier is that it makes it seem like the value 1 exists
“before” the cons (:) cell that contains it, but actually, the cons
cells contain the values. Because of this and the way nonstrict
evaluation works, you can evaluate cons cells independently
of what they contain. It is possible to evaluate only the spine of
the list without evaluating individual values. It is also possible
to evaluate only part of the spine of a list and not the rest of it.

Evaluation of the list in this representation proceeds down
the spine. However, constructing the list (when that is neces-
sary) proceeds up the spine. In the example above, then, we
start with an infix operator, evaluate the arguments 1 and a
new cons cell, and proceed downward to the 3 and empty list.
But when we need to build the list, to print it in the REPL for
example, it proceeds from the bottom of the list up the spine,
first putting the 3 into the empty list, then adding the 2 to
the front of that list, then, finally, putting the 1 in the front of
that. Because Haskell’s evaluation is nonstrict, the list isn’t con-
structed until it’s consumed — indeed, nothing is evaluated
until it must be. Until it’s consumed or you force strictness
in some way, there are a series of placeholders as a blueprint
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of the list that can be constructed when it’s needed. We’ll talk
more about nonstrictness soon.

We’re going to bring ⊥ or bottomback in the formof undefined
in order to demonstrate some of the effects of nonstrict evalu-
ation. Here we’re going to use _ to syntactically signify values
we are ignoring and not evaluating. The underscores repre-
sent the values contained by the cons cells. The spine is the
recursive series of cons constructors signified by (:) as you
can see below:

: <------|

/ \ |

_ : <----| This is the "spine"

/ \ |

_ : <--|

/ \

_ []

You’ll see the term ‘spine’ used in reference to data struc-
tures, such as trees, that aren’t lists. In the case of a list, the
spine is a linear succession of one cons cell wrapping another
cons cell. With data structures like trees, which we will cover
later, you’ll see that the spine can be nodes that contain 2 or
more nodes.
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Using GHCi’s :sprint command

We can use a special command in GHCi called sprint to print
variables and see what has been evaluated already, with the un-
derscore representing expressions that haven’t been evaluated
yet.
A warning: We always encourage you to experiment and

explore for yourself after seeing the examples in this book, but
:sprint has some behavioral quirks that can be a bit frustrating.

GHC Haskell has some opportunistic optimizations which
introduce strictness to make code faster when it won’t change
how your code evaluates. Additionally polymorphism means
values like Num a => a are really waiting for a sort of argument
which will make it concrete (this will be covered in more detail
in a later chapter). To avoid this, you have to assign a more
concrete type such as Int or Double, otherwise it stays uneval-
uated, _, in :sprint’s output. If you can keep these caveats to
:sprint’s behavior in mind, it can be useful. Otherwise if you
find it confusing, don’t sweat it and wait for us to elaborate
more deeply in the chapter on nonstrictness.

Let’s define a list using enumFromTo, which is tantamount to
using syntax like ['a'..'z'], then ask for the state of blah with
respect to whether it has been evaluated:

Prelude> let blah = enumFromTo 'a' 'z'

Prelude> :sprint blah
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blah = _

The blah = _ indicates that blah is totally unevaluated.
Next we’ll take one value from blah and then evaluate it by

forcing GHCi to print the expression:

Prelude> take 1 blah

"a"

Prelude> :sprint blah

blah = 'a' : _

So we’ve evaluated a cons cell : and the first value 'a'.
Then we take two values and print them — which forces

evaluation of the second cons cell and the second value:

Prelude> take 2 blah

"ab"

Prelude> :sprint blah

blah = 'a' : 'b' : _

Assuming this is a contiguous GHCi session, the first cons
cell and value were already forced.

We can keep going with this, evaluating the list one value
at a time:

Prelude> take 3 blah

"abc"

Prelude> :sprint blah
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blah = 'a' : 'b' : 'c' : _

The length function is only strict in the spine, meaning it
only forces evaluation of the spine of a list, not the values,
something we can see if we try to find the length of a list of
undefined values. But when we use length on blah, :sprint will
behave as though we had forced evaluation of the values as
well:

Prelude> length blah

26

Prelude> :sprint blah

blah = "abcdefghijklmnopqrstuvwxyz"

That the individual characters were shown as evaluated
and not exclusively the spine after getting the length of blah is
one of the unfortunate aforementioned quirks of how GHCi
evaluates code.

Spines are evaluated independently of values

Values in Haskell get reduced to weak head normal form by
default. By ‘normal form’ we mean that the expression is fully
evaluated. ‘Weak head normal form’ means the expression is
only evaluated as far as is necessary to reach a data constructor.
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Weak head normal form (WHNF) is a larger set and con-
tains both the possibility that the expression is fully evalu-
ated (normal form) and the possibility that the expression has
been evaluated to the point of arriving at a data constructor
or lambda awaiting an argument. For an expression in weak
head normal form, further evaluation may be possible once
another argument is provided. If no further inputs are pos-
sible, then it is still in WHNF but also in normal form (NF).
We’re going to explain this more fully later in the book in the
chapter on nonstrictness when we show you how call-by-need
works and the implications for Haskell. For now, we’ll look at
a few examples to get a sense for what might be going on.

Below we list some expressions and whether they are in
WHNF, NF, both, or neither:

(1, 2) -- WHNF & NF

This first example is in normal form and is fully evaluated.
Anything in normal form is by definition also in weak head
normal form, because weak head is an expression which is
evaluated up to at least the first data constructor. Normal
form exceeds that by requiring that all subexpressions be fully
evaluated. Here the components of the value are the tuple
data constructor and the values 1 and 2.

(1, 1 + 1)
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This example is in WHNF, but not NF. The (+) applied to
its arguments could be evaluated but hasn’t been yet.

\x -> x * 10 -- WHNF & NF

This anonymous function is in normal form because while
(*) has been applied to two arguments of a sort, it cannot be
reduced further until the outer x -> ... has been applied.
With nothing further to reduce, it is in normal form.

"Papu" ++ "chon"

This string concatenation is in neither WHNF nor NF, this
is because the outermost component of the expression is a
function, (++), whose arguments are fully applied but it hasn’t
been evaluated. Whereas, the following would be in WHNF
but not NF:

(1, "Papu" ++ "chon")

When we define a list and define all its values, it is in NF
and all its values are known. There’s nothing left to evaluate
at that point, such as in the following example:

Prelude> let num :: [Int]; num = [1, 2, 3]

Prelude> :sprint num

num = [1,2,3]
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We can also construct a list through ranges or functions.
In this case, the list is in WHNF but not NF. The compiler
only evaluates the head or first node of the graph, but just the
cons constructor, not the value or rest of the list it contains.
We know there’s a value of type 𝑎 in the cons cell we haven’t
evaluated and a “rest of list” which might either be the empty
list [] which ends the list or another cons cell — we don’t know
which because we haven’t evaluated the next [a] value yet. We
saw that above in the :sprint section, and you can see that
evaluation of the first values does not force evaluation of the
rest of the list:

Prelude> let myNum :: [Int]; myNum = [1..10]

Prelude> :sprint myNum

myNum = _

Prelude> take 2 myNum

[1,2]

Prelude> :sprint myNum

myNum = 1 : 2 : _

This is an example of WHNF evaluation. It’s weak head
normal form because the list has to be constructed by the
range and it’s only going to evaluate as far as it has to. With
take 2, we only need to evaluate the first two cons cells and
the values they contain, which is why when we used :sprint

we only saw 1 : 2 : _. Evaluating to normal form would’ve
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meant recursing through the entire list, forcing not only the
entire spine but also the values each cons cell contained.

In these tree representations, evaluation or consumption of
the list goes down the spine. The following is a representation
of a list that isn’t spine strict and is awaiting something to force
the evaluation:

:

/ \

_ _

By default, it stops here and never evaluates even the first
cons cell unless it’s forced to, as we saw.

However, functions that are spine strict can force complete
evaluation of the spine of the list even if they don’t force eval-
uation of each value. Pattern matching is strict by default, so
pattern matching on cons cells can mean forcing spine strict-
ness if your function doesn’t stop recursing the list. It can
evaluate the spine only or the spine as well as the values that
inhabit each cons cell, depending on context.

On the other hand, length is strict in the spine but not the
values. If we defined a list such as [1, 2, 3], using length on it
would force evaluation of the entire spine without accompa-
nying strictness in the values:

:

/ \
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_ :

/ \

_ :

/ \

_ []

We can see this if we use length but make one of the values
bottom with the undefined value, and see what happens:

Prelude> let x = [1, undefined, 3]

Prelude> length x

3

The first and third values in the list were numbers, but the
second value was undefined and length didn’t make it crash.
Why? Because length measures the length of a list, which only
requires recursing the spine and counting how many cons cells
there are. We could define our own length function ourselves
like so:

-- *Not* identical to the length

-- function in Prelude

length :: [a] -> Integer

length [] = 0

length (_:xs) = 1 + length xs
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One thing to note is that we use _ to ignore the values in our
arguments or that are part of a pattern match. In this case, we
pattern-matched on the (:) data constructor, but wanted to
ignore the value which is the first argument. However, it’s not
a mere convention to bind references we don’t care about on
the left-hand side to _. You can’t bind arguments to the name
”_”; it’s part of the language. This is partly so the compiler
knows for a certainty you won’t ever evaluate something in
that particular case. Currently, if you try using _ on the right-
hand side in the definition, it’ll think you’re trying to refer to
a hole.

We’re only forcing the (:) constructors and the [] at the
end in order to count the number of values contained by the
list:

: <-|

/ \ |

|-> _ : <-|

| / \ | These got evaluated (forced)

|-> _ : <-|

| / \ |

|-> _ [] <-|

|

| These did not

However, length will throw an error on a bottom value if
part of the spine itself is bottom:
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Prelude> let x = [1] ++ undefined ++ [3]

Prelude> x

[1*** Exception: Prelude.undefined

Prelude> length x

*** Exception: Prelude.undefined

Printing the list fails, although it gets as far as printing the
first [ and the first value, and attempting to get the length also
fails because it can’t count undefined spine values.

It’s possible to write functions which will force both the
spine and the values. sum is an example because in order to
return a result at all, it must return the sum of all values in the
list.

We’ll write our own sum function for the sake of demonstra-
tion:

mySum :: Num a => [a] -> a

mySum [] = 0

mySum (x : xs) = x + mySum xs

First, the + operator is strict in both of its arguments, so that
will force evaluation of the values and the mySum xs. Therefore
mySum will keep recursing until it hits the empty list and must
stop. Then it will start going back up the spine of the list,
summing the inhabitants as it goes. It looks something like
this (the zero represents our empty list):
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Prelude> mySum [1..5]

1 + (2 + (3 + (4 + (5 + 0))))

1 + (2 + (3 + (4 + 5)))

1 + (2 + (3 + 9))

1 + (2 + 12)

1 + 14

15

We will be returning to this topic at various points in the
book because developing intuition for Haskell’s evaluation
strategies takes time and practice. If you don’t feel like you
fully understand it at this point, that’s OK. It’s a complex topic,
and it’s better to approach it in stages.

Exercises: Bottom Madness

Will it blow up?

Will the following expressions return a value or be ⊥?

1. [x^y | x <- [1..5], y <- [2, undefined]]

2. take 1 $

[x^y | x <- [1..5], y <- [2, undefined]]

3. sum [1, undefined, 3]

4. length [1, 2, undefined]
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5. length $ [1, 2, 3] ++ undefined

6. take 1 $ filter even [1, 2, 3, undefined]

7. take 1 $ filter even [1, 3, undefined]

8. take 1 $ filter odd [1, 3, undefined]

9. take 2 $ filter odd [1, 3, undefined]

10. take 3 $ filter odd [1, 3, undefined]

Intermission: Is it in normal form?

For each expression below, determine whether it’s in:

1. normal form, which implies weak head normal form;

2. weak head normal form only; or,

3. neither.

Remember that an expression cannot be in normal form or
weak head normal form if the outermost part of the expression
isn’t a data constructor. It can’t be in normal form if any part
of the expression is unevaluated.

1. [1, 2, 3, 4, 5]

2. 1 : 2 : 3 : 4 : _
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3. enumFromTo 1 10

4. length [1, 2, 3, 4, 5]

5. sum (enumFromTo 1 10)

6. ['a'..'m'] ++ ['n'..'z']

7. (_, 'b')

9.9 Transforming lists of values

We have already seen how we can make recursive functions
with self-referential expressions. It’s a useful tool and a core
part of the logic of Haskell. In truth, in part because Haskell
uses nonstrict evaluation, we tend to use higher-order func-
tions for transforming data rather than manually recursing
over and over.

For example, one common thing you would want to do is
return a list with a function applied uniformly to all values
within the list. To do so, you need a function that is inherently
recursive and can apply that function to each member of the
list. For this purpose we can use either the map or fmap functions.
map can only be used with []. fmap is defined in a typeclass
named Functor and can be applied to data other than lists. We
will learn more about Functor later; for now, we’ll focus on the
list usage. Here are some examples using map and fmap:
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Prelude> map (+1) [1, 2, 3, 4]

[2,3,4,5]

Prelude> map (1-) [1, 2, 3, 4]

[0,-1,-2,-3]

Prelude> fmap (+1) [1, 2, 3, 4]

[2,3,4,5]

Prelude> fmap (2*) [1, 2, 3, 4]

[2,4,6,8]

Prelude> fmap id [1, 2, 3]

[1,2,3]

Prelude> map id [1, 2, 3]

[1,2,3]

The types of map and fmap respectively are:

map :: (a -> b) -> [a] -> [b]

fmap :: Functor f => (a -> b) -> f a -> f b

Let’s look at how the types line up with a program, starting
with map:

map :: (a -> b) -> [a] -> [b]

map (+1)

The (a -> b) becomes more specific and resolves to Num a

=> a -> a:
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Prelude> :t map (+1)

map (+1) :: Num b => [b] -> [b]

Now we see it will take one list of Num as an argument and
return a list of Num as a result.

The type of fmap will behave similarly:

fmap :: Functor f => (a -> b) -> f a -> f b

-- notice the Functor typeclass constraint

fmap (+1)

-- again, (a -> b) is now more specific

It’s a bit different from map because the Functor typeclass
includes more than lists:

Prelude> :t fmap (+1)

fmap (+1) :: (Num b, Functor f) => f b -> f b

Here’s how map is defined in base:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

-- [1] [2] [3]

map f (x:xs) = f x : map f xs

-- [4] [5] [6] [7] [8]
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1. _ is used here to ignore the function argument because
we don’t need it.

2. We are pattern matching on the [] empty list case because
List is a sum type with two cases and we must handle both
every time we pattern match or case on a list value.

3. We return the [] empty list value because when there are
no values, it’s the only correct thing we can do. If you
attempt to do anything else, the typechecker will swat
you.

4. We bind the function argument to the name 𝑓 as it merits
no name more specific than this. 𝑓 and 𝑔 are common
names for nonspecific function values in Haskell. This is
the function we are mapping over the list value with map

5. We do not leave the entire list argument bound as a single
name. Since we’ve already pattern-matched the [] empty
list case, we know there must be at least one value in
the list. Here we pattern match into the (:) second data
constructor of the list, which is a product. 𝑥 is the single
value of the cons product. 𝑥𝑠 is the rest of the list.

6. We apply our function 𝑓 to the single value 𝑥. This part
of the map function is what applies the function argument
to the contents of the list.



CHAPTER 9. THIS THING AND SOMEMORE STUFF 504

7. We (:) cons the value returned by the expression f x onto
the head of the result of map’ing the rest of the list. Data is
immutable in Haskell. When we map, we do not mutate
the existing list, but build a new list with the values that
result from applying the function.

8. We call map itself applied to 𝑓 and 𝑥𝑠. This expression is the
rest of the list with the function 𝑓 applied to each value.

How do we write out what map f does? Note, this order of
evaluation doesn’t represent the proper nonstrict evaluation
order, but does give an idea of what’s going on:

map (+1) [1, 2, 3]

-- desugared, (:) is infixr 5,

-- so it's right-associative

map (+1) (1 : (2 : (3 : [])))

-- Not an empty list, so second

-- pattern-match in map fires.

-- Apply (+1) to value, then map

(+1) 1 :

map (+1)

(2 : (3 : []))
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-- Apply (+1) to the next value, cons onto

-- the result of mapping over the rest

(+1) 1 :

((+1) 2 :

(map (+1)

(3 : [])))

-- Last time we'll trigger the

-- second-case of map

(+1) 1 :

((+1) 2 :

((+1) 3 :

(map (+1) [])))

-- Now we trigger the base-case that

-- handles empty list and return the

-- empty list.

(+1) 1 :

((+1) 2 :

((+1) 3 : []))

-- Now we reduce

2 : ((+1) 2 : ((+1) 3 : []))

2 : 3 : (+1) 3 : []

2 : 3 : 4 : [] == [2, 3, 4]
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Using the syntactic sugar of list, here’s an approximation of
what map is doing for us:

map f [1, 2, 3] == [f 1, f 2, f 3]

map (+1) [1, 2, 3]

[(+1) 1, (+1) 2, (+1) 3]

[2, 3, 4]

Or using the spine syntax we introduced earlier:

:

/ \

1 :

/ \

2 :

/ \

3 []

map (+1) [1, 2, 3]

:

/ \

(+1) 1 :

/ \

(+1) 2 :

/ \
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(+1) 3 []

As we mentioned above, these representations do not ac-
count for nonstrict evaluation. Crucially, map doesn’t traverse
the whole list and apply the function immediately. The func-
tion is applied to the values you force out of the list one by one.
We can see this by selectively leaving some values undefined:

Prelude> map (+1) [1, 2, 3]

[2,3,4]

-- the whole list was forced because

-- GHCi printed the list that resulted

Prelude> (+1) undefined

*** Exception: Prelude.undefined

Prelude> (1, undefined)

(1,*** Exception: Prelude.undefined

Prelude> fst (1, undefined)

1

Prelude> map (+1) [1, 2, undefined]

[2,3,*** Exception: Prelude.undefined



CHAPTER 9. THIS THING AND SOMEMORE STUFF 508

Prelude> take 2 $ map (+1) [1, 2, undefined]

[2,3]

In the final example, the undefined value was never forced
and there was no error because we used take 2 to request only
the first two elements. With map (+1) we only force as many
values as cons cells we forced. We’ll only force the values if
we evaluate the result value in the list that the map function
returns.

The significant part here is that strictness doesn’t proceed
only outside-in. We can have lazily evaluated code (e.g., map)
wrapped around a strict core (e.g., +). In fact, we can choose to
apply laziness and strictness in how we evaluate the spine or
the leaves independently. A common mantra for performance
sensitive code in Haskell is, “lazy in the spine, strict in the
leaves.” We’ll cover this properly later when we talk about
nonstrictness and data structures, although many Haskell users
rarely worry about this.

You can use map and fmap with other functions and list types
as well. In this example, we use the fst function to return a
list of the first element of each tuple in a list of tuples:

Prelude> map fst [(2, 3), (4, 5), (6, 7), (8, 9)]

[2,4,6,8]

Prelude> fmap fst [(2, 3), (4, 5), (6, 7), (8, 9)]

[2,4,6,8]
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In this example we map a partially applied take function:

Prelude> map (take 3) [[1..5], [1..5], [1..5]]

[[1,2,3],[1,2,3],[1,2,3]]

Next, we’ll map an if-then-else over a list using an anony-
mous function. This list will find any value equal to 3, negate
it, and then return the list:

Prelude> map (\x -> if x == 3 then (-x) else (x)) [1..10]

[1,2,-3,4,5,6,7,8,9,10]

At this point, you can try your hand at mapping different
functions using this as a model. We recommend getting com-
fortable with mapping before moving on to the Folds chapter.

Exercises: More Bottoms

As always, we encourage you to try figuring out the answers
before you enter them into your REPL.

1. Will the following expression return a value or be ⊥?

take 1 $ map (+1) [undefined, 2, 3]

2. Will the following expression return a value?

take 1 $ map (+1) [1, undefined, 3]

3. Will the following expression return a value?
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take 2 $ map (+1) [1, undefined, 3]

4. What does the following mystery function do? What is its
type? Describe it (to yourself or a loved one) in standard
English and then test it out in the REPL to make sure you
were correct.

itIsMystery xs =

map (\x -> elem x "aeiou") xs

5. What will be the result of the following functions:

a) map (^2) [1..10]

b) map minimum [[1..10], [10..20], [20..30]]

-- n.b. `minimum` is not the same function

-- as the `min` that we used before

c) map sum [[1..5], [1..5], [1..5]]

6. Back in chapter 7, you wrote a function called foldBool.
That function exists in a module known as Data.Bool and
is called bool. Write a function that does the same (or
similar, if you wish) as the map (if-then-else) function you
saw above but uses bool instead of the if-then-else syntax.
Your first step should be bringing the bool function into
scope by typing import Data.Bool at your Prelude prompt.
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9.10 Filtering lists of values

When we talked about function composition in Chapter 7,
we used a function called filter that takes a list as input and
returns a new list consisting solely of the values in the input
list that meet a certain condition, as in this example which
finds the even numbers of a list and returns a new list of those
values:

Prelude> filter even [1..10]

[2,4,6,8,10]

Let’s now take a closer look at filter. filter has the follow-
ing definition:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter pred (x:xs)

| pred x = x : filter pred xs

| otherwise = filter pred xs

Filtering takes a function that returns a Bool value, maps
that function over a list, and returns a new list of all the values
that met the condition. It’s important to remind ourselves that
this function, as we can see in the definition, builds a new list
including values that meet the condition and excluding the
ones that do not — it does not mutate the existing list.
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We have seen how filter works with odd and even already.
We have also seen one example along the lines of this:

Prelude> filter (== 'a') "abracadabra"

"aaaaa"

As youmight suspect fromwhatwe’ve seen ofHOFs, though,
filter can handle many types of arguments. The following ex-
ample does the same thing as filter even but with anonymous
function syntax:

Prelude> filter (\x -> (rem x 2) == 0) [1..20]

[2,4,6,8,10,12,14,16,18,20]

We covered list comprehensions earlier as a way of filtering
lists as well. Compare the following:

Prelude> filter (\x -> elem x "aeiou") "abracadabra"

"aaaaa"

Prelude> [x | x <- "abracadabra", elem x "aeiou"]

"aaaaa"

As they say, there’s more than one way to skin a cat.
Again, we recommend at this point you try writing some

filter functions of your own to get comfortable with the pat-
tern.
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Exercises: Filtering

1. Given the above, how might we write a filter function that
would give us all the multiples of 3 out of a list from 1-30?

2. Recalling what we learned about function composition,
how could we compose the above function with the length

function to tell us *how many* multiples of 3 there are
between 1 and 30?

3. Next we’re going to work on removing all articles (’the’, ’a’,
and ’an’) from sentences. You want to get to something
that works like this:

Prelude> myFilter "the brown dog was a goof"

["brown","dog","was","goof"]

You may recall that earlier in this chapter we asked you
to write a function that separates a string into a list of
strings by separating them at spaces. That is a standard
library function called words. You may consider starting
this exercise by using words (or your version, of course).

9.11 Zipping lists

Zipping lists together is a means of combining values from
multiple lists into a single list. Related functions like zipWith
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allow you to use a combining function to produce a list of
results from two lists.

First let’s look at zip:

Prelude> :t zip

zip :: [a] -> [b] -> [(a, b)]

Prelude> zip [1, 2, 3] [4, 5, 6]

[(1,4),(2,5),(3,6)]

One thing to note is that zip stops as soon as one of the lists
runs out of values:

Prelude> zip [1, 2] [4, 5, 6]

[(1,4),(2,5)]

Prelude> zip [1, 2, 3] [4]

[(1,4)]

And will return an empty list if either of the lists is empty:

Prelude> zip [] [1..1000000000000000000]

[]

zip proceeds until the shortest list ends.

Prelude> zip ['a'] [1..1000000000000000000]

[('a',1)]

Prelude> zip [1..100] ['a'..'c']

[(1,'a'),(2,'b'),(3,'c')]
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We can use unzip to recover the lists as they were before
they were zipped:

Prelude> zip [1, 2, 3] [4, 5, 6]

[(1,4),(2,5),(3,6)]

Prelude> unzip $ zip [1, 2, 3] [4, 5, 6]

([1,2,3],[4,5,6])

Prelude> fst $ unzip $ zip [1, 2, 3] [4, 5, 6]

[1,2,3]

Prelude> snd $ unzip $ zip [1, 2, 3] [4, 5, 6]

[4,5,6]

Be aware that information can be lost in this process because
zip must stop on the shortest list:

Prelude> snd $ unzip $ zip [1, 2] [4, 5, 6]

[4,5]

We can also use zipWith to apply a function to the values of
two lists in parallel:

zipWith :: (a -> b -> c)

-- [1]

-> [a] -> [b] -> [c]

-- [2] [3] [4]
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1. A function with two arguments. Notice how the type
variables of the arguments and result align with the type
variables in the lists.

2. The first input list.

3. The second input list.

4. The output list created from applying the function to the
values in the input lists.

A brief demonstration of how zipWith works:

Prelude> zipWith (+) [1, 2, 3] [10, 11, 12]

[11,13,15]

Prelude> zipWith (*) [1, 2, 3] [10, 11, 12]

[10,22,36]

Prelude> zipWith (==) ['a'..'f'] ['a'..'m']

[True,True,True,True,True,True]

Prelude> let xs = [10, 5, 34, 9]

Prelude> let xs' = [6, 8, 12, 7]

Prelude> zipWith max xs xs'

[10,8,34,9]
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Zipping exercises

1. Write your own version of zip and ensure it behaves the
same as the original.

zip :: [a] -> [b] -> [(a, b)]

zip = undefined

2. Do what you did for zip, but now for zipWith:

zipWith :: (a -> b -> c)

-> [a] -> [b] -> [c]

zipWith = undefined

3. Rewrite your zip in terms of the zipWith you wrote.

9.12 Chapter Exercises

The first set of exercises here will mostly be review but will
also introduce you to some new things. The second set is
more conceptually challenging but does not use any syntax or
concepts we haven’t already studied. If you get stuck, it may
help to flip back to a relevant section and review.

Data.Char

These first few exercises are straightforward but will introduce
you to some new library functions and review some of what
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we’ve learned so far. Some of the functions we will use here
are not standard in Prelude and so have to be imported from
a module called Data.Char. You may do so in a source file
(recommended) or at the Prelude prompt with the same phrase:
import Data.Char (write that at the top of your source file). This
brings into scope a bunch of new standard functions we can
play with that operate on Char and String types.

1. Query the types of isUpper and toUpper.

2. Given the following behaviors, which would we use to
write a function that filters all the uppercase letters out
of a String? Write that function such that, given the input
“HbEfLrLxO,” your function will return “HELLO.”

Prelude Data.Char> isUpper 'J'

True

Prelude Data.Char> toUpper 'j'

'J'

3. Write a function that will capitalize the first letter of a
string and return the entire string. For example, if given
the argument “julie,” it will return “Julie.”

4. Now make a new version of that function that is recursive
such that if you give it the input “woot” it will holler back
at you “WOOT.” The type signature won’t change, but
you will want to add a base case.
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5. To do the final exercise in this section, we’ll need another
standard function for lists called head. Query the type of
head and experiment with it to see what it does. Now write
a function that will capitalize the first letter of a String
and return only that letter as the result.

6. Cool. Good work. Now rewrite it as a composed function.
Then, for fun, rewrite it pointfree.

Ciphers

We’ll still be using Data.Char for this next exercise. You should
save these exercises in a module called Cipher because we’ll
be coming back to them in later chapters. You’ll be writing a
Caesar cipher for now, but we’ll suggest some variations on
the basic program in later chapters.

A Caesar cipher is a simple substitution cipher, in which
each letter is replaced by the letter that is a fixed number of
places down the alphabet from it. You will find variations on
this all over the place — you can shift leftward or rightward,
for any number of spaces. A rightward shift of 3 means that
’A’ will become ’D’ and ’B’ will become ’E,’ for example. If you
did a leftward shift of 5, then ’a’ would become ’v’ and so forth.

Your goal in this exercise is to write a basic Caesar cipher
that shifts rightward. You can start by having the number of
spaces to shift fixed, but it’s more challenging to write a cipher
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that allows you to vary the number of shifts so that you can
encode your secret messages differently each time.

There are Caesar ciphers written in Haskell all over the
internet, but to maximize the likelihood that you can write
yours without peeking at those, we’ll provide a couple of tips.
When yours is working the way you want it to, we would
encourage you to then look around and compare your solution
to others out there.

The first lines of your text file should look like this:

module Cipher where

import Data.Char

Data.Char includes two functions called ord and chr that can
be used to associate a Char with its Int representation in the
Unicode system and vice versa:

*Cipher> :t chr

chr :: Int -> Char

*Cipher> :t ord

ord :: Char -> Int

Using these functions is optional; there are other ways you
can proceed with shifting, but using chr and ord might simplify
the process a bit.



CHAPTER 9. THIS THING AND SOMEMORE STUFF 521

You want your shift to wrap back around to the beginning of
the alphabet, so that if you have a rightward shift of 3 from ’z,’
you end up back at ’c’ and not somewhere in the vast Unicode
hinterlands. Depending on how you’ve set things up, this
might be a bit tricky. Consider starting from a base character
(e.g., ’a’) and using mod to ensure you’re only shifting over the
26 standard characters of the English alphabet.

You should include an unCaesar function that will decipher
your text as well. In a later chapter, we will test it.

Writing your own standard functions

Below are the outlines of some standard functions. The goal
here is to write your own versions of these to gain a deeper
understanding of recursion over lists and how to make func-
tions flexible enough to accept a variety of inputs. You could
figure out how to look up the answers, but you won’t do that
because you know you’d only be cheating yourself out of the
knowledge. Right?

Let’s look at an example of what we’re after here. The and2

function can take a list of Bool values and returns True if and
only if no values in the list are False. Here’s how you might
write your own version of it:

2 Note that if you’re using GHC 7.10 or newer, the functions and, any, and all have
been abstracted from being usable only with lists to being usable with any datatype that
has an instance of the typeclass Foldable. It still works with lists, the same as it did before.
Proceed assured that we’ll cover this later.
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-- direct recursion, not using (&&)

myAnd :: [Bool] -> Bool

myAnd [] = True

myAnd (x:xs) =

if x == False

then False

else myAnd xs

-- direct recursion, using (&&)

myAnd :: [Bool] -> Bool

myAnd [] = True

myAnd (x:xs) = x && myAnd xs

And now the fun begins:

1. myOr returns True if any Bool in the list is True.

myOr :: [Bool] -> Bool

myOr = undefined

2. myAny returns True if a -> Bool applied to any of the values
in the list returns True.

myAny :: (a -> Bool) -> [a] -> Bool

myAny = undefined

Example for validating myAny:
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Prelude> myAny even [1, 3, 5]

False

Prelude> myAny odd [1, 3, 5]

True

3. After you write the recursive myElem, write another version
that uses any. The built-in version of elem in GHC 7.10 and
newer has a type that uses Foldable instead of the list type
specifically. You can ignore that and write the concrete
version that works only for list.

myElem :: Eq a => a -> [a] -> Bool

Prelude> myElem 1 [1..10]

True

Prelude> myElem 1 [2..10]

False

4. Implement myReverse.

myReverse :: [a] -> [a]

myReverse = undefined

Prelude> myReverse "blah"

"halb"

Prelude> myReverse [1..5]

[5,4,3,2,1]
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5. squish flattens a list of lists into a list

squish :: [[a]] -> [a]

squish = undefined

6. squishMap maps a function over a list and concatenates the
results.

squishMap :: (a -> [b]) -> [a] -> [b]

squishMap = undefined

Prelude> squishMap (\x -> [1, x, 3]) [2]

[1,2,3]

Prelude> squishMap (\x -> "WO "++[x]++" HOO ") "123"

"WO 1 HOO WO 2 HOO WO 3 HOO "

7. squishAgain flattens a list of lists into a list. This time re-use
the squishMap function.

squishAgain :: [[a]] -> [a]

squishAgain = undefined

8. myMaximumBy takes a comparison function and a list and
returns the greatest element of the list based on the last
value that the comparison returned GT for. If you import
maximumBy from Data.List, you’ll see the type is:

Foldable t

=> (a -> a -> Ordering) -> t a -> a
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rather than

(a -> a -> Ordering) -> [a] -> a

myMaximumBy :: (a -> a -> Ordering)

-> [a] -> a

myMaximumBy = undefined

Prelude> let xs = [1, 53, 9001, 10]

Prelude> myMaximumBy compare xs

9001

9. myMinimumBy takes a comparison function and a list and
returns the least element of the list based on the last value
that the comparison returned LT for.

myMinimumBy :: (a -> a -> Ordering)

-> [a] -> a

myMinimumBy = undefined

Prelude> let xs = [1, 53, 9001, 10]

Prelude> myMinimumBy compare xs

1

10. Using the myMinimumBy and myMaximumBy functions, write your
own versions of maximum and minimum. If you have GHC 7.10
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or newer, you’ll see a type constructor thatwants a Foldable

instance instead of a list as has been the case for many
functions so far.

myMaximum :: (Ord a) => [a] -> a

myMaximum = undefined

myMinimum :: (Ord a) => [a] -> a

myMinimum = undefined

9.13 Definitions

1. In type theory, a product type is a type made of a set of types
compounded over each other. In Haskell we represent
products using tuples or data constructors with more than
one argument. The “compounding” is from each type
argument to the data constructor representing a value that
coexists with all the other values simultaneously. Products
of types represent a conjunction, “and,” of those types. If
you have a product of Bool and Int, your terms will each
contain a Bool and Int value.

2. In type theory, a sum type of two types is a type whose
terms are terms in either type, but not simultaneously. In
Haskell sum types are represented using the pipe, |, in a
datatype definition. Sums of types represent a disjunction,
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“or,” of those types. If you have a sum of Bool and Int, your
terms will be either a Bool value or an Int value.

3. Cons is ordinarily used as a verb to signify that a list value
has been created by cons’ing a value onto the head of
another list value. In Haskell, (:) is the cons operator for
the list type. It is a data constructor defined in the list
datatype:

1 : [2, 3]

-- [a] [b]

[1, 2, 3]

-- [c]

(:) :: a -> [a] -> [a]

-- [d] [e] [f]

a) The number 1, the value we are consing.

b) A list of the number 2 followed by the number 3.

c) The final result of consing 1 onto [2, 3].

d) The type variable 𝑎 corresponds to 1, the value we
consed onto the list value.

e) The first occurrence of the type [a] in the cons oper-
ator’s type corresponds to the second and final argu-
ment (:) accepts, which was [2, 3].
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f) The second and final occurrence of the type [a] in the
cons operator’s type corresponds to the final result
[1, 2, 3].

4. Cons cell is a data constructor and a product of the types
a and [a] as defined in the list datatype. Because it refer-
ences the list type constructor itself in the second argu-
ment, it allows for nesting of multiple cons cells, possibly
indefinitely with the use of recursive functions, for repre-
senting an indefinite number of values in series:

data [] a = [] | a : [a]

-- ^ cons operator

-- Defining it ourselves

data List a = Nil | Cons a (List a)

-- Creating a list using our list type

Cons 1 (Cons 2 (Cons 3 Nil))

Here (Cons 1 ...), (Cons 2 ...) and (Cons 3 Nil) are all
individual cons cells in the list [1, 2, 3].

5. The spine is a way to refer to the structure that glues a
collection of values together. In the list datatype it is
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formed by the recursive nesting of cons cells. The spine is,
in essence, the structure of collection that isn’t the values
contained therein. Often spine will be used in reference
to lists, but it applies with tree data structures as well:

-- Given the list [1, 2, 3]

1 : --------| The nested cons operators

(2 : -----| here represent the spine.

(3 : --|

[]))

-- Blanking the irrelevant values out

_ : ----------|

(_ : -------|

(_ : ----> Spine

[]))

9.14 Follow-up resources

1. Data.List documentation for the base library.
http://hackage.haskell.org/package/base/docs/Data-List.html

2. Ninety-nine Haskell problems.
https://wiki.haskell.org/H-99:_Ninety-Nine_Haskell_Problems

http://hackage.haskell.org/package/base/docs/Data-List.html
https://wiki.haskell.org/H-99:_Ninety-Nine_Haskell_Problems
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Folding lists

The explicit teaching of
thinking is no trivial task,
but who said that the
teaching of programming
is? In our terminology,
the more explicitly
thinking is taught, the
more of a scientist the
programmer will
become.

Edsger Dijkstra

530
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10.1 Folds

Folding is a concept that extends in usefulness and importance
beyond lists, but lists are often how they are introduced. Folds
as a general concept are called catamorphisms. You’re famil-
iar with the root, “morphism” from polymorphism. “Cata-”
means “down” or “against”, as in “catacombs.” Catamorphisms
are a means of deconstructing data. If the spine of a list is the
structure of a list, then a fold is what can reduce that structure.1

This chapter is a thorough look at the topic of folding lists
in Haskell. We will:

• explain what folds are and how they work;

• detail the evaluation processes of folds;

• walk through writing folding functions;

• introduce scans, functions that are related to folds.

10.2 Bringing you into the fold

Let’s start with a quick look at foldr, short for “fold right.” This
is the fold you’ll most often want to use with lists. The follow-
ing type signature may look a little hairy, but let’s compare it

1 Note that a catamorphism can break down the structure but that structure might be
rebuilt, so to speak, during evaluation. That is, folds can return lists as results.
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to what we know about mapping. Note that the type of foldr
changed with GHC 7.10:

-- GHC 7.8 and older

foldr :: (a -> b -> b) -> b -> [a] -> b

-- GHC 7.10 and newer

foldr :: Foldable t

=> (a -> b -> b)

-> b

-> t a

-> b

Lined up next to each other:

foldr :: Foldable t =>

(a -> b -> b) -> b -> t a -> b

foldr :: (a -> b -> b) -> b -> [] a -> b

For now, all you need to know is that GHC 7.10 abstracted
out the list-specific part of folding into a typeclass that lets you
reuse the same folding functions for any datatype that can be
folded — not just lists. We can even recover the more concrete
type because we can always make a type more concrete, but
never more generic:

Prelude> :{
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Prelude| let listFoldr :: (a -> b -> b)

Prelude| -> b

Prelude| -> [] a

Prelude| -> b

Prelude| listFoldr = foldr

Prelude| :}

Prelude> :t listFoldr

listFoldr :: (a -> b -> b) -> b -> [a] -> b

Now let’s notice a parallel between map and foldr:

foldr :: (a -> b -> b) -> b -> [a] -> b

-- Remember how map worked?

map :: (a -> b) -> [a] -> [b]

map (+1) 1 : 2 : 3 : []

(+1) 1 : (+1) 2 : (+1) 3 : []

-- Given the list

foldr (+) 0 (1 : 2 : 3 : [])

1 + (2 + (3 + 0))

Where map applies a function to each member of a list and
returns a list, a fold replaces the cons constructors with the
function and reduces the list.
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10.3 Recursive patterns

Let’s revisit sum:

Prelude> sum [1, 5, 10]

16

As we’ve seen, it takes a list, adds the elements together,
and returns a single result. You might think of it as similar
to the map functions we’ve looked at, except that it’s mapping
(+) over the list, replacing the cons operators themselves, and
returning a single result, instead of mapping, for example, (+1)
into each cons cell and returning a whole list of results back
to us. This has the effect of both mapping an operator over a
list and also reducing the list. In a previous section, we wrote
sum in terms of recursion:

sum :: [Integer] -> Integer

sum [] = 0

sum (x:xs) = x + sum xs

And if we bring back our length function from earlier:

length :: [a] -> Integer

length [] = 0

length (_:xs) = 1 + length xs
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Do you see some structural similiarity? What if you look at
product and concat as well?

product :: [Integer] -> Integer

product [] = 1

product (x:xs) = x * product xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

In each case, the base case is the identity for that function.
So the identity for sum, length, product, and concat respectively
are 0, 0, 1, and []. When we do addition, adding zero gives us
the same result as our initial value: 1 + 0 = 1. But when we do
multiplication, it’s multiplying by 1 that gives us the identity:
2 * 1 = 2. With list concatenation, the identity is the empty
list, such that [1, 2, 3] ++ [] == [1, 2, 3].

Also, each of them has a main function with a recursive
pattern that associates to the right. The head of the list gets
evaluated, set aside, and then the function moves to the right,
evaluates the next head, and so on.

10.4 Fold right

We call foldr the “right fold” because the fold is right asso-
ciative; that is, it associates to the right. This is syntactically
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reflected in a straightforward definition of foldr as well:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

The similarities between this and the recursive patterns we
saw above should be clear. The “rest of the fold,” (foldr f z xs)

is an argument to the function 𝑓 we’re folding with. The 𝑧 is
the zero of our fold. It provides a fallback value for the empty
list case and a second argument to begin our fold with. The
zero is often the identity for whatever function we’re folding
with, such as 0 for (+) and 1 for (*).

How foldr evaluates

We’re going to rejigger our definition of foldr a little bit. It
won’t change the semantics, but it’ll make it easier to write out
what’s happening:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z xs =

case xs of

[] -> z

(x:xs) -> f x (foldr f z xs)

Here we see how the right fold associates to the right. This
will reduce like the sum example from earlier:
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foldr (+) 0 [1, 2, 3]

When we reduce that fold, the first step is substituting 𝑥𝑠 in
our case expression:

foldr (+) 0 [1, 2, 3] =

case [1, 2, 3] of

...

Which case of the expression matches?

foldr (+) 0 [1, 2, 3] =

case [1, 2, 3] of

[] -> 0

(x:xs) ->

f x (foldr f z xs) --<--- this one

What are f, x, xs, and z in that branch of the case?

foldr (+) 0 [1, 2, 3] =

case [1, 2, 3] of

[] -> 0

(1 : [2, 3]) ->

(+) 1 (foldr (+) 0 [2, 3])

Critically, we’re going to expand (foldr (+) 0 [2, 3]) only
because (+) is strict in both of its arguments, so it forces the
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next iteration. We could have a function which doesn’t contin-
ually force the rest of the fold. If it were to stop on the first case
here, then it would’ve returned the value 1. One such function
is const which always returns the first argument. We’ll show
you how that behaves in a bit. Our next recursion is the (foldr

(+) 0 [2, 3]):

foldr (+) 0 [2, 3] =

case [2, 3] of

[] ->

0 -- this didn't match again

(2 : [3]) -> (+) 2 (foldr (+) 0 [3])

There is (+) 1 implicitly wrapped around this continuation
of the recursive fold. (+) is not only strict in both of its argu-
ments, but it’s unconditionally so, so we’re going to proceed to
the next recursion of foldr. Note that the function calls bounce
between our folding function 𝑓 and foldr. This bouncing back
and forth gives more control to the folding function. A hypo-
thetical folding function, such as const, which doesn’t need the
second argument has the opportunity to do less work by not
evaluating its second argument which is “more of the fold.”

There is (+) 1 ((+) 2 ...) implicitly wrapped around this
next step of the recursive fold:
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foldr (+) 0 [3] =

case [3] of

[] ->

0 -- this didn't match again

(3 : []) -> (+) 3 (foldr (+) 0 [])

We’re going to ask for more foldr one last time. There is,
again, (+) 1 ((+) 2 ((+) 3 ...)) implicitly wrapped around
this final step of the recursive fold. Now we hit our base case
and and hit our base case:

foldr (+) 0 [] =

case [] of

[] ->

0 --<-- This one finally matches

-- ignore the other case, didn't happen

So one way to think about the way Haskell evaluates is that
it’s like a text rewriting system. Our expression has thus far
rewritten itself from:

foldr (+) 0 [1, 2, 3]

Into:

(+) 1 ((+) 2 ((+) 3 0))
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If you wanted to clean it up a bit without changing how it
evaluates, you could make it the following:

1 + (2 + (3 + 0))

As in arithmetic, we evaluate innermost parentheses first:

1 + (2 + (3 + 0))

1 + (2 + 3)

1 + 5

6

And now we’re done, with the result of 6.
We can also use a trick popularized by some helpful users

in the Haskell IRC community to see how the fold associates.2

xs = map show [1..5]

y = foldr (\x y -> concat

["(",x,"+",y,")"]) "0" xs

When we call 𝑦 in the REPL, we can see how the foldr eval-
uates:

2 Idea borrowed from Cale Gibbard from the haskell Freenode IRC channel and on
the Haskell.org wiki https://wiki.haskell.org/Fold#Examples

https://wiki.haskell.org/Fold#Examples
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Prelude> y

"(1+(2+(3+(4+(5+0)))))"

One initially nonobvious aspect of folding is that it happens
in two stages, traversal and folding. Traversal is the stage
in which the fold recurses over the spine. Folding refers to
the evaluation or reduction of the folding function applied
to the values. All folds recurse over the spine in the same
direction; the difference between left folds and right folds is
in the association, or parenthesization, of the folding function
and, thus, which direction the folding or reduction proceeds.

With foldr, the rest of our fold is an argument to the func-
tion we’re folding with:

foldr f z (x:xs) = f x (foldr f z xs)

-- ^--------------^

-- rest of the fold

Given this two-stage process and nonstrict evaluation, if
𝑓 doesn’t evaluate its second argument (rest of the fold), no
more of the spine will be forced. One of the consequences of
this is that foldr can avoid evaluating not only some or all of
the values in the list, but some or all of the list’s spine as well!
For this reason, foldr can be used with lists that are potentially
infinite. For example, compare the following sets of results
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(recall that (+) will unconditionally evaluate the entire spine
and all of the values):

Prelude> foldr (+) 0 [1..5]

15

While you cannot use foldr with addition on an infinite list,
you can use functions that are not strict in both arguments and
therefore do not require evaluation of every value in order to
return a result. The function myAny, for example, can return a
True result as soon as it finds one True:

myAny :: (a -> Bool) -> [a] -> Bool

myAny f xs =

foldr (\x b -> f x || b) False xs

The following should work despite being an infinite list:

Prelude> myAny even [1..]

True

The following will never finish evaluating because it’s always
an odd number:

Prelude> myAny even (repeat 1)

Another term we use for this never-ending evaluation is
bottom or undefined. There’s no guarantee that a fold of an
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infinite list will finish evaluating even if you used foldr, it of-
ten depends on the input data and the fold function. Let us
consider some more examples with a less inconvenient bottom:

Prelude> let u = undefined

-- here, we give an undefined value

Prelude> foldr (+) 0 [1, 2, 3, 4, u]

*** Exception: Prelude.undefined

Prelude> let xs = take 4 [1, 2, 3, 4, u]

Prelude> foldr (+) 0 xs

10

-- here, undefined is part of the spine

Prelude> let xs = [1, 2, 3, 4] ++ u

Prelude> foldr (+) 0 xs

*** Exception: Prelude.undefined

Prelude> let xs = take 4 ([1, 2, 3, 4]++u)

Prelude> foldr (+) 0 xs

10

By taking only the first four elements, we stop the recursive
folding process at the first four values so our addition function
does not run into bottom, and that works whether undefined is
one of the values or part of the spine.
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The length function behaves differently; it evaluates the
spine unconditionally, but not the values:

Prelude> length [1, 2, 3, 4, undefined]

5

Prelude> length ([1, 2, 3, 4] ++ undefined)

*** Exception: Prelude.undefined

However, if we drop the part of the spine that includes the
bottom before we use length, we can get an expression that
works:

Prelude> let xs = [1, 2, 3, 4] ++ undefined

Prelude> length (take 4 xs)

4

take is nonstrict like everything else you’ve seen so far, and
in this case, it only returns as much list as you ask for. The dif-
ference in what it does, is it stops returning elements of the list
it was given when it hits the length limit you gave it. Consider
this:

Prelude> let xs = [1, 2] ++ undefined

Prelude> length $ take 2 $ take 4 xs

2

It doesn’t matter that take 4 could’ve hit the bottom! Noth-
ing forced it to because of the take 2 between it and length.
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Now that we’ve seen how the recursive second argument to
foldr’s folding function works, let’s consider the first argument:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

-- [1]

The first argument, [1], involves a pattern match that is
strict by default — the 𝑓 only applies to 𝑥 if there is an 𝑥 value
and not just an empty list. This means that foldr must force
an initial cons cell in order to discriminate between the [] and
the (x : xs) cases, so the first cons cell cannot be undefined.

Now we’re going to try something unusual to demonstrate
that the first bit of the spine must be evaluated by foldr. We
have a somewhat silly anonymous function that will ignore
all its arguments and return a value of 9001. We’re using it
with foldr because it will never force evaluation of any of its
arguments, so we can have a bottom as a value or as part of
the spine, and it will not force an evaluation:

Prelude> foldr (\_ _ -> 9001) 0 [1..5]

9001

Prelude> let xs = [1, 2, 3, undefined]

Prelude> foldr (\_ _ -> 9001) 0 xs

9001
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Prelude> let xs = [1, 2, 3] ++ undefined

Prelude> foldr (\_ _ -> 9001) 0 xs

9001

Everything is fine unless the first piece of the spine is bot-
tom:

Prelude> foldr (\_ _ -> 9001) 0 undefined

*** Exception: Prelude.undefined

Prelude> let xs = [1, undefined]

Prelude> foldr (\_ _ -> 9001) 0 xs

9001

Prelude> let xs = [undefined, undefined]

Prelude> foldr (\_ _ -> 9001) 0 xs

9001

The final two examples work because it isn’t the first cons
cell that is bottom — the undefined values are inside the cons
cells, not in the spine itself. Put differently, the cons cells
contain bottom values but are not themselves bottom. We will
experiment later with nonstrictness and strictness to see how
it affects the way our programs evaluate.

Traversing the rest of the spine doesn’t occur unless the
function asks for the results of having folded the rest of the
list. In the following examples, we don’t force traversal of the
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spine because const throws away its second argument, which
is the rest of the fold:

-- reminder:

-- const :: a -> b -> a

-- const x _ = x

Prelude> const 1 2

1

Prelude> const 2 1

2

Prelude> foldr const 0 [1..5]

1

Prelude> foldr const 0 [1,undefined]

1

Prelude> foldr const 0 ([1,2] ++ undefined)

1

Prelude> foldr const 0 [undefined,2]

*** Exception: Prelude.undefined

Now that we’ve seen how foldr evaluates, we’re going to
look at foldl before we move on to learning how to write and
use folds.
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10.5 Fold left

Because of the way lists work, folds must first recurse over
the spine of the list from the beginning to the end. Left folds
traverse the spine in the same direction as right folds, but their
folding process is left associative and proceeds in the opposite
direction as that of foldr.

Here’s a simple definition of foldl. Note that to see the same
type for foldl in your GHCi REPL you will need to import
Data.List for the same reasons as with foldr:

-- again, different type in

-- GHC 7.10 and newer.

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f acc [] = acc

foldl f acc (x:xs) = foldl f (f acc x) xs

foldl :: (b -> a -> b) -> b -> [a] -> b

-- Given the list

foldl (+) 0 (1 : 2 : 3 : [])

-- foldl associates like this

((0 + 1) + 2) + 3
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We can also use the same trick we used to see the associa-
tivity of foldr to see the associativity of foldl:

Prelude> let conc = concat

Prelude> let f x y = conc ["(",x,"+",y,")"]

Prelude> foldl f "0" (map show [1..5])

"(((((0+1)+2)+3)+4)+5)"

We can see from this that foldl begins its reduction process
by adding the acc (accumulator) value to the head of the list,
whereas foldr had added it to the final element of the list first.

We can also use functions called scans to see how folds eval-
uate. Scans are similar to folds but return a list of all the inter-
mediate stages of the fold. We can compare scanr and scanl to
their accompanying folds to see the difference in evaluation:

Prelude> foldr (+) 0 [1..5]

15

Prelude> scanr (+) 0 [1..5]

[15,14,12,9,5,0]

Prelude> foldl (+) 0 [1..5]

15

Prelude> scanl (+) 0 [1..5]

[0,1,3,6,10,15]
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The relationship between the scans and folds are as follows:

last (scanl f z xs) = foldl f z xs

head (scanr f z xs) = foldr f z xs

Each fold will return the same result for this operation, but
we can see from the scans that they arrive at that result in a
different order, due to the different associativity. We’ll talk
more about scans later.

Associativity and folding

Next we’ll take a closer look at some of the effects of the asso-
ciativity of foldl. As we’ve said, both folds traverse the spine
in the same direction. What’s different is the associativity of
the evaluation.

The fundamental way to think about evaluation in Haskell
is as substitution. When we use a right fold on a list with the
function 𝑓 and start value 𝑧, we’re, in a sense, replacing the
cons constructors with our folding function and the empty list
constructor with our start value 𝑧:
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[1..3] == 1 : 2 : 3 : []

foldr f z [1, 2, 3]

1 `f` (foldr f z [2, 3])

1 `f` (2 `f` (foldr f z [3]))

1 `f` (2 `f` (3 `f` (foldr f z [])))

1 `f` (2 `f` (3 `f` z))

Furthermore, lazy evaluation lets our functions, rather than
the ambient semantics of the language, dictate what order
things get evaluated in. Because of this, the parentheses are real.
In the above, the 3 `f` z pairing gets evaluated first because
it’s in the innermost parentheses. Right folds have to traverse
the list outside-in, but the folding itself starts from the end of
the list.

It’s hard to see this with arithmetic functions that are as-
sociative, such as addition, but it’s an important point to un-
derstand, so we’ll run through some different examples. Let’s
start by using an arithmetic operation that isn’t associative:

Prelude> foldr (^) 2 [1..3]

1

Prelude> foldl (^) 2 [1..3]

64

This time we can see clearly that we got different results, and
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that difference results from the way the functions associate.
Here’s a breakdown:

-- if you want to follow along,

-- use paper and not the REPL.

foldr (^) 2 [1..3]

(1 ^ (2 ^ (3 ^ 2)))

(1 ^ (2 ^ 9))

1 ^ 512

1

Contrast that with this:

foldl (^) 2 [1..3]

((2 ^ 1) ^ 2) ^ 3

(2 ^ 2) ^ 3

4 ^ 3

64

In this next set of comparisons, we will demonstrate the
effect of associativity on argument order by folding the list
into a new list, like this:

Prelude> foldr (:) [] [1..3]

[1,2,3]

Prelude> foldl (flip (:)) [] [1..3]

[3,2,1]
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We must use flip with foldl. Let’s examine why.
Like a right fold, a left fold cannot perform magic and go to

the end of the list instantly; it must start from the beginning
of the list. However, the parentheses dictate how our code
evaluates. The type of the argument to the folding function
changes in addition to the associativity:

foldr :: (a -> b -> b) -> b -> [a] -> b

-- [1] [2] [3]

foldl :: (b -> a -> b) -> b -> [a] -> b

-- [4] [5] [6]

1. The parameter of type 𝑎 represents one of the list element
arguments the folding function of foldr is applied to.

2. The parameter of type 𝑏 will either be the start value or
the result of the fold accumulated so far, depending on
how far you are into the fold.

3. The final result of having combined the list element and
the start value or fold so far to compute the fold.

4. The start value or fold accumulated so far is the first ar-
gument to foldl’s folding function.

5. The list element is the second argument to foldl’s folding
function.
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6. The final result of foldl’s fold function is of type 𝑏, like
that of foldr.

The type of (:) requires that a value be the first argument
and a list be the second argument:

(:) :: a -> [a] -> [a]

So the value is prepended, or “consed onto,” the front of
that list.

In the following examples, the tilde means “is equivalent or
equal to.” If we write a right fold that has the cons constructor
as our 𝑓 and the empty list as our 𝑧, we get:

-- foldr f z [1, 2, 3]

-- f ~ (:); z ~ []

-- Run it in your REPL. It'll return True.

foldr (:) [] (1 : 2 : 3 : [])

== 1 : (2 : (3 : []))

The consing process for foldr matches the type signature
for (:). It also reproduces the same list because we’re replacing
the cons constructors with cons constructors and the null list
with null list. However, for it to be identical, it also has to be
right associative.

Doing the same with foldl does not produce the same result.
When using foldl, the result we’ve accumulated so far is the
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first argument instead of the list element. This is opposite of
what (:) expects if we’re accumulating a list. Trying to fold
the identity of the list as above but with foldl would give us a
type error because the reconstructing process for foldl would
look like this:

foldl f z [1, 2, 3]

-- f ~ (:); z ~ []

-- (((z `f` 1) `f` 2) `f` 3)

((([] : 1) : 2) : 3)

That won’t work because the 𝑧 is an empty list and the 𝑓 is
cons, so we have the order of arguments backwards for cons.
Enter flip, whose job is to take backwards arguments and turn
that frown upside down. It will flip each set of arguments
around for us, like this:

foldl f z [1, 2, 3]

-- f ~ (flip (:)); z ~ []

-- (((z `f` 1) `f` 2) `f` 3)

f = flip (:)

((([] `f` 1) `f` 2) `f` 3)

(([1] `f` 2) `f` 3)

([2, 1] `f` 3)

[3, 2, 1]
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Evenwhenwe’ve satisfied the types by flipping things around,
the left-associating nature of foldl leads to a different result
from that of foldr.

For the next set of comparisons, we’re going to use a func-
tion called const that takes two arguments and always returns
the first one. When we fold const over a list, it will take as its
first pair of arguments the acc value and a value from the list
— which value it takes first depends on which type of fold it is.
We’ll show you how it evaluates for the first example:

Prelude> foldr const 0 [1..5]

(const 1 _)

1

Since const doesn’t evaluate its second argument the rest
of the fold is never evaluated. The underscore represents the
rest of the unevaluated fold. Now, let’s look at the effect of
flipping the arguments. The 0 result is because zero is our
accumulator value here, so it’s the first (or last) value of the
list:

Prelude> foldr (flip const) 0 [1..5]

0

Next let’s look at what happens when we use the same func-
tions but this time with foldl. Take a few moments to under-
stand the evaluation process that leads to these results:
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Prelude> foldl (flip const) 0 [1..5]

5

Prelude> foldl const 0 [1..5]

0

This is the effect of left associativity. The spine traversal
happens in the same order in a left or right fold — it must, be-
cause of the way lists are defined. Depending on your folding
function, a left fold can lead to a different result than a right
fold of the same.

Exercises: Understanding Folds

1. foldr (*) 1 [1..5]

will return the same result as which of the following:

a) flip (*) 1 [1..5]

b) foldl (flip (*)) 1 [1..5]

c) foldl (*) 1 [1..5]

2. Write out the evaluation steps for

foldl (flip (*)) 1 [1..3]

3. One difference between foldr and foldl is:

a) foldr, but not foldl, traverses the spine of a list from
right to left
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b) foldr, but not foldl, always forces the rest of the fold

c) foldr, but not foldl, associates to the right

d) foldr, but not foldl, is recursive

4. Folds are catamorphisms, which means they are generally
used to

a) reduce structure

b) expand structure

c) render you catatonic

d) generate infinite data structures

5. The following are simple folds very similar to what you’ve
already seen, but each has at least one error. Please fix
them and test in your REPL:

a) foldr (++) ["woot", "WOOT", "woot"]

b) foldr max [] "fear is the little death"

c) foldr and True [False, True]

d) This one is more subtle than the previous. Can it ever
return a different answer?

foldr (||) True [False, True]

e) foldl ((++) . show) "" [1..5]

f) foldr const 'a' [1..5]
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g) foldr const 0 "tacos"

h) foldl (flip const) 0 "burritos"

i) foldl (flip const) 'z' [1..5]

Unconditional spine recursion

An important difference between foldr and foldl is that a left
fold has the successive steps of the fold as its first argument.
The next recursion of the spine isn’t intermediated by the
folding function as it is in foldr, which also means recursion of
the spine is unconditional. Having a function that doesn’t force
evaluation of either of its arguments won’t change anything.
Let’s review const:

Prelude> const 1 undefined

1

Prelude> (flip const) 1 undefined

*** Exception: Prelude.undefined

Prelude> (flip const) undefined 1

1

Now compare:

Prelude> let xs = [1..5] ++ undefined

Prelude> foldr const 0 xs

1

Prelude> foldr (flip const) 0 xs
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*** Exception: Prelude.undefined

Prelude> foldl const 0 xs

*** Exception: Prelude.undefined

Prelude> foldl (flip const) 0 xs

*** Exception: Prelude.undefined

However, while foldl unconditionally evaluates the spine
you can still selectively evaluate the values in the list. This will
throw an error because the bottom is part of the spine and
foldl must evaluate the spine:

Prelude> let xs = [1..5] ++ undefined

Prelude> foldl (\_ _ -> 5) 0 xs

*** Exception: Prelude.undefined

But this is OK because bottom is a value here:

Prelude> let xs = [1..5] ++ [undefined]

Prelude> foldl (\_ _ -> 5) 0 xs

5

This feature means that foldl is generally inappropriate
with lists that are or could be infinite, but the combination of
the forced spine evaluation with nonstrictness means that it is
also usually inappropriate even for long lists, as the forced eval-
uation of the spine affects performance negatively. Because
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foldl must evaluate its whole spine before it starts evaluating
values in each cell, it accumulates a pile of unevaluated values
as it traverses the spine.

In most cases, when you need a left fold, you should use
foldl'. This function, called “fold-l-prime,” works the same
except it is strict. In other words, it forces evaluation of the
values inside cons cells as it traverses the spine, rather than
accumulating unevaluated expressions for each element of
the list. The strict evaluation here means it has less negative
effect on performance over long lists.

10.6 How to write fold functions

When we write folds, we begin by thinking about what our
start value for the fold is. This is usually the identity value for
the function. When we sum the elements of a list, the identity
of summation is 0. When we multiply the elements of the list,
the identity is 1. This start value is also our fallback in case the
list is empty.

Next we consider our arguments. A folding function takes
two arguments, 𝑎 and 𝑏, where 𝑎 is going to always be one of
the elements in the list and 𝑏 is either the start value or the
value accumulated as the list is being processed.

Let’s say we want to write a function to take the first three
letters of each String value in a list of strings and concatenate
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that result into a final String. The type of the right fold for lists
is:

foldr :: (a -> b -> b) -> b -> [a] -> b

First, we’ll set up the beginnings of our expression:

foldr (\a b -> undefined) []

["Pizza", "Apple", "Banana"]

We used an empty list as the start value, but since we plan to
return a String as our result, we could be a little more explicit
about our intent to build a String and make a small syntactic
change:

foldr (\a b -> undefined) ""

["Pizza", "Apple", "Banana"]

Of course, because a String is a list, these are the same value:

Prelude> "" == []

True

But "" signals intent with respect to the types involved:

Prelude> :t ""

"" :: [Char]

Prelude> :t []

[] :: [t]
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Moving along, we next want to work on the function. We
already know how to take the first three elements from a list
and we can reuse this for String:

foldr (\a b -> take 3 a) ""

["Pizza", "Apple", "Banana"]

Now this will already typecheck and work, but it doesn’t
match the semantics we asked for:

Prelude> :{

*Main| let pab =

*Main| ["Pizza", "Apple", "Banana"]

*Main| :}

Prelude> foldr (\a b -> take 3 a) "" pab

"Piz"

Prelude> foldl (\b a -> take 3 a) "" pab

"Ban"

We’re only getting the first three letters of the first or the
last string, depending on whether we did a right or left fold.
Note the argument naming order due to the difference in the
types of foldr and foldl:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldl :: (b -> a -> b) -> b -> [a] -> b
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The problem here is that right now we’re not folding the
list. We’re only mapping our take 3 over the list and selecting
the first or last result:

Prelude> map (take 3) pab

["Piz","App","Ban"]

Prelude> head $ map (take 3) pab

"Piz"

Prelude> last $ map (take 3) pab

"Ban"

So let us make this a proper fold and accumulate the result
by making use of the 𝑏 argument. Remember the 𝑏 is the
start value. Technically we could use concat on the result of
having mapped take 3 over the list (or its reverse, if we want
to simulate foldl):

Prelude> concat $ map (take 3) pab

"PizAppBan"

Prelude> let rpab = reverse pab

Prelude> concat $ map (take 3) rpab

"BanAppPiz"

But we need an excuse to play with foldr and foldl, so we’ll
pretend none of this happened!

Prelude> let f = (\a b -> take 3 a ++ b)
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Prelude> foldr f "" pab

"PizAppBan"

Prelude> let f' = (\b a -> take 3 a ++ b)

Prelude> foldl f' "" pab

"BanAppPiz"

Here we concatenated the result of having taken three el-
ements from the string value in our input list onto the front
of the string we’re accumulating. If we want to be explicit, we
can assert types for the values:

Prelude> :{

*Prelude| let f a b = take 3

*Prelude| (a :: String) ++

*Prelude| (b :: String)

*Prelude| :}

Prelude> foldr f "" pab

"PizAppBan"

If we assert something that isn’t true, the typechecker catches
us:

Prelude> :{

*Prelude| let f a b = take 3 (a :: String)

*Prelude| ++ (b :: [String])

*Prelude| :}
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<interactive>:12:42:

Couldn't match type ‘Char’ with ‘[Char]’

Expected type: [String]

Actual type: [Char]

In the second argument of ‘(++)’,

namely ‘(b :: [String])’

In the expression:

take 3 (a :: String) ++ (b :: [String])

This can be useful for checking that your mental model of
the code is accurate.

Exercises: Database Processing

Write the following functions for processing this data.

import Data.Time

data DatabaseItem = DbString String

| DbNumber Integer

| DbDate UTCTime

deriving (Eq, Ord, Show)
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theDatabase :: [DatabaseItem]

theDatabase =

[ DbDate (UTCTime

(fromGregorian 1911 5 1)

(secondsToDiffTime 34123))

, DbNumber 9001

, DbString "Hello, world!"

, DbDate (UTCTime

(fromGregorian 1921 5 1)

(secondsToDiffTime 34123))

]

1. Write a function that filters for DbDate values and returns
a list of the UTCTime values inside them.

filterDbDate :: [DatabaseItem]

-> [UTCTime]

filterDbDate = undefined

2. Write a function that filters for DbNumber values and returns
a list of the Integer values inside them.

filterDbNumber :: [DatabaseItem]

-> [Integer]

filterDbNumber = undefined

3. Write a function that gets the most recent date.
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mostRecent :: [DatabaseItem]

-> UTCTime

mostRecent = undefined

4. Write a function that sums all of the DbNumber values.

sumDb :: [DatabaseItem]

-> Integer

sumDb = undefined

5. Write a function that gets the average of the DbNumber val-
ues.

-- You'll probably need to use fromIntegral

-- to get from Integer to Double.

avgDb :: [DatabaseItem]

-> Double

avgDb = undefined

10.7 Folding and evaluation

What differentiates foldr and foldl is associativity. The right
associativity of foldr means the folding function evaluates
from the innermost cons cell to the outermost (the head). On
the other hand, foldl recurses unconditionally to the end of the
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list through self-calls and then the folding function evaluates
from the outermost cons cell to the innermost:

Prelude> let rcf = foldr (:) []

Prelude> let xs = [1, 2, 3] ++ undefined

Prelude> take 3 $ rcf xs

[1,2,3]

Prelude> let lcf = foldl (flip (:)) []

Prelude> take 3 $ lcf xs

*** Exception: Prelude.undefined

Let’s dive into our const example a little more carefully:

foldr const 0 [1..5]

With foldr, you’ll evaluate const 1 (...), but const ignores
the rest of the fold that would have occurred from the end of
the list up to the number 1, so this returns 1 without having
evaluated any more of the values or the spine. One way you
could examine this for yourself would be:

Prelude> foldr const 0 ([1] ++ undefined)

1

Prelude> head ([1] ++ undefined)

1

Prelude> tail ([1] ++ undefined)

*** Exception: Prelude.undefined
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Similarly for foldl:

foldl (flip const) 0 [1..5]

Here foldl will recurse to the final cons cell, evaluate (flip

const) (...) 5, ignore the rest of the fold that would occur
from the beginning up to the number 5, and return 5.

The relationship between foldr and foldl is such that:

foldr f z xs =

foldl (flip f) z (reverse xs)

But only for finite lists! Consider:

Prelude> let xs = repeat 0 ++ [1,2,3]

Prelude> foldr const 0 xs

0

Prelude> let xs' = repeat 1 ++ [1,2,3]

Prelude> let rxs = reverse xs'

Prelude> foldl (flip const) 0 rxs

^CInterrupted.

-- ^^ bottom.

If we flip our folding function 𝑓 and reverse the list 𝑥𝑠, foldr
and foldl will return the same result:

Prelude> let xs = [1..5]

Prelude> foldr (:) [] xs
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[1,2,3,4,5]

Prelude> foldl (flip (:)) [] xs

[5,4,3,2,1]

Prelude> foldl (flip (:)) [] (reverse xs)

[1,2,3,4,5]

Prelude> reverse $ foldl (flip (:)) [] xs

[1,2,3,4,5]

10.8 Summary

We presented a lot of material in this chapter. You might be
feeling a little weary of folds right now. So what’s the executive
summary?

foldr

1. The rest of the fold (recursive invocation of foldr) is an
argument to the folding function you passed to foldr. It
doesn’t directly self-call as a tail-call like foldl. You could
think of it as alternating between applications of foldr and
your folding function 𝑓 . The next invocation of foldr is
conditional on 𝑓 having asked for more of the results of
having folded the list. That is:

foldr :: (a -> b -> b) -> b -> [a] -> b

-- ^
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That 𝑏 we’re pointing at in (a -> b -> b) is the rest of the fold.
Evaluating that evaluates the next application of foldr.

2. Associates to the right.

3. Works with infinite lists. We know this because:

Prelude> foldr const 0 [1..]

1

4. Is a good default choice whenever you want to transform
data structures, be they finite or infinite.

foldl

1. Self-calls (tail-call) through the list, only beginning to
produce values after reaching the end of the list.

2. Associates to the left.

3. Cannot be used with infinite lists. Try the infinite list
example earlier and your REPL will hang.

4. Is nearly useless and should almost always be replaced
with foldl' for reasons we’ll explain later when we talk
about writing efficient Haskell programs.
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10.9 Scans

Scans, which we have mentioned above, work similarly to
maps and also to folds. Like folds, they accumulate values
instead of keeping the list’s individual values separate. Like
maps, they return a list of results. In this case, the list of results
shows the intermediate stages of evaluation, that is, the values
that accumulate as the function is doing its work.

Scans are not used as frequently as folds, and once you
understand the basic mechanics of folding, there isn’t a whole
lot new to understand. Still, it is useful to know about them
and get an idea of why you might need them.3

First, let’s take a look at the types. We’ll do a direct com-
parison of the types of folds and scans so the difference is
clear:

foldr :: (a -> b -> b) -> b -> [a] -> b

scanr :: (a -> b -> b) -> b -> [a] -> [b]

foldl :: (b -> a -> b) -> b -> [a] -> b

scanl :: (b -> a -> b) -> b -> [a] -> [b]

The primary difference is that the final result is a list (folds
can return a list as a result as well, but they don’t always). This

3 The truth is scans are not used often, but there are times when you want to fold
a function over a list and return a list of the intermediate values that you can then use
as input to some other function. For a particularly elegant use of this, please see Chris
Done’s blog post about this solution to the waterfall problem at http://chrisdone.com/

posts/twitter-problem-loeb.

http://chrisdone.com/posts/twitter-problem-loeb
http://chrisdone.com/posts/twitter-problem-loeb
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means that they are not catamorphisms and, in an important
sense, aren’t folds at all. But no matter! The type signatures
are similar, and the routes of spine traversal and evaluation
are similar. This does mean that you can use scans in places
that you can’t use a fold, precisely because you return a list of
results rather than reducing the spine of the list.

The results that scans produce can be represented like this:

scanr (+) 0 [1..3]

[1 + (2 + (3 + 0)), 2 + (3 + 0), 3 + 0, 0]

[6, 5, 3, 0]

scanl (+) 0 [1..3]

[0, 0 + 1,0 + 1 + 2, 0 + 1 + 2 + 3]

[0, 1, 3, 6]
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scanl (+) 1 [1..3]

-- unfolding the

-- definition of scanl

= [ 1, 1 + 1

, (1 + 1) + 2

, ((1 + 1) + 2) + 3

]

-- evaluating addition

= [1, 2, 4, 7]

Then to make this more explicit and properly equational,
we can follow along with how scanl expands for this expression
based on the definition. First, we must see how scanl is defined.
We’re going to show you a version of it from a slightly older
base library for GHC Haskell. The differences don’t change
anything important for us here:

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl f q ls =

q : (case ls of

[] -> []

x:xs -> scanl f (f q x) xs)

In an earlier chapter, we wrote a recursive function that
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returned the nth Fibonacci number to us. You can use a scan
function to return a list of Fibonacci numbers. We’re going
to do this in a source file because this will, in this state, return
an infinite list (feel free to try loading it into your REPL and
running it, but be quick with the ctrl-c):

fibs = 1 : scanl (+) 1 fibs

We start with a value of 1 and cons that onto the front of the
list generated by our scan. The list itself has to be recursive
because, as we saw previously, the idea of Fibonacci numbers
is that each one is the sum of the previous two in the sequence;
scanning the results of (+) over a nonrecursive list of numbers
whose start value is 1 would give us this:

scanl (+) 1 [1..3]

[1, 1 + 1, (1 + 1) + 2, ((1 + 1) + 2) + 3]

[1,2,4,7]

instead of the [1, 1, 2, 3, 5...] that we’re looking for.

Getting the fibonacci number we want

But we don’t really want an infinite list of Fibonacci numbers;
that isn’t very useful. We need a method to either take some
number of elements from that list or find the 𝑛th element as
we had done before. Fortunately, that’s the easy part. We’ll
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use the “bang bang” operator, !!, to find the 𝑛th element. This
operator is a way to index into a list, and indexing in Haskell
starts from zero. That is, the first value in your list is indexed
as zero. But otherwise the operator is straightforward:

(!!) :: [a] -> Int -> a

It needs a list as its first argument, an Int as its second argu-
ment and it returns one element from the list. Which item it
returns is the value that is in the 𝑛th spot where 𝑛 is our Int.
We will modify our source file:

fibs = 1 : scanl (+) 1 fibs

fibsN x = fibs !! x

Once we load the file into our REPL, we can use fibsN to
return the 𝑛th element of our scan:

Prelude> fibsN 0

1

Prelude> fibsN 2

2

Prelude> fibsN 6

13

Now you can modify your source code to use the take or
takeWhile functions or to filter it in any way you like. One
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note: filtering without also taking won’t work too well, because
you’re still getting an infinite list. It’s a filtered infinite list, sure,
but still infinite.

Scans Exercises

1. Modify your fibs function to only return the first 20 Fi-
bonacci numbers.

2. Modify fibs to return the Fibonacci numbers that are less
than 100.

3. Try to write the factorial function from Recursion as a
scan. You’ll want scanl again, and your start value will be
1. Warning: this will also generate an infinite list, so you
may want to pass it through a take function or similar.

10.10 Chapter Exercises

Warm-up and review

For the following set of exercises, you are not expected to use
folds. These are intended to review material from previous
chapters. Feel free to use any syntax or structure fromprevious
chapters that seems appropriate.

1. Given the following sets of consonants and vowels:
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stops = "pbtdkg"

vowels = "aeiou"

a) Write a function that takes inputs from stops and
vowels and makes 3-tuples of all possible stop-vowel-
stop combinations. These will not all correspond to
real words in English, although the stop-vowel-stop
pattern is common enough that many of them will.

b) Modify that function so that it only returns the com-
binations that begin with a p.

c) Now set up lists of nouns and verbs (instead of stops
and vowels) and modify the function to make tuples
representing possible noun-verb-noun sentences.

2. What does the following mystery function do? What is
its type? Try to get a good sense of what it does before
you test it in the REPL to verify it.

seekritFunc x =

div (sum (map length (words x)))

(length (words x))

3. We’d really like the answer to be more precise. Can you
rewrite that using fractional division?
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Rewriting functions using folds

In the previous chapter, you wrote these functions using direct
recursion over lists. The goal now is to rewrite them using
folds. Where possible, to gain a deeper understanding of
folding, try rewriting the fold version so that it is point-free.

Point-free versions of these functions written with a fold
should look like:

myFunc = foldr f z

So for example with the and function:

-- Again, this type will be less

-- reusable than the one in GHC 7.10

-- and newer. Don't worry.

-- direct recursion, not using (&&)

myAnd :: [Bool] -> Bool

myAnd [] = True

myAnd (x:xs) =

if x == False

then False

else myAnd xs
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-- direct recursion, using (&&)

myAnd :: [Bool] -> Bool

myAnd [] = True

myAnd (x:xs) = x && myAnd xs

-- fold, not point-free

-- in the folding function

myAnd :: [Bool] -> Bool

myAnd = foldr

(\a b ->

if a == False

then False

else b) True

-- fold, both myAnd and the folding

-- function are point-free now

myAnd :: [Bool] -> Bool

myAnd = foldr (&&) True

The goal here is to converge on the final version where
possible. You don’t need to write all variations for each ex-
ample, but the more variations you write, the deeper your
understanding of these functions will become.

1. myOr returns True if any Bool in the list is True.
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myOr :: [Bool] -> Bool

myOr = undefined

2. myAny returns True if a -> Bool applied to any of the values
in the list returns True.

myAny :: (a -> Bool) -> [a] -> Bool

myAny = undefined

Example for validating myAny:

Prelude> myAny even [1, 3, 5]

False

Prelude> myAny odd [1, 3, 5]

True

3. Write two versions of myElem. One version should use
folding and the other should use any.

myElem :: Eq a => a -> [a] -> Bool

Prelude> myElem 1 [1..10]

True

Prelude> myElem 1 [2..10]

False

4. Implement myReverse, don’t worry about trying to make
it lazy.
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myReverse :: [a] -> [a]

myReverse = undefined

Prelude> myReverse "blah"

"halb"

Prelude> myReverse [1..5]

[5,4,3,2,1]

5. Write myMap in terms of foldr. It should have the same
behavior as the built-in map.

myMap :: (a -> b) -> [a] -> [b]

myMap = undefined

6. Write myFilter in terms of foldr. It should have the same
behavior as the built-in filter.

myFilter :: (a -> Bool) -> [a] -> [a]

myFilter = undefined

7. squish flattens a list of lists into a list

squish :: [[a]] -> [a]

squish = undefined

8. squishMap maps a function over a list and concatenates the
results.
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squishMap :: (a -> [b]) -> [a] -> [b]

squishMap = undefined

Prelude> squishMap (\x -> [1, x, 3]) [2]

[1,2,3]

Prelude> let f x = "WO " ++ [x] ++ " OT "

Prelude> squishMap f "blah"

"WO b OT WO l OT WO a OT WO h OT "

9. squishAgain flattens a list of lists into a list. This time re-use
the squishMap function.

squishAgain :: [[a]] -> [a]

squishAgain = undefined

10. myMaximumBy takes a comparison function and a list and
returns the greatest element of the list based on the last
value that the comparison returned GT for.

myMaximumBy :: (a -> a -> Ordering)

-> [a]

-> a

myMaximumBy = undefined

Prelude> myMaximumBy (\_ _ -> GT) [1..10]

1

Prelude> myMaximumBy (\_ _ -> LT) [1..10]
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10

Prelude> myMaximumBy compare [1..10]

10

11. myMinimumBy takes a comparison function and a list and
returns the least element of the list based on the last value
that the comparison returned LT for.

myMinimumBy :: (a -> a -> Ordering)

-> [a]

-> a

myMinimumBy = undefined

Prelude> myMinimumBy (\_ _ -> GT) [1..10]

10

Prelude> myMinimumBy (\_ _ -> LT) [1..10]

1

Prelude> myMinimumBy compare [1..10]

1

10.11 Definitions

1. A fold is a higher-order function which, given a function
to accumulate the results and a recursive data structure,
returns the built up value. Usually a “start value” for the
accumulation is provided along with a function that can
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combine the type of values in the data structure with the
accumulation. The term fold is typically used with ref-
erence to collections of values referenced by a recursive
datatype. For a generalization of “breaking down struc-
ture”, see catamorphism.

2. A catamorphism is a generalization of folds to arbitrary
datatypes. Where a fold allows you to break down a list
into an arbitrary datatype, a catamorphism is a means of
breaking down the structure of any datatype. The bool

:: a -> a -> Bool -> a function in Data.Bool is an example
of a simple catamorphism for a simple, non-collection
datatype. Similarly, maybe :: b -> (a -> b) -> Maybe a ->

b is the catamorphism for Maybe. See if you can notice a
pattern:
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data Bool = False | True

bool :: a -> a -> Bool -> a

data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b

data Either a b = Left a | Right b

either :: (a -> c)

-> (b -> c)

-> Either a b

-> c

3. A tail call is the final result of a function. Some examples
of tail calls in Haskell functions:

f x y z = h (subFunction x y z)

where subFunction x y z = g x y z

-- the ``tail call'' is

-- h (subFunction x y z)

-- or more precisely, h.

4. Tail recursion is a function whose tail calls are recursive
invocations of itself. This is distinguished from functions
that call other functions in their tail call.

f x y z = h (subFunction x y z)

where subFunction x y z = g x y z
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The above is not tail recursive, calls ℎ, not itself.

f x y z = h (f (x - 1) y z)

Still not tail recursive. 𝑓 is invoked again but not in the
tail call of 𝑓; it’s an argument to the tail call, ℎ:

f x y z = f (x - 1) y z

This is tail recursive. 𝑓 is calling itself directly with no
intermediaries.

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Not tail recursive, we give up control to the combining
function 𝑓 before continuing through the list. foldr’s re-
cursive calls will bounce between foldr and 𝑓 .

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

Tail recursive. foldl invokes itself recursively. The com-
bining function is only an argument to the recursive fold.
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10.12 Follow-up resources

1. Haskell Wiki. Fold.
https://wiki.haskell.org/Fold

2. Richard Bird. Sections 4.5 and 4.6 of Introduction to
Functional Programming using Haskell (1998).

3. Antoni Diller. Introduction to Haskell.

4. Graham Hutton. A tutorial on the universality and ex-
pressiveness of fold.
http://www.cs.nott.ac.uk/~gmh/fold.pdf

https://wiki.haskell.org/Fold
http://www.cs.nott.ac.uk/~gmh/fold.pdf
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Algebraic datatypes

The most depressing
thing about life as a
programmer, I think, is if
you’re faced with a chunk
of code that either
someone else wrote or,
worse still, you wrote
yourself but no longer
dare to modify. That’s
depressing.

Simon Peyton Jones
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11.1 Algebraic datatypes

We have spent a lot of time talking about datatypes already, so
you may think we’ve covered everything that needs to be said
about those. This chapter’s purpose is ultimately to explain
how to construct your own datatypes in Haskell. Writing your
own datatypes can help you leverage some of Haskell’s most
powerful features — pattern matching, type checking, and
inference — in a way that makes your code more concise and
safer. But to understand that, first we need to explain the dif-
ferences among datatypes more fully and understand what it
means when we say datatypes are algebraic.

A type can be thought of as an enumeration of constructors
that have zero or more arguments.1 We will return to this
description throughout the chapter, each time emphasizing a
different portion of it.

Haskell offers sum types, product types, product types with
record syntax, type aliases (for example, String is a type alias
for [Char]), and a special datatype called a newtype that provides
for a different set of options and constraints from either type
synonyms or data declarations. We will explain each of these
in detail in this chapter and show you how to exploit them for
maximum utility and type safety.

This chapter will:
1This description, slightly edited for our purposes, was proposed by Orah Kittrell in

the #haskell-beginners IRC channel.
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• explain the “algebra” of algebraic datatypes;

• analyze the construction of data constructors;

• spell out when and how to write your own datatypes;

• clarify usage of type synonyms and newtype;

• introduce kinds.

11.2 Data declarations review

We often want to create custom datatypes for structuring and
describing the data we are processing. Doing so can help you
analyze your problem by allowing you to focus first on how
you model the domain before you begin thinking about how
you write computations that solve your problem. It can also
make your code easier to read and use because it lays the
domain model out clearly.

In order to write your own types, though, you must under-
stand the way datatypes are constructed in more detail than
we’ve covered so far. Let’s begin with a review of the important
parts of datatypes, using the data declarations for Bool and lists:
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data Bool = False | True

-- [1] [2] [3] [4] [5] [6]

data [] a = [ ] | a : [a]

-- [ 7 ] [8] [9]

1. Keyword data to signal that what follows is a data declara-
tion, or a declaration of a datatype.

2. Type constructor (with no arguments).

3. Equals sign divides the type constructor from its data
constructors.

4. Data constructor. In this case, a data constructor that takes
no arguments and so is called a nullary constructor. This
is one of the possible values of this type that can show up
in term-level code.

5. The pipe denotes a sum type which indicates a logical
disjunction (colloquially, or) in what values can have that
type.

6. Constructor for the value True, another nullary construc-
tor.

7. Type constructor with an argument. An empty list has
to be applied to an argument in order to become a list
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of something. Here the argument is a polymorphic type
variable, so the list’s argument can be of different types.

8. Data constructor for the empty list.

9. Data constructor that takes two arguments: an 𝑎 and also
a [a].

When we talk about a data declaration, we are talking about
the definition of the entire type. If we think of a type as “an enu-
meration of constructors that have zero or more arguments,”
then Bool is an enumeration of two possible constructors, each
of which takes zero arguments, while the type constructor []

enumerates two possible constructors and one of them takes
two arguments. The pipe denotes what we call a sum type, a
type that has more than one constructor inhabiting it.

In addition to sum types, Haskell also has product types, and
we’ll talk more about those in a bit. The data constructors in
product types have more than one parameter. But first, let’s
turn our attention to the meaning of the word constructors.

11.3 Data and type constructors

There are two kinds of constructors in Haskell: type construc-
tors and data constructors. Type constructors are used only
at the type level, in type signatures and typeclass declarations
and instances. Types are static and resolve at compile time.
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Data constructors construct the values at term level, values
you can interact with at runtime. We call them constructors
because they define a means of creating or building a type or
a value.

Although the term constructor is often used to describe all
type constructors and data constructors, we can make a dis-
tinction between constants and constructors. Type and data con-
structors that take no arguments are constants. They can only
store a fixed type and amount of data. So, in the Bool datatype,
for example, Bool is a type constant, a concrete type that isn’t
waiting for any additional information in the form of an argu-
ment in order to be fully realized as a type. It enumerates two
values that are also constants, True and False, because they take
no arguments. While we call True and False “data constructors,”
in fact since they take no arguments, their value is already es-
tablished and not being constructed in any meaningful sense.

However, sometimes we need the flexibility of allowing dif-
ferent types or amounts of data to be stored in our datatypes.
For those times, type and data constructors may be parame-
terized. When a constructor takes an argument, then it’s like a
function in at least one sense — it must be applied to become a
concrete type or value. The following datatypes are pseudony-
mous versions of real datatypes in Haskell. We’ve given them
pseudonyms because we want to focus on the syntax, not the
semantics, for now.
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data Trivial = Trivial'

-- [1] [2]

data UnaryTypeCon a = UnaryValueCon a

-- [3] [4]

1. Here the type constructor Trivial is like a constant value,
but at the type level. It takes no arguments and is thus
nullary. The Haskell Report calls these type constants to dis-
tinguish them from type constructors that take arguments.

2. The data constructor Trivial' is also like a constant value,
but it exists in value, term, or runtime space. These are
not three different things, but three different words for
the same space that types serve to describe.

3. UnaryTypeCon is a type constructor of one argument. It’s a
constructor awaiting a type constant to be applied to, but
it has no behavior in the sense that we think of functions
as having. Such type-level functions exist but are not
covered in this book.2

4. UnaryValueCon is a data constructor of one argument await-
ing a value to be applied to. Again, it doesn’t behave like

2If you’re interested in learning about this topic, Brent Yorgey’s blog posts about type
families and functional dependencies are a good place to start. https://byorgey.wordpress.
com/2010/06/29/typed-type-level-programming-in-haskell-part-i-functional-dependencies/

https://byorgey.wordpress.com/2010/06/29/typed-type-level-programming-in-haskell-part-i-functional-dependencies/
https://byorgey.wordpress.com/2010/06/29/typed-type-level-programming-in-haskell-part-i-functional-dependencies/
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a term-level function in the sense of performing an oper-
ation on data. It’s more like a box to put values into. Be
careful with the box/container analogy as it will betray
you later — not all type arguments to constructors have
value-level witnesses! Some are phantom.

Each of these datatypes only enumerates one data construc-
tor. Whereas Trivial' is the only possible concrete value for
type Trivial, UnaryValueCon could show up as different literal
values at runtime, depending on what type of 𝑎 it is applied to.
Think back to the list datatype: at the type level, you have a :

[a] where the 𝑎 is a variable. At the term level, in your code,
that will be applied to some type of values and become, for
example, [Char] or [Integer] (or list of whatever other concrete
type — obviously the set of possible lists is large).

11.4 Type constructors and kinds

Let’s look again at the list datatype:

data [] a = [] | a : [a]

This must be applied to a concrete type before you have a
list. We can see the parallel with functions when we look at
the kind signature.

Kinds are the types of types, or types one level up. We
represent kinds in Haskell with *. We know something is a
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fully applied, concrete type when it is represented as *. When
it is * -> *, it, like a function, is still waiting to be applied.

Compare the following:

Prelude> let f = not True

Prelude> :t f

f :: Bool

Prelude> let f x = x > 3

Prelude> :t f

f :: (Ord a, Num a) => a -> Bool

The first 𝑓 takes no arguments and is not awaiting appli-
cation to anything in order to produce a value, so its type
signature is a concrete type — note the lack of a function ar-
row. But the second 𝑓 is awaiting application to an 𝑥 so its type
signature has a function arrow. Once we apply it to a value, it
also has a concrete type:

Prelude> let f x = x > 3

Prelude> :t f 5

f 5 :: Bool

We query the kind signature of a type constructor (not a
data constructor) in GHCi with a :kind or :k. We see that kind
signatures give us similar information about type constructors:
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Prelude> :k Bool

Bool :: *

Prelude> :k [Int]

[Int] :: *

Prelude> :k []

[] :: * -> *

Both Bool and [Int] are fully applied, concrete types, so their
kind signatures have no function arrows. That is, they are not
awaiting application to anything in order to be fully realized.
The kind of [], though, is * -> * because it still needs to be
applied to a concrete type before it is itself a concrete type.
This is what the constructor of “type constructor” is referring
to.

11.5 Data constructors and values

We mentioned a bit ago that the Haskell Report draws a distinc-
tion between type constants and type constructors. We can draw
a similar distinction between data constructors and constant
values.
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data PugType = PugData

-- [1] [2]

data HuskyType a = HuskyData

-- [3] [4]

data DogueDeBordeaux doge =

-- [5]

DogueDeBordeaux doge

-- [6]

1. PugType is the type constructor, but it takes no arguments
so we can think of it as being a type constant. This is
how the Haskell Report refers to such types. This type
enumerates one constructor.

2. PugData is the only data constructor for the type PugType.
It also happens to be a constant value because it takes no
arguments and stands only for itself. For any function
that requires a value of type PugType, you know that value
will be PugData.

3. HuskyType is the type constructor and it takes a single para-
metrically polymorphic type variable as an argument. It
also enumerates one data constructor.
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4. HuskyData is the data constructor for HuskyType. Note that
the type variable argument 𝑎 does not occur as an argu-
ment to HuskyData or anywhere else after the =. That means
our type argument 𝑎 is phantom, or, “has no witness.” We
will elaborate on this later. Here HuskyData is a constant
value, like PugData.

5. DogueDeBordeaux is a type constructor and has a single type
variable argument like HuskyType, but called 𝑑𝑜𝑔𝑒 instead
of 𝑎. Why? Because the names of variables don’t matter.
At any rate, this type also enumerates one constructor.

6. DogueDeBordeaux is the lone data constructor. It has the
same name as the type constructor, but they are not the
same thing. The 𝑑𝑜𝑔𝑒 type variable in the type construc-
tor occurs also in the data constructor. Remember that,
because they are the same type variable, these must agree
with each other: 𝑑𝑜𝑔𝑒 must equal 𝑑𝑜𝑔𝑒. If your type is
DogueDeBordeaux [Person], you must necessarily have a list
of Person values contained in the DogueDeBordeaux value.
But because DogueDeBordeaux must be applied before it’s a
concrete value, its literal value at runtime can change:

Prelude> :t DogueDeBordeaux

DogueDeBordeaux :: doge

-> DogueDeBordeaux doge
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We can query the type of the value (not the type construc-
tor but the data constructor — it can be confusing when
the type constructor and the data constructor have the
same name, but it’s pretty common to do that in Haskell
because the compiler doesn’t confuse type names with
value names the way we mortals do). It tells us that once
𝑑𝑜𝑔𝑒 is bound to a concrete type, then this will be a value
of type DogueDeBordeaux doge. It isn’t a value yet, but it’s a
definition for how to construct a value of that type.

Here’s how to make a value of the type of each:

myPug = PugData :: PugType

myHusky :: HuskyType a

myHusky = HuskyData

myOtherHusky :: Num a => HuskyType a

myOtherHusky = HuskyData

myOtherOtherHusky :: HuskyType [[[[Int]]]]

myOtherOtherHusky = HuskyData

-- no witness to the contrary ^

This will work because the value 10 agrees with the type
variable being bound to Int:



CHAPTER 11. RULE THE TYPES, RULE THE UNIVERSE603

myDoge :: DogueDeBordeaux Int

myDoge = DogueDeBordeaux 10

This will not work because 10 cannot be reconciled with
the type variable being bound to String:

badDoge :: DogueDeBordeaux String

badDoge = DogueDeBordeaux 10

Given this, we can see that constructors are how we create
values of types and refer to types in type signatures. There’s a
parallel here between type constructors and data constructors
that should be noted. We can illustrate this with a new canine-
oriented datatype:

data Doggies a =

Husky a

| Mastiff a

deriving (Eq, Show)

-- type constructor awaiting an argument

Doggies

Note that the kind signature for the type constructor looks
like a function, and the type signature for either of its data
constructors looks similar.

This needs to be applied to become a concrete type:
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Prelude> :k Doggies

Doggies :: * -> *

And this needs to be applied to become a concrete value:

Prelude> :t Husky

Husky :: a -> Doggies a

So the behavior of constructors is such that if they don’t take
any arguments, they behave like (type or value-level) constants.
If they do take arguments, they act like (type or value-level)
functions that don’t do anything except get applied.

Exercises: Dog Types

Given the datatypes defined in the above sections,

1. Is Doggies a type constructor or a data constructor?

2. What is the kind of Doggies?

3. What is the kind of Doggies String?

4. What is the type of Husky 10?

5. What is the type of Husky (10 :: Integer)?

6. What is the type of Mastiff "Scooby Doo"?

7. Is DogueDeBordeaux a type constructor or a data constructor?
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8. What is the type of DogueDeBordeaux?

9. What is the type of DogueDeBordeaux "doggie!"

11.6 What’s a type and what’s data?

As we’ve said, types are static and resolve at compile time.
Types are known before runtime, whether through explicit
declaration or type inference, and that’s what makes them
static types. Information about types does not persist through
to runtime. Data are what we’re working with at runtime.

Here compile time is literally when your program is getting
compiled by GHC or checked before execution in a REPL
like GHCi. Runtime is the actual execution of your program.
Types circumscribe values and in that way, they describe which
values are flowing through what parts of your program.

type constructors -- compile-time

-------------------- phase separation

data constructors -- runtime

Both data constructors and type constructors begin with
capital letters, but a constructor before the = in a datatype defini-
tion is a type constructor, while constructors after the = are data
constructors. Data constructors are usually generated by the
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declaration. One tricky bit here is that when data constructors
take arguments, those arguments refer to other types. Because
of this, not everything referred to in a datatype declaration is
necessarily generated by that datatype itself. Let’s take a look at
a short example with different datatypes to demonstrate what
we mean by this.

We start with a datatype Price that has one type construc-
tor, one data constructor, and one type argument in the data
constructor:

data Price =

-- (a)

Price Integer deriving (Eq, Show)

-- (b) [1]

The type constructor is (a). The data constructor is (b), and
that takes one type argument, [1].

The value Price does not depend solely on this datatype
definition. It depends on the type Integer as well. If, for some
reason, Integer wasn’t in scope, we’d be unable to generate
Price values.

Next, we’ll define two datatypes, Manufacturer and Airline,
that are each sum types with three data constructors. Each data
constructor in these is a possible value of that type, and since
none of them take arguments, all are generated by their decla-
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rations and are more like constant values than constructors:

data Manufacturer =

-- (c)

Mini

-- (d)

| Mazda

-- (e)

| Tata

-- (f)

deriving (Eq, Show)

Manufacturer has the type constructor (c). Manufacturer has
three data constructors (d), (e), and (f).

data Airline =

-- (g)

PapuAir

-- (h)

| CatapultsR'Us

-- (i)

| TakeYourChancesUnited

-- (j)

deriving (Eq, Show)
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The type constructor is (g). Airline has three data construc-
tors (h), (i), and ( j).

Next we’ll look at another sum type, but this one has data
constructors that take arguments. For the type Vehicle, the
data constructors are Car and Plane, so a Vehicle is either a Car

value or a Plane value. They each take types as arguments, just
as Price itself took the type Integer as an argument:

data Vehicle = Car Manufacturer Price

-- (k) (l) [2] [3]

| Plane Airline

-- (m) [4]

deriving (Eq, Show)

The type constructor is (k). There are two data constructors,
(l) and (m). The type arguments are numbered [2], [3], and
[4]. [2] and [3] are type arguments to the data constructor Car,
while [4] is the type argument to the data constructor Plane. To
construct a Plane value, therefore, we need a value from the
Airline type.

In the above, the datatypes are generating the constructors
marked with a letter. The type arguments marked with a
number existed prior to the declarations. Their definitions
exist outside of this declaration, and they must be in scope to
be used as part of this declaration.
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Each of the above datatypes has a deriving clause. We have
seen this before, as it is usually true that you will want to de-
rive an instance of Show for datatypes you write. The instance
allows your data to be printed to the screen as a string. De-
riving Eq is also common and allows you to derive equality
operations automatically for most datatypes where that would
make sense. There are other typeclasses that allow derivation
in this manner, and it obviates the need for manually writing
instances for each datatype and typeclass (reminder: you saw
an example of this in the Typeclasses chapter).

As we’ve seen, data constructors can take arguments. Those
arguments will be specific types, but not specific values. In
standard Haskell, we can’t choose specific values of types as
type arguments. We can’t say, for example, “Bool without the
possibility of False as a value.” If you accept Bool as a valid type
for a function or as the component of a datatype, you must
accept all of Bool.

Exercises: Vehicles

For these exercises, we’ll use the datatypes defined in the above
section. It would be good if you’d typed them all into a source
file already, but if you hadn’t, please do so now. You can then
define some sample data on your own, or use these to get you
started:
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myCar = Car Mini (Price 14000)

urCar = Car Mazda (Price 20000)

clownCar = Car Tata (Price 7000)

doge = Plane PapuAir

1. What is the type of myCar?

2. Given the following, define the functions:

isCar :: Vehicle -> Bool

isCar = undefined

isPlane :: Vehicle -> Bool

isPlane = undefined

areCars :: [Vehicle] -> [Bool]

areCars = undefined

3. Now we’re going to write a function to tell us the manu-
facturer of a piece of data:

getManu :: Vehicle -> Manufacturer

getManu = undefined

4. Given that we’re returning the Manufacturer, what will hap-
pen if you use this on Plane data?
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5. All right. Let’s say you’ve decided to add the size of the
plane as an argument to the Plane constructor. Add that
to your datatypes in the appropriate places and change
your data and functions appropriately.

11.7 Data constructor arities

Now that we have a good understanding of the anatomy of
datatypes, we want to start demonstrating why we call them “al-
gebraic.” We’ll start by looking at something called arity. Arity
refers to the number of arguments a function or constructor
takes. A function that takes no arguments is called nullary,
where nullary is a contraction of “null” and “-ary”. Null means
zero, the “-ary” suffix means “of or pertaining to”. “-ary” is a
common suffix used when talking about mathematical arity,
such as with nullary, unary, binary, and the like.

Data constructors which take no arguments are also called
nullary. Nullary data constructors, such as True and False, are
constant values at the term level and, since they have no argu-
ments, they can’t construct or represent any data other than
themselves. They are values which stand for themselves and
act as a witness of the datatype they were declared in.

We’ve said that “A type can be thought of as an enumeration
of constructors that have zero or more arguments.” We’ll look
next at constructors with arguments.

We’ve seen how data constructors may take arguments and



CHAPTER 11. RULE THE TYPES, RULE THE UNIVERSE612

that makes them more like a function in that they must be
applied to something before you have a value. Data construc-
tors that take one argument are called unary. As we will see
later in this chapter, data constructors that take more than one
argument are called products.

All of the following are valid data declarations:

-- nullary

data Example0 =

Example0

deriving (Eq, Show)

-- unary

data Example1 =

Example1 Int

deriving (Eq, Show)

-- product of Int and String

data Example2 =

Example2 Int String

deriving (Eq, Show)

Prelude> Example0

Example0

Prelude> Example1 10

Example1 10
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Prelude> Example1 10 == Example1 42

False

Prelude> let nc = Example2 1 "NC"

Prelude> Example2 10 "FlappityBat" == nc

False

Our Example2 is an example of a product, like tuples, which
we’ve seen before. Tuples can take several arguments — as
many as there are inhabitants of each tuple — and are consid-
ered the canonical product type; they are anonymous products
because they have no name. We’ll talk more about product
types soon.

Unary (one argument) data constructors contain a single
value of whatever type their argument was. The following is a
data declaration that contains the data constructor MyVal. MyVal
takes one Int argument and creates a type named MyType:

data MyType = MyVal Int

-- [1] [2] [3]

deriving (Eq, Show)

-- [4] [5]

1. Type constructor.

2. Data constructor. MyVal takes one type argument, so it is
called a unary data constructor.
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3. Type argument to the definition of the data constructor
from [2].

4. Deriving clause.

5. Typeclass instances being derived. We’re getting equality
Eq and value stringification Show for free.

Prelude> :t MyVal

MyVal :: Int -> MyType

Prelude> MyVal 10

MyVal 10

Prelude> MyVal 10 == MyVal 10

True

Prelude> MyVal 10 == MyVal 9

False

Because MyVal has one Int argument, a value of type MyType

must contain one — only one — Int value.

11.8 What makes these datatypes
algebraic?

Algebraic datatypes in Haskell are algebraic because we can
describe the patterns of argument structures using two basic
operations: sum and product. The most direct way to explain
why they’re called sum and product is to demonstrate sum
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and product in terms of cardinality. This can be understood in
terms of the cardinality you see with finite sets.3 This doesn’t
map perfectly as we can have infinite data structures in Haskell,
but it’s a good way to begin understanding and appreciating
how datatypes work. When it comes to programming lan-
guages we are concerned with computable functions, not just
those which can generate a set.

The cardinality of a datatype is the number of possible
values it defines. That number can be as small as 0 or as large
as infinite (for example, numeric datatypes, lists). Knowing
how many possible values inhabit a type can help you reason
about your programs. In the following sections we’ll show
you how to calculate the cardinality of a given datatype based
solely on how it is defined. From there, we can determine
how many different possible implementations there are of a
function for a given type signature.

Before we get into the specifics of how to calculate cardi-
nality in general, we’re going to take cursory glances at some
datatypes with easy to understand cardinalities: Bool and Int.

We’ve looked extensively at the Bool type already so you
already know it only has two inhabitants that are both nullary
data constructors, so Bool only has two possible values. The
cardinality of Bool is, therefore, 2. Even without understanding

3Type theory was developed as an alternative mathematical foundation to set theory.
We won’t write formal proofs based on this, but the way we reason informally about types
as programmers derives in part from their origins as sets. Finite sets contain a number of
unique objects; that number is called cardinality.
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the rules of cardinality of sum types, we can see why this is
true.

Another set of datatypes with cardinality that is reasonably
easy to understand are the Int types. In part this is because Int

and related types Int8, Int16, and Int32 have clearly delineated
upper and lower bounds, defined by the amount of memory
they are permitted to use. We’ll use Int8 here, even though it
isn’t very common in Haskell, because it has the smallest set
of possible inhabitants and thus the arithmetic is a bit easier
to do. Valid Int8 values are whole numbers from (-128) to 127.

Int8 is not included in the standard Prelude, unlike standard
Int, so we need to import it to see it in the REPL, but after
we do that we can use maxBound and minBound from the Bounded

typeclass to view the upper and lower values:

Prelude> import Data.Int

Prelude Data.Int> minBound :: Int8

-128

Prelude Data.Int> maxBound :: Int8

127

Given that this range includes the value 0, we can easily
figure out the cardinality of Int8 with some quick addition:
128 + 127 + 1 = 256. So the cardinality of Int8 is 256. Anywhere
in your code where you’d have a value of type Int8, there are
256 possible runtime values.
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Exercises: Cardinality

While we haven’t explicitly described the rules for calculating
the cardinality of datatypes yet, you might already have an idea
of how to do it for simple datatypes with nullary constructors.
Try not to overthink these exercises — follow your intuition
based on what you know.

1. data PugType = PugData

2. For this one, recall that Bool is also defined with the |:

data Airline =

PapuAir

| CatapultsR'Us

| TakeYourChancesUnited

3. Given what we know about Int8, what’s the cardinality of
Int16?

4. Use the REPL and maxBound and minBound to examine Int

and Integer. What can you say about the cardinality of
those types?

5. Extra credit (impress your friends!): What’s the connec-
tion between the 8 in Int8 and that type’s cardinality of
256?
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Simple datatypes with nullary data constructors

We’ll start our exploration of cardinality by looking at datatypes
with nullary data constructors:

data Example = MakeExample deriving Show

Example is our type constructor, and MakeExample is our only
data constructor. Since MakeExample takes no type arguments, it
is a nullary constructor. We know that nullary data construc-
tors are constants and represent only themselves as values. It
is a single value whose only content is its name, not any other
data. Nullary constructors represent one value when reasoning
about the cardinality of the types they inhabit.

All you can say about MakeExample is that the constructor is
the value MakeExample and that it inhabits the type Example.

There the only inhabitant is MakeExample. Given that MakeExample
is a single nullary value, so the cardinality of the type Example is
1. This is useful because it tells us that any time we see Example

in the type signature of a function, we only have to reason
about one possible value.

Exercises: For Example

1. You can query the type of a value in GHCi with the :type

command, also abbreviated :t.

Example:
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Prelude> :t False

False :: Bool

What is the type of data constructor MakeExample? What
happens when you request the type of Example?

2. What if you try :info on Example in GHCi? Can you deter-
mine what typeclass instances are defined for the Example

type using :info in GHCi?

3. Try making a new datatype like Example but with a single
type argument added to MakeExample, such as Int. What has
changed when you query MakeExample with :type in GHCi?

Unary constructors

In the last section, we asked you to add a single type argument
to the MakeExample data constructor. In doing so, you changed
it from a nullary constructor to a unary one. A unary data con-
structor takes one argument. In the declaration of the datatype,
that parameter will be a type, not a value. Now, instead of your
data constructor being a constant, or a known value, the value
will be constructed at runtime from the argument we applied
it to.

Datatypes that only contain a unary constructor always have
the same cardinality as the type they contain. In the following,
Goats has the same number of inhabitants as Int:
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data Goats = Goats Int deriving (Eq, Show)

Anything that is a valid Int, must also be a valid argument
to the Goats constructor. Anything that isn’t a valid Int also
isn’t a valid count of Goats.

For cardinality, this means unary constructors are the iden-
tity function.

11.9 newtype

We will now look at a way to define a type that can only ever
have a single unary data constructor. We use the newtype key-
word to mark these types, as they are different from type
declarations marked with the data keyword as well as from
type synonym definitions marked by the type keyword. Like
other datatypes that have a single unary constructor, the car-
dinality of a newtype is the same as that of the type it contains.

A newtype cannot be a product type, sum type, or contain
nullary constructors, but it has a few advantages over a vanilla
data declaration. One is that it has no runtime overhead, as
it reuses the representation of the type it contains. It can do
this because it’s not allowed to be a record (product type) or
tagged union (sum type). The difference between newtype and
the type it contains is gone by the time the compiler generates
the code.
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To illustrate, let’s say we have a function from Int -> Bool

for checking whether we have too many goats:

tooManyGoats :: Int -> Bool

tooManyGoats n = n > 42

We might run into a problem here if we had different limits
for different sorts of livestock. What if we mixed up the Int

value of cows where we meant goats? Fortunately, there’s a
way to address this with unary constructors:

newtype Goats =

Goats Int deriving (Eq, Show)

newtype Cows =

Cows Int deriving (Eq, Show)

Now we can rewrite our type to be safer, pattern matching
in order to access the Int inside our data constructor Goats:

tooManyGoats :: Goats -> Bool

tooManyGoats (Goats n) = n > 42

Now we can’t mix up our livestock counts:

Prelude> tooManyGoats (Goats 43)

True

Prelude> tooManyGoats (Cows 43)
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Couldn't match expected type

‘Goats’ with actual type ‘Cows’

In the first argument of

‘tooManyGoats’, namely ‘(Cows 43)’

In the expression: tooManyGoats (Cows 43)

Using newtype can deliver other advantages related to type-
class instances. To see these, we need to compare newtypes to
type synonyms and regular data declarations. We’ll start with
a short comparison to type synonyms.

A newtype is similar to a type synonym in that the represen-
tations of the named type and the type it contains are identical
and any distinction between them is gone at compile time. So,
a String really is a [Char] and Goats above is really an Int. On
the surface, for the human writers and readers of code, the
distinction can be helpful in tracking where data came from
and what it’s being used for, but the difference is irrelevant to
the compiler.

However, one key contrast between a newtype and a type
alias is that you can define typeclass instances for newtypes that
differ from the instances for their underlying type. You can’t
do that for type synonyms. Let’s take a look at how that works.
We’ll first define a typeclass called TooMany and an instance for
Int:
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class TooMany a where

tooMany :: a -> Bool

instance TooMany Int where

tooMany n = n > 42

We can use that instance in the REPL but only if we assign
the type Int to whatever numeric literal we’re passing as an
argument, because numeric literals are polymorphic. That
looks like this:

Prelude> tooMany (42 :: Int)

Take a moment and play around with this — try leaving off
the type declaration and giving it different arguments.

Now, let’s say for your goat counting you wanted a special
instance of TooMany that will have different behavior from the
Int instance. Under the hood, Goats is still Int but the newtype

declaration will allow you to define a custom instance:

newtype Goats = Goats Int deriving Show

instance TooMany Goats where

tooMany (Goats n) = n > 43

Try loading this and passing different arguments to it. Does
it behave differently than the Int instance above? Do you still
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need to explicitly assign a type to your numeric literals? What
is the type of tooMany?

Here we were able to make the Goats newtype have an in-
stance of TooMany which had different behavior than the type
Int which it contains. We can’t do this if it’s a type synonym.
Don’t believe us? Try it.

On the other hand, what about the case where we want to
reuse the typeclass instances of the type our newtype contains?
For common typeclasses built into GHC like Eq, Ord, Enum, and
Showwe get this facility for free, as you’ve seen with the deriving

clauses in most datatypes.
For user-defined typeclasses, we can use a language exten-

sion called GeneralizedNewtypeDeriving. Language extensions,
enabled in GHC by the LANGUAGE pragma,4 tell the compiler to
process input in ways beyond what the standard provides for.
In this case, this extension will tell the compiler to allow our
newtype to rely on a typeclass instance for the type it contains.
We can do this because the representations of the newtype and
the type it contains are the same. Still, it is outside of the
compiler’s standard behavior so we must give it the special
instruction to allow us to do this.

First, let’s take the case of what we must do without gener-
alized newtype deriving:

4A pragma is a special instruction to the compiler placed in source code. The LANGUAGE

pragma is perhaps more common in GHC Haskell than the other pragmas, but there are
other pragmas we will see later in the book.
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class TooMany a where

tooMany :: a -> Bool

instance TooMany Int where

tooMany n = n > 42

newtype Goats =

Goats Int deriving (Eq, Show)

instance TooMany Goats where

tooMany (Goats n) = tooMany n

The Goats instance will do the same thing as the Int instance,
but we still have to define it separately.

You can test this yourself to see that they’ll return the same
answers.

Now we’ll add the pragma at the top of our source file:
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{-# LANGUAGE GeneralizedNewtypeDeriving #-}

class TooMany a where

tooMany :: a -> Bool

instance TooMany Int where

tooMany n = n > 42

newtype Goats =

Goats Int deriving (Eq, Show, TooMany)

Now we don’t have to define an instance of TooMany for Goats

that’s identical to the Int instance. We can reuse the instance
that we already have.

This is also nice for times when we want every typeclass
instance to be the same except for the one we want to change.

Exercises: Logic Goats

1. Reusing the TooMany typeclass, write an instance of the
typeclass for the type (Int, String). This will require
adding a language pragma named FlexibleInstances5 if
you do not use a newtype — GHC will tell you what to do.

5 https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleInstances

https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleInstances
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2. Make another TooMany instance for (Int, Int). Sum the
values together under the assumption this is a count of
goats from two fields.

3. Make another TooMany instance, this time for (Num a, TooMany

a) => (a, a). This can mean whatever you want, such as
summing the two numbers together.

11.10 Sum types

Now that we’ve looked at data constructor arities, we’re ready
to define the algebra of algebraic datatypes. The first that we’ll
look at is the sum type such as Bool:

data Bool = False | True

We’ve mentioned previously that the | represents logical
disjunction— that is, “or.” This is the sum in algebraic datatypes.
To know the cardinality of sum types, we add the cardinalities
of their data constructors. True and False take no type argu-
ments and thus are nullary constructors, each with a value of
1.

Now we do some arithmetic. As we said earlier, nullary
constructors are 1, and sum types are + or addition, when we
are talking about cardinality:

data Bool = False | True
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How many values inhabit Bool? There are two data con-
structors, each representing only one possible value. Given
that the | syntax represents (+) or addition:

-- ?? represents the cardinality

True | False = ??

True + False == ??

-- False and True both == 1

1 + 1 == ??

We see that the cardinality of Bool is:

1 + 1 == 2

-- List of all possible values for Bool

[True, False] -- length is 2

You can check that in your REPL:

Prelude> length (enumFrom False)

2

From this, we see that when working with a Bool value we
must reason about two possible values. Sum types are a way
of expressing alternate possibilities within a single datatype.
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Signed 8-bit hardware integers in Haskell are defined using
the aforementioned Int8 datatype with a range of values from
-128 to 127. It’s not defined this way, but you could think of
it as a sum type of the numbers in that range, leading to the
cardinality of 256 as we saw.

Exercises: Pity the Bool

1. Given a datatype

data BigSmall =

Big Bool

| Small Bool

deriving (Eq, Show)

What is the cardinality of this datatype? Hint: We already
know Bool’s cardinality. Show your work as demonstrated
earlier.

2. Given a datatype
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-- bring Int8 in scope

import Data.Int

data NumberOrBool =

Numba Int8

| BoolyBool Bool

deriving (Eq, Show)

-- parentheses due to syntactic

-- collision between (-) minus

-- and the negate function

let myNumba = Numba (-128)

What is the cardinality of NumberOrBool? What happens if
you try to create a Numba with a numeric literal larger than
127? And with a numeric literal smaller than (-128)?

If you choose (-128) for a value precisely, you’ll notice
you get a spurious warning:

Prelude> let n = Numba (-128)

Literal 128 is out of the

Int8 range -128..127

If you are trying to write a large negative

literal, use NegativeLiterals
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Now, since -128 is a perfectly valid Int8 value you could
choose to ignore this. What happens is that (-128) desug-
ars into (negate 128). The compiler sees that you expect
the type Int8, but Int8’s max boundary is 127. So even
though you’re negating 128, it hasn’t done that step yet
and immediately whines about 128 being larger than 127.
One way to avoid the warning is the following:

Prelude> let n = (-128)

Prelude> let x = Numba n

Or you can use the NegativeLiterals extension as it recom-
mends:

Prelude> :set -XNegativeLiterals

Prelude> let n = Numba (-128)

Note that the negative literals extension doesn’t prevent
the warning if you use negate.

11.11 Product types

What does it mean for a type to be a product? A product type’s
cardinality is the product of the cardinalities of its inhabitants.
Arithmetically, products are the result of multiplication. Where
a sum type was expressing or, a product type expresses and.
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For those that have programmed in C-like languages before,
a product is like a struct. For those that haven’t, a product is a
way to carry multiple values around in a single data construc-
tor. Any data constructor with two or more type arguments is
a product.

We said previously that tuples are anonymous products.
The declaration of the tuple type looks like this:

( , ) :: a -> b -> (a, b)

This is a product, like a product type: it gives you a way
to encapsulate two pieces of data, of possibly (though not
necessarily) different types, in a single value.

We’ll look next at a somewhat silly sum type:

data QuantumBool = QuantumTrue

| QuantumFalse

| QuantumBoth

deriving (Eq, Show)

What is the cardinality of this sum type?
For reasons that will become obvious, a cardinality of 2

makes it harder to show the difference between sum and prod-
uct cardinality, so QuantumBool has a cardinality of 3. Now we’re
going to define a product type that contains two QuantumBool

values:
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data TwoQs =

MkTwoQs QuantumBool QuantumBool

deriving (Eq, Show)

The datatype TwoQs has one data constructor, MkTwoQs, that
takes two arguments, making it a product of the two types that
inhabit it. Each argument is of type QuantumBool, which has a
cardinality of 3.

You can write this out to help you visualize it if you like. A
MkTwoQs value could be:

MkTwoQs QuantumTrue QuantumTrue

MkTwoQs QuantumTrue QuantumFalse

MkTwoQs QuantumTrue QuantumBoth

MkTwoQs QuantumFalse QuantumFalse

-- ...... and so on

Note that there is no special syntax denoting product types
as there was with sums and |. MkTwoQs is a data constructor
taking two type arguments, which both happen to be the same
type. It is a product type, the product of two QuantumBools. The
number of potential values that can manifest in this type is the
cardinality of one of its type arguments times the cardinality
of the other. So, what is the cardinality of TwoQs?

We could have also written the TwoQs type using a type alias
and the tuple data constructor. Type aliases create type con-
structors, not data constructors:
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type TwoQs = (QuantumBool, QuantumBool)

The cardinality of this will be the same as it was previously.
The reason it’s important to understand cardinality is that

the cardinality of a datatype roughly equates to how difficult
it is to reason about.

Record syntax

Records in Haskell are product types with additional syntax to
provide convenient accessors to fields within the record. Let’s
begin by definining a simple product type:

data Person =

MkPerson String Int

deriving (Eq, Show)

That is the familiar product type structure: the MkPerson

data constructor takes two type arguments in its definition, a
String value (a name) and an Int value (an age). The cardinality
of this is frankly terrifying.

As we’ve seen in previous examples, we can unpack the
contents of this type using functions that return the value we
want from our little box of values:
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-- sample data

jm = MkPerson "julie" 108

ca = MkPerson "chris" 16

namae :: Person -> String

namae (MkPerson s _) = s

If you use the namae function in your REPL, it will return
the String value from your data.

Now let’s see how we could define a similar product type
but with record syntax:

data Person =

Person { name :: String

, age :: Int }

deriving (Eq, Show)

You can see the similarity to the Person type defined above,
but defining it as a record means there are now named record
field accessors. They’re just functions that go from the product
type to a member of product:

Prelude> :t name

name :: Person -> String

Prelude> :t age

age :: Person -> Int
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You can use this directly in GHCi:

Prelude> Person "Papu" 5

Person {name = "Papu", age = 5}

Prelude> let papu = Person "Papu" 5

Prelude> age papu

5

Prelude> name papu

"Papu"

You can also do it from data that is in a file. Change the jm

and ca data above so that it is now of type Person, reload your
source file, and try using the record field accessors in GHCi to
query the values.

11.12 Normal form

We’ve looked at the algebra behindHaskell’s algebraic datatypes,
and explored how this is useful for understanding the cardi-
nality of datatypes. But the algebra doesn’t stop there. All the
existing algebraic rules for products and sums apply in type
systems, and that includes the distributive property. Let’s take
a look at how that works in arithmetic:

2 * (3 + 4)

2 * (7)
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14

We can rewrite this with the multiplication distributed over
the addition and obtain the same result:

2 * 3 + 2 * 4

(6) + (8)

14

This is known as a “sum of products.” In normal arithmetic,
the expression is in normal form when it’s been reduced to
a final result. However, if you think of the numerals in the
above expressions as representations of set cardinality, then
the sum of products expression is in normal form, as there is
no computation to perform.

The distributive property can be generalized:

a * (b + c) -> (a * b) + (a * c)

And this is true of Haskell’s types as well! Product types
distribute over sum types. To play with this, we’ll first define
some datatypes:
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data Fiction = Fiction deriving Show

data Nonfiction = Nonfiction deriving Show

data BookType = FictionBook Fiction

| NonfictionBook Nonfiction

deriving Show

We define two types with only single, nullary inhabitants:
Fiction and Nonfiction. The reasons for doing that may not
be immediately clear but recall that we said you can’t use a
type while only permitting one of its inhabitants as a possible
value. You can’t ask for a value of type Bool while declaring
in your types that it must always be True — you must admit
the possibility of either Bool value. So, declaring the Fiction

and Nonfiction types will allow us to factor out the book types
(below).

Then we have a sum type, BookType, with constructors that
take the Fiction and Nonfiction types as arguments. It’s impor-
tant to remember that, although the type constructors and data
constructors of Fiction and Nonfiction have the same name,
they are not the same, and it is the type constructors that
are the arguments to FictionBook and NonfictionBook. Take a
moment and rename them to demonstrate this to yourself.

So, we have our sum type. Next we’re going to define a type
synonym called AuthorName and a product type called Author.
The type synonym doesn’t really do anything except help us
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keep track of which String we’re using in the Author type:

type AuthorName = String

data Author = Author (AuthorName, BookType)

This isn’t a sum of products, so it isn’t normal form. It
can, in some sense, be evaluated to tease apart the values that
are hiding in the sum type, BookType. Again, we can apply the
distributive property and rewrite Author in normal form:

type AuthorName = String

-- If you have them in the same

-- file, you'll need to comment

-- out previous definitions of

-- Fiction and Nonfiction.

data Author =

Fiction AuthorName

| Nonfiction AuthorName

deriving (Eq, Show)

Products distribute over sums. Just as we would do with
the expression a * (b + c), where the inhabitants of the sum
type BookType are the 𝑏 and 𝑐, we broke those values out and
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made a sum of products. Now it’s in normal form because
no further evaluation can be done of these constructors until
some operation or computation is done using these types.

Another example of normal form can be found in the Expr

type which is very common to papers about type systems and
programming languages:

data Expr =

Number Int

| Add Expr Expr

| Minus Expr

| Mult Expr Expr

| Divide Expr Expr

This is in normal form because it’s a sum (type) of products:
(Number Int) + Add (Expr Expr) + …

A stricter interpretation of normal form or “sum of prod-
ucts” would require representing products with tuples and
sums with Either. The previous datatype in that form would
look like the following:
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type Number = Int

type Add = (Expr, Expr)

type Minus = Expr

type Mult = (Expr, Expr)

type Divide = (Expr, Expr)

type Expr =

Either Number

(Either Add

(Either Minus

(Either Mult Divide)))

This representation finds applications in problems where
one is writing functions or folds over the representations of
datatypes, such as with generics and metaprogramming. Some
of these methods have their application in Haskell but should
be used judiciously and aren’t always easy to use.

The Either type will be explained in detail in the next chap-
ter.

Exercises: How Does Your Garden Grow?

1. Given the type
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data FlowerType = Gardenia

| Daisy

| Rose

| Lilac

deriving Show

type Gardener = String

data Garden =

Garden Gardener FlowerType

deriving Show

What is the sum of products normal form of Garden?

11.13 Constructing and deconstructing
values

There are essentially two things we can do with a value: we can
generate or construct it or we can match on it and consume
it. We talked above about why data and type constructors are
called constructors, and this section will elaborate on that and
how to construct values of different types. You have already
been doing this in previous chapters, but we hope this section
will lead you to a deeper understanding.
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Construction and deconstruction of values form a duality.
Data is immutable in Haskell, so values carry with them the
information about how they were created. We can use that
information when we consume or deconstruct the value.

We’ll start by defining a collection of datatypes:

data GuessWhat =

Chickenbutt deriving (Eq, Show)

data Id a =

MkId a deriving (Eq, Show)

data Product a b =

Product a b deriving (Eq, Show)

data Sum a b =

First a

| Second b

deriving (Eq, Show)

data RecordProduct a b =

RecordProduct { pfirst :: a

, psecond :: b }

deriving (Eq, Show)

Now that we have different sorts of datatypes to work with,
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we’ll move on to constructing values of those types.

Sum and Product

Here Sum and Product are ways to represent arbitrary sums and
products in types. In ordinary Haskell code, it’s unlikely you’d
need or want nestable sums and products unless you were
doing something fairly advanced, but here we use them as a
means of demonstration.

If you have two values in a product, then the conversion
to using Product is straightforward (n.b.: The Sum and Product

declarations from above will need to be in scope for all the
following examples):
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newtype NumCow =

NumCow Int

deriving (Eq, Show)

newtype NumPig =

NumPig Int

deriving (Eq, Show)

data Farmhouse =

Farmhouse NumCow NumPig

deriving (Eq, Show)

type Farmhouse' = Product NumCow NumPig

Farmhouse and Farmhouse' are the same.
For an example with three values in the product instead of

two, we must begin to take advantage of the fact that Product
takes two arguments, one of which can also be another Product

of values. In fact, you can nest them as far as you can stomach
or until the compiler chokes:
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newtype NumSheep =

NumSheep Int

deriving (Eq, Show)

data BigFarmhouse =

BigFarmhouse NumCow NumPig NumSheep

deriving (Eq, Show)

type BigFarmhouse' =

Product NumCow (Product NumPig NumSheep)

We can perform a similar trick with Sum:

type Name = String

type Age = Int

type LovesMud = Bool

Sheep can produce between 2 and 30 pounds (0.9 and 13
kilos) of wool per year! Icelandic sheep don’t produce as much
wool per year as other breeds but the wool they do produce is
a finer wool.

type PoundsOfWool = Int

data CowInfo =

CowInfo Name Age

deriving (Eq, Show)
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data PigInfo =

PigInfo Name Age LovesMud

deriving (Eq, Show)

data SheepInfo =

SheepInfo Name Age PoundsOfWool

deriving (Eq, Show)

data Animal =

Cow CowInfo

| Pig PigInfo

| Sheep SheepInfo

deriving (Eq, Show)

-- Alternately

type Animal' =

Sum CowInfo (Sum PigInfo SheepInfo)

Again in the REPL, we use First and Second to pattern match
on the data constructors of Sum:

-- Getting it right

Prelude> let bess' = (CowInfo "Bess" 4)

Prelude> let bess = First bess' :: Animal'
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Prelude> :{

*Main| let e' =

*Main| Second (SheepInfo "Elmer" 5 5)

*Main| :}

Prelude> let elmer = Second e' :: Animal'

-- Making a mistake

Prelude> :{

*Main| let elmo' =

*Main| Second (SheepInfo "Elmo" 5 5)

*Main| :}

Prelude> let elmo = First elmo' :: Animal'

Couldn't match expected type ‘CowInfo’

with actual type ‘Sum a0 SheepInfo’

In the first argument of ‘First’, namely

‘(Second (SheepInfo "Elmo" 5 5))’

In the expression:

First (Second (SheepInfo "Elmo" 5 5))

:: Animal'

The first data constructor, First, has the argument CowInfo,
but SheepInfo is nested within the Second constructor (it is the
Second of the Second). We can see how they don’t match and
the mistaken attempt nests in the wrong direction.

Prelude> let sheep = SheepInfo "Baaaaa" 5 5
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Prelude> :t First (Second sheep)

First (Second (SheepInfo "Baaaaa" 5 5))

:: Sum (Sum a SheepInfo) b

Prelude> :info Animal'

type Animal' =

Sum CowInfo (Sum PigInfo SheepInfo)

-- Defined at code/animalFarm1.hs:61:1

As we said, the actual types Sum and Product themselves aren’t
used very often in standard Haskell code, but it can be useful to
develop an intuition about this structure to sum and product
types.

Constructing values

Our first datatype, GuessWhat, is trivial, equivalent to the () unit
type:

trivialValue :: GuessWhat

trivialValue = Chickenbutt

Types like this are sometimes used to signal discrete con-
cepts that you don’t want to flatten into the unit type. We’ll
elaborate on how this can make code easier to understand or
better abstracted later. There is nothing special in the syntax
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here. We define trivialValue to be the nullary data constructor
Chickenbutt and we have a value of the type GuessWhat.

Next we look at a unary type constructor that contains one
unary data constructor:

data Id a =

MkId a deriving (Eq, Show)

Because Id has an argument, we have to apply it to some-
thing before we can construct a value of that type:

-- note:

-- MkId :: a -> Id a

idInt :: Id Integer

idInt = MkId 10

We turn our attention to our product type with two argu-
ments. We’re going to define some type synonyms first to
make this more readable:

type Awesome = Bool

type Name = String

person :: Product Name Awesome

person = Product "Simon" True
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The type synonyms Awesome and Name here are for clarity.
They don’t obligate us to change our terms. We could have
used datatypes instead of type synonyms, as we will in the sum
type example below, but this is a quick and painless way to
construct the value that we need. Notice that we’re relying on
the Product data constructor that we defined above. The Product

data constructor is a function of two arguments, the Name and
Awesome. Notice, also, that Simons are invariably awesome.

Now we’ll use the Sum type defined above:

data Sum a b =

First a

| Second b

deriving (Eq, Show)

data Twitter =

Twitter deriving (Eq, Show)

data AskFm =

AskFm deriving (Eq, Show)

socialNetwork :: Sum Twitter AskFm

socialNetwork = First Twitter

Here our type is a sum of Twitter or AskFm. We don’t have
both values at the same time without the use of a product
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because sums are a means of expressing disjunction or the
ability to have one of several possible values. We have to use
one of the data constructors generated by the definition of Sum
in order to indicate which of the possibilities in the disjunction
we mean to express. Consider the case where we mix them
up:

Prelude> type SN = Sum Twitter AskFm

Prelude> Second Twitter :: SN

Couldn't match expected type ‘AskFm’ with

actual type ‘Twitter’

In the first argument of ‘Second’,

namely ‘Twitter’

In the expression:

Second Twitter :: Sum Twitter AskFm

Prelude> First AskFm :: Sum Twitter AskFm

Couldn't match expected type ‘Twitter’ with

actual type ‘AskFm’

In the first argument of ‘First’,

namely ‘AskFm’

In the expression:
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First AskFm :: Sum Twitter AskFm

The appropriate assignment of types to specific construc-
tors is dependent on the assertions in the type. The type signa-
ture Sum Twitter AskFm tells you which goes with the data con-
structor First and which goes with the data constructor Second.
We can assert that ordering directly by writing a datatype like
this:

data SocialNetwork =

Twitter

| AskFm

deriving (Eq, Show)

Now the data constructors for Twitter and AskFm are direct
inhabitants of the sum type SocialNetwork, where before they
inhabited the Sum type. Now let’s consider how this might look
with type synonyms:

type Twitter = String

type AskFm = String

twitter :: Sum Twitter AskFm

twitter = First "Twitter"

askfm :: Sum Twitter AskFm

askfm = First "AskFm"
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There’s a problem with the above example. The name
of askfm implies we meant Second "AskFm", but we messed up.
Because we used type synonyms instead of defining datatypes,
the type system didn’t catch the mistake. The typechecker has
no way of knowing we made a mistake because both values are
Strings. Try to avoid using type synonyms with unstructured
data like text or binary. Type synonyms are best used when
you want something lighter weight than newtypes but also
want your type signatures to be more explicit.

Finally, we’ll consider the product that uses record syntax:

Prelude> :t RecordProduct

RecordProduct :: a

-> b

-> RecordProduct a b

Prelude> :t Product

Product :: a -> b -> Product a b

The first thing to notice is that you can construct values of
products that use record syntax in a manner identical to that
of non-record products. Records are just syntax to create field
references. They don’t do much heavy lifting in Haskell, but
they are convenient:

myRecord :: RecordProduct Integer Float

myRecord = RecordProduct 42 0.00001
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We can take advantage of the fields that we defined on our
record to construct values in a slightly different style. This can
be convenient for making things a little more obvious:

myRecord :: RecordProduct Integer Float

myRecord =

RecordProduct { pfirst = 42

, psecond = 0.00001 }

This is a bit more compelling when you have domain-
specific names for things:
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data OperatingSystem =

GnuPlusLinux

| OpenBSDPlusNevermindJustBSDStill

| Mac

| Windows

deriving (Eq, Show)

data ProgLang =

Haskell

| Agda

| Idris

| PureScript

deriving (Eq, Show)

data Programmer =

Programmer { os :: OperatingSystem

, lang :: ProgLang }

deriving (Eq, Show)

Then we can construct a value from the record product
Programmer:

Prelude> :t Programmer

Programmer :: OperatingSystem

-> ProgLang

-> Programmer



CHAPTER 11. RULE THE TYPES, RULE THE UNIVERSE657

nineToFive :: Programmer

nineToFive = Programmer { os = Mac

, lang = Haskell }

-- We can reorder stuff

-- when we use record syntax

feelingWizardly :: Programmer

feelingWizardly =

Programmer { lang = Agda

, os = GnuPlusLinux }

Exercise: Programmers

Write a function that generates all possible values of Programmer.
Use the provided lists of inhabitants of OperatingSystem and
ProgLang.
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allOperatingSystems :: [OperatingSystem]

allOperatingSystems =

[ GnuPlusLinux

, OpenBSDPlusNevermindJustBSDStill

, Mac

, Windows

]

allLanguages :: [ProgLang]

allLanguages =

[Haskell, Agda, Idris, PureScript]

allProgrammers :: [Programmer]

allProgrammers = undefined

Programmer is a product of two types, you can determine how
many inhabitants of Programmer you have by calculating:

length allOperatingSystems

* length allLanguages

This is the essence of how product types and the number
of inhabitants relate.

There are several ways you could write a function to do
that, and some may produce a list that has duplicate values
in it. If your resulting list has duplicate values in it, you can
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use nub from Data.List to remove duplicate values over your
allProgrammers value. Either way, if your result (minus any
duplicate values) equals the number returned by multiplying
those lengths together, you’ve probably got it figured out. Try
to be clever and make it work without manually typing out
the values.

Accidental bottoms from records

We’re going to reuse the previous Programmer datatype to see
what happens if we construct a value using record syntax but
forget a field:

Prelude> :{

*Main| let partialAf =

*Main| Programmer {os = GnuPlusLinux}

*Main| :}

Fields of ‘Programmer’

not initialised: lang

In the expression:

Programmer {os = GnuPlusLinux}

In an equation for ‘partialAf’:

partialAf =

Programmer {os = GnuPlusLinux}

-- and if we don't heed this warning...
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Prelude> partialAf

Programmer {os = GnuPlusLinux, lang =

*** Exception:

Missing field in

record construction lang

Do not do this in your code! Either define the whole record
at once or not at all. If you think you need this, your code needs
to be refactored. Partial application of the data constructor
suffices to handle this:
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-- Works the same as if

-- we'd used record syntax.

data ThereYet =

There Float Int Bool

deriving (Eq, Show)

-- who needs a "builder pattern"?

notYet :: Int -> Bool -> ThereYet

notYet = nope 25.5

notQuite :: Bool -> ThereYet

notQuite = notYet 10

yusssss :: ThereYet

yusssss = notQuite False

-- Not I, said the Haskell user.

Notice the way our types progressed.

There :: Float -> Int -> Bool -> ThereYet

notYet :: Int -> Bool -> ThereYet

notQuite :: Bool -> ThereYet

yusssss :: ThereYet
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Percolate values through your programs, not bottoms.6

Deconstructing values

When we discussed folds, we mentioned the idea of catamor-
phism. We explained that catamorphism was about deconstruct-
ing lists. This idea is generally applicable to any datatype that
has values. Now that we’ve thoroughly explored constructing
values, the time has come to destroy what we have built. Wait,
no — we mean deconstruct.

We begin, as always, with some datatypes:
6 A favorite snack of the North American Yeti is bottom-propagating Haskellers.
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newtype Name = Name String deriving Show

newtype Acres = Acres Int deriving Show

-- FarmerType is a Sum

data FarmerType = DairyFarmer

| WheatFarmer

| SoybeanFarmer

deriving Show

-- Farmer is a plain ole product of

-- Name, Acres, and FarmerType

data Farmer =

Farmer Name Acres FarmerType

deriving Show

Now we’re going to write a very basic function that breaks
down and unpacks the data inside our constructors:

isDairyFarmer :: Farmer -> Bool

isDairyFarmer (Farmer _ _ DairyFarmer) =

True

isDairyFarmer _ =

False

DairyFarmer is one value of the FarmerType type that is packed
up inside our Farmer product type. But our function can pull
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that value out, pattern match on it, and tell us just what we’re
looking for.

Now an alternate formulation with a product that uses
record syntax:

data FarmerRec =

FarmerRec { name :: Name

, acres :: Acres

, farmerType :: FarmerType }

deriving Show

isDairyFarmerRec :: FarmerRec -> Bool

isDairyFarmerRec farmer =

case farmerType farmer of

DairyFarmer -> True

_ -> False

This is just another way of unpacking or deconstructing the
contents of a product type.

Accidental bottoms from records

We take bottoms very seriously. You can easily propagate bottoms
through record types, and we implore you not to do so. Please,
do not do this:
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data Automobile = Null

| Car { make :: String

, model :: String

, year :: Integer }

deriving (Eq, Show)

This is a terrible thing to do, for a couple of reasons. One
is this Null nonsense. Haskell offers you the perfectly lovely
datatype Maybe, which you should use instead. Secondly, con-
sider the case where one has a Null value, but you’ve used one
of the record accessors:

Prelude> make Null

"*** Exception: No match in

record selector make

-- Don't.

How do we fix this? Well, first, whenever we have a product
that uses record accessors, keep it separate of any sum type
that is wrapping it. To do this, split out the product into an
independent type with its own type constructor instead of
only as an inline data constructor product:
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-- Split out the record/product

data Car = Car { make :: String

, model :: String

, year :: Integer }

deriving (Eq, Show)

-- The Null is still not great, but

-- we're leaving it in to make a point

data Automobile = Null

| Automobile Car

deriving (Eq, Show)

Now if we attempt to do something silly, the type system
catches us:

Prelude> make Null

Couldn't match expected type ‘Car’

with actual type ‘Automobile’

In the first argument of ‘make’,

namely ‘Null’

In the expression: make Null

In Haskell, we want the typechecker to catch us doing things
wrong, so we can fix it before problems multiply and things go
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wrong at runtime. But the typechecker can best help those
who help themselves.

11.14 Function type is exponential

In the arithmetic of calculating inhabitants of types, function
type is the exponent operator. Given a function a -> b, we can
calculate the inhabitants with the formula 𝑏u�.

So if 𝑏 and 𝑎 are Bool, then 22 is how you could express the
number of inhabitants in a function of Bool -> Bool. Similarly,
a function of Bool to something of 3 inhabitants would be 32

and thus have nine possible implementations.

a -> b -> c

(c ^ b) ^ a

-- given arithmetic laws,

-- can be rewritten as

c ^ (b * a)

Earlier we identified the type (Bool, Bool) as having four
inhabitants. This can be determined by either writing out all
the possible unique inhabitants or, more easily, by doing the
arithmetic of (1 + 1) * (1 + 1). Next we’ll see that the type of
functions (->) is, in the algebra of types, the exponentiation
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operator. We’ll use a datatype with three cases because Bool

has one difficulty: two plus two, two times two, and two to
the power of two all equal the same thing. Let’s review the
arithmetic of sum types:

data Quantum =

Yes

| No

| Both

deriving (Eq, Show)

-- 3 + 3

quantSum1 :: Either Quantum Quantum

quantSum1 = Right Yes

quantSum2 :: Either Quantum Quantum

quantSum2 = Right No

quantSum3 :: Either Quantum Quantum

quantSum3 = Right Both

quantSum4 :: Either Quantum Quantum

quantSum4 = Left Yes

-- You can fill in the next two.

And now the arithmetic of product types:



CHAPTER 11. RULE THE TYPES, RULE THE UNIVERSE669

-- 3 * 3

quantProd1 :: (Quantum, Quantum)

quantProd1 = (Yes, Yes)

quantProd2 :: (Quantum, Quantum)

quantProd2 = (Yes, No)

quantProd3 :: (Quantum, Quantum)

quantProd3 = (Yes, Both)

quantProd4 :: (Quantum, Quantum)

quantProd4 = (No, Yes)

quantProd5 :: (Quantum, Quantum)

quantProd5 = (No, No)

quantProd6 :: (Quantum, Quantum)

quantProd6 = (No, Both)

quantProd7 :: (Quantum, Quantum)

quantProd7 = (Both, Yes)

-- You can determine the final two.

And now a function type. Each possible unique implemen-
tation of the function is an inhabitant:
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-- 3 ^ 3

quantFlip1 :: Quantum -> Quantum

quantFlip1 Yes = Yes

quantFlip1 No = Yes

quantFlip1 Both = Yes

quantFlip2 :: Quantum -> Quantum

quantFlip2 Yes = Yes

quantFlip2 No = Yes

quantFlip2 Both = No

quantFlip3 :: Quantum -> Quantum

quantFlip3 Yes = Yes

quantFlip3 No = Yes

quantFlip3 Both = Both
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quantFlip4 :: Quantum -> Quantum

quantFlip4 Yes = Yes

quantFlip4 No = No

quantFlip4 Both = Yes

quantFlip5 :: Quantum -> Quantum

quantFlip5 Yes = Yes

quantFlip5 No = Both

quantFlip5 Both = Yes

quantFlip6 :: Quantum -> Quantum

quantFlip6 Yes = No

quantFlip6 No = Yes

quantFlip6 Both = Yes



CHAPTER 11. RULE THE TYPES, RULE THE UNIVERSE672

quantFlip7 :: Quantum -> Quantum

quantFlip7 Yes = Both

quantFlip7 No = Yes

quantFlip7 Both = Yes

quantFlip8 :: Quantum -> Quantum

quantFlip8 Yes = Both

quantFlip8 No = Yes

quantFlip8 Both = No

quantFlip9 :: Quantum -> Quantum

quantFlip9 Yes = Both

quantFlip9 No = No

quantFlip9 Both = No

quantFlip10 :: Quantum -> Quantum

quantFlip10 Yes = Both

quantFlip10 No = No

quantFlip10 Both = Both

-- You can figure out the remaining

-- possibilities yourself.
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Exponentiation in what order?

Consider the following function:

convert :: Quantum -> Bool

convert = undefined

According to the equality of a -> b and 𝑏u� there should be 23

or 8 implementations of this function. Does this hold? Write
it out and prove it for yourself.

Exercises: The Quad

Determine how many unique inhabitants each type has.
Suggestion: do the arithmetic unless you want to verify.

Writing them out gets tedious quickly.

1. data Quad =

One

| Two

| Three

| Four

deriving (Eq, Show)

-- how many different forms can this take?

eQuad :: Either Quad Quad

eQuad = ???
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2. prodQuad :: (Quad, Quad)

3. funcQuad :: Quad -> Quad

4. prodTBool :: (Bool, Bool, Bool)

5. gTwo :: Bool -> Bool -> Bool

6. Hint: 5 digit number

fTwo :: Bool -> Quad -> Quad

11.15 Higher-kinded datatypes

You may recall we discussed kinds earlier in this chapter. Kinds
are the types of type constructors, primarily encoding the
number of arguments they take. The default kind in Haskell is
*. Kind signatures work like type signatures, using the same ::

and -> syntax, but there are only a few kinds and you’ll most
often see *.

Kinds are not types until they are fully applied. Only types
have inhabitants at the term level. The kind * -> * is waiting
for a single * before it is fully applied. The kind * -> * -> *

must be applied twice before it will be a real type. This is
known as a higher-kinded type. Lists, for example, are higher-
kinded datatypes in Haskell.

Because types can be generically polymorphic by taking
type arguments, they can be applied at the type level:
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-- identical to (a, b, c, d)

data Silly a b c d =

MkSilly a b c d deriving Show

-- in GHCi

Prelude> :kind Silly

Silly :: * -> * -> * -> * -> *

Prelude> :kind Silly Int

Silly Int :: * -> * -> * -> *

Prelude> :kind Silly Int String

Silly Int String :: * -> * -> *

Prelude> :kind Silly Int String Bool

Silly Int String Bool :: * -> *

Prelude> :kind Silly Int String Bool String

Silly Int String Bool String :: *

-- Identical to (a, b, c, d)

Prelude> :kind (,,,)

(,,,) :: * -> * -> * -> * -> *

Prelude> :kind (Int, String, Bool, String)

(Int, String, Bool, String) :: *
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Getting comfortable with higher-kinded types is important
as type arguments provide a generic way to express a “hole”
to be filled by consumers of your datatype later. Take the
following as an example from a library one of the authors
maintains called Bloodhound.7

data EsResultFound a =

EsResultFound { _version :: DocVersion

, _source :: a

} deriving (Eq, Show)

We know that this particular kind of response from Elastic-
search will include a DocVersion value, so that’s been assigned a
type. On the other hand, _source has type 𝑎 because we have
no idea what the structure of the documents they’re pulling
from Elasticsearch look like. In practice, we do need to be able
to do something with that value of type 𝑎. The thing we will
want to do with it — the way we will consume or use that data
— will usually be a FromJSON typeclass instance for deserializing
JSON data into a Haskell datatype. But in Haskell, we do not
conventionally put constraints on datatypes. That is, we don’t
want to constrain that polymorphic 𝑎 in the datatype. The
FromJSON typeclass will likely (assuming that’s what is needed in

7 http://hackage.haskell.org/package/bloodhound If you are not a programmer and do
not know what Elasticsearch and JSON are, try not to worry too much about the specifics.
Elasticsearch is a search engine and JSON is a format for transmitting data, especially
between servers and web applications.

http://hackage.haskell.org/package/bloodhound
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a given context) constrain the variable in the type signature(s)
for the function(s) that will process this data.

Accordingly, the FromJSON typeclass instance for EsResultFound
requires a FromJSON instance for that 𝑎:

instance (FromJSON a) =>

FromJSON (EsResultFound a) where

parseJSON (Object v) =

EsResultFound

<$> v .: "_version"

<*> v .: "_source"

parseJSON _ = empty

As you can hopefully see from this, by not fully applying
the type — by leaving it higher-kinded — space is left for the
type of the response to vary, for the “hole” to be filled in by
the end user.

11.16 Lists are polymorphic

What makes a list polymorphic? In what way can it take many
forms? What makes them polymorphic is that lists in Haskell
can contain values of any type. You do not have an 𝑎 until the
list type’s type argument has been fully applied:

data [] a = [] | a : [a]

-- [1] [2] [3] [4] [5] [6]
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1. Type constructor for list has special [] syntax.

2. Single type argument to []. This is the type of value our
list contains.

3. Nil / empty list value constructor, again with the special
[] syntax. [] marks the end of the list.

4. A single value of type 𝑎.

5. : is an infix data constructor. It is a product of 𝑎 [4] and
[a] [6]

6. The rest of our list.

Infix type and data constructors When we give an operator
a nonalphanumeric name, it is infix by default. For example,
all the nonalphanumeric arithmetic functions are infix opera-
tors, while we have some alphanumeric arithmetic functions,
such as div and mod that are prefix by default. So far, we’ve only
seen alphanumeric data constructors, except for this cons con-
structor in the list type, but the same rule applies to them.

Any operator that starts with a colon (:) must be an in-
fix type or data constructor. All infix data constructors must
start with a colon. The type constructor of functions, (->), is
the only infix type constructor that doesn’t start with a colon.
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Another exception is that they cannot be :: as this syntax is
reserved for type assertions.

In the following example, we’ll define the list type without
using an infix constructor:

-- Same type, redefined

-- with different syntax

data List a = Nil | Cons a (List a)

-- [1] [2] [3] [5] [4] [6]

1. The List type constructor.

2. The 𝑎 type parameter to List.

3. Nil / empty list value, which also marks the end of a list.

4. A single value of type 𝑎 in the Cons product.

5. The Cons constructor, product of 𝑎 and List a.

6. The rest of our list.

How do we use our List type?

Prelude> let nil = Nil

Prelude> :t nil

nil :: List a
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The type parameter isn’t applied because Nilby itself doesn’t
tell the type inference what the List contains. But if we give it
some information, then the 𝑎 can be assigned a concrete type:

Prelude> let oneItem = (Cons "woohoo!" Nil)

Prelude> :t oneItem

oneItem :: List [Char]

And how are our list types kinded?

Prelude> :kind List

List :: * -> *

Prelude> :kind []

[] :: * -> *

Prelude> :kind List Int

List Int :: *

Prelude> :kind [Int]

[Int] :: *

Much as we can refer to the function not before we’ve ap-
plied its argument, we can refer to the list type constructor, [],
before we’ve applied it to a type argument:

Prelude> :t not

not :: Bool -> Bool
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Prelude> :t not True

not True :: Bool

Prelude> :k []

[] :: * -> *

Prelude> :k [Int]

[Int] :: *

The difference is that the argument of not is any value of
type Bool, and the argument of [] is any type of kind *. So,
they’re similar, but type constructors are functions one level
up, structuring things that cannot exist at runtime — it’s purely
static and describes the structure of your types.

11.17 Binary Tree

Now we turn our attention to a type similar to list. The type
constructor for binary trees can take an argument, and it is
also recursive like lists:

data BinaryTree a =

Leaf

| Node (BinaryTree a) a (BinaryTree a)

deriving (Eq, Ord, Show)

This tree has a value of type 𝑎 at each node. Each node
could be a terminal node, called a leaf, or it could branch and
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have two subtrees. The subtrees are also of type BinaryTree a,
so this type is recursive. Each binary tree can store yet another
binary tree, which allows for trees of arbitrary depth.

In some cases, binary trees can be more efficient for struc-
turing and accessing data than a list, especially if you know
how to order your values in a way that lets you know whether
to look “left” or “right” to find what you want. On the other
hand, a tree that only branches to the right is indistinguishable
from an ordinary list. For now, we won’t concern ourselves
too much with this as we’ll talk about the proper application
of data structures later. Instead, you’re going to write some
functions for processing BinaryTree values.

Inserting into trees

The first thing to be aware of is that we need Ord in order to have
enough information about our values to know how to arrange
them in our tree. Accordingly, if something is lower, we want
to insert it somewhere on the left-hand part of our tree. If it’s
greater than the current node value, it should go somewhere
to the right. Left lesser, right greater is a common convention
for arranging binary trees — it could be the opposite and not
really change anything, but this matches our usual intuitions
of ordering as we do with, say, number lines. The point is you
want to be able to know where to look in the tree for values
greater or less than the current one you’re looking at.
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Our insert function will insert a value into a tree or, if no
tree exists yet, give us a means of building a tree by inserting
values. It’s important to remember that data is immutable in
Haskell. We do not insert a value into an existing tree; each
time we want to insert a value into the data structure, we build
a whole new tree:

insert' :: Ord a

=> a

-> BinaryTree a

-> BinaryTree a

insert' b Leaf = Node Leaf b Leaf

insert' b (Node left a right)

| b == a = Node left a right

| b < a = Node (insert' b left) a right

| b > a = Node left a (insert' b right)

The base case in our insert' function serves a couple pur-
poses. It handles inserting into an empty tree (Leaf) and begin-
ning the construction of a new tree and also the case of having
reached the bottom of a much larger tree. The simplicity here
lets us ignore any inessential differences between those two
cases.

-- Leaf being the "empty tree" case
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Prelude> let t1 = insert' 0 Leaf

Prelude> t1

Node Leaf 0 Leaf

Prelude> let t2 = insert' 3 t1

Prelude> t2

Node Leaf 0 (Node Leaf 3 Leaf)

Prelude> let t3 = insert' 5 t2

Prelude> t3

Node Leaf 0

(Node Leaf 3

(Node Leaf 5 Leaf))

We will examine binary trees and their properties later in
the book. For now, we want to focus not on the properties
of binary trees themselves, but on the structure of their type.
You might find the following exercises tricky or tedious, but
they will deepen your intuition for how recursive types work.

Write map for BinaryTree

Given the definition of BinaryTree above, write a map function
for the data structure. You don’t really need to know anything
about binary trees to write these functions. The structure
inherent in the definition of the type is all you need. All you
need to do is write the recursive functions.
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No special algorithms are needed, and we don’t expect you
to keep the tree balanced or ordered. Also, remember that
we’ve never once mutated anything. We’ve only built new
values from input data. Given that, when you go to implement
mapTree, you’re not changing an existing tree — you’re building
a new one based on an existing one (as when you are mapping
functions over lists).

Note, you do not need to use insert' for this. Retain the
original structure of the tree.
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mapTree :: (a -> b)

-> BinaryTree a

-> BinaryTree b

mapTree _ Leaf = Leaf

mapTree f (Node left a right) =

Node undefined undefined undefined

testTree' :: BinaryTree Integer

testTree' =

Node (Node Leaf 3 Leaf)

1

(Node Leaf 4 Leaf)

mapExpected =

Node (Node Leaf 4 Leaf)

2

(Node Leaf 5 Leaf)

-- acceptance test for mapTree

mapOkay =

if mapTree (+1) testTree' == mapExpected

then print "yup okay!"

else error "test failed!"

Some hints for implementing mapTree follow.
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The first pattern match in our mapTree function is the base
case, where we have a Leaf value. We can’t apply the 𝑓 there
because we don’t have an 𝑎, so we ignored it. Since we have
to return a value of type BinaryTree b whatever happens, we
return a Leaf value.

We return a Node in the second pattern match of our mapTree

function. Note that the Node data constructor takes three argu-
ments:

Prelude> :t Node

Node :: BinaryTree a

-> a

-> BinaryTree a

-> BinaryTree a

So you need to pass it more BinaryTree, a single value, and
more BinaryTree. You have the following terms available to
you:

1. f :: (a -> b)

2. left :: BinaryTree a

3. a :: a

4. right :: BinaryTree a
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5. mapTree :: (a -> b)

-> BinaryTree a

-> BinaryTree b

Now the Node return needs to have a value of type 𝑏 and
BinaryTree values with type 𝑏 inside them. You have two func-
tions at your disposal. One gets you (a -> b), the other maps
BinaryTrees of type 𝑎 into BinaryTrees of type 𝑏. Get ’em tiger.

A few suggestions that might help you with this exercise.

1. Split out the patterns your function should match on first.

2. Implement the base case first.

3. Try manually writing out the steps of recursion at first,
then collapse them into a single step that is recursive.

Convert binary trees to lists

Write functions to convert BinaryTree values to lists. Make
certain your implementation passes the tests.
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preorder :: BinaryTree a -> [a]

preorder = undefined

inorder :: BinaryTree a -> [a]

inorder = undefined

postorder :: BinaryTree a -> [a]

postorder = undefined

testTree :: BinaryTree Integer

testTree =

Node (Node Leaf 1 Leaf)

2

(Node Leaf 3 Leaf)

testPreorder :: IO ()

testPreorder =

if preorder testTree == [2, 1, 3]

then putStrLn "Preorder fine!"

else putStrLn "Bad news bears."

testInorder :: IO ()

testInorder =

if inorder testTree == [1, 2, 3]

then putStrLn "Inorder fine!"

else putStrLn "Bad news bears."

testPostorder :: IO ()

testPostorder =

if postorder testTree == [1, 3, 2]

then putStrLn "Postorder fine!"

else putStrLn "postorder failed check"

main :: IO ()

main = do

testPreorder

testInorder

testPostorder
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Write foldr for BinaryTree

Given the definition of BinaryTree we have provided, write a
catamorphism for the binary trees.

-- any traversal order is fine

foldTree :: (a -> b -> b)

-> b

-> BinaryTree a

-> b

11.18 Chapter Exercises

Multiple choice

1. Given the following datatype:

data Weekday =

Monday

| Tuesday

| Wednesday

| Thursday

| Friday

we can say:

a) Weekday is a type with five data constructors
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b) Weekday is a tree with five branches

c) Weekday is a product type

d) Weekday takes five arguments

2. and with the same datatype definition in mind, what is
the type of the following function, f?

f Friday = "Miller Time"

a) f :: [Char]

b) f :: String -> String

c) f :: Weekday -> String

d) f :: Day -> Beer

3. Types defined with the data keyword

a) must have at least one argument

b) must begin with a capital letter

c) must be polymorphic

d) cannot be imported from modules

4. The function g xs = xs !! (length xs - 1)

a) is recursive and may not terminate

b) delivers the head of xs

c) delivers the final element of xs

d) has the same type as xs
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Ciphers

In the Lists chapter, you wrote a Caesar cipher. Now, we want
to expand on that idea by writing a Vigenère cipher. A Vi-
genère cipher is another substitution cipher, based on a Caesar
cipher, but it uses a series of Caesar ciphers for polyalphabetic
substitution. The substitution for each letter in the plaintext
is determined by a fixed keyword.

So, for example, if you want to encode the message “meet
at dawn,” the first step is to pick a keyword that will determine
which Caesar cipher to use. We’ll use the keyword “ALLY”
here. You repeat the keyword for as many characters as there
are in your original message:

MEET AT DAWN

ALLY AL LYAL

Now the number of rightward shifts to make to encode each
character is set by the character of the keyword that lines up
with it. The ’A’ means a shift of 0, so the initial M will remain
M. But the ’L’ for our second character sets a rightward shift
of 11, so ’E’ becomes ’P’. And so on, so “meet at dawn” encoded
with the keyword “ALLY” becomes “MPPR AE OYWY.”

Like the Caesar cipher, you can find all kinds of resources to
help you understand the cipher and also many examples writ-
ten in Haskell. Consider using a combination of chr, ord, and
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mod again, possibly very similar to what you used for writing
the original Caesar cipher.

As-patterns

As-patterns in Haskell are a nifty way to be able to pattern match
on part of something and still refer to the entire original value.
Some examples:

f :: Show a => (a, b) -> IO (a, b)

f t@(a, _) = do

print a

return t

Here we pattern-matched on a tuple so we could get at the
first value for printing, but used the @ symbol to introduce a
binding named 𝑡 in order to refer to the whole tuple rather
than just a part.

Prelude> f (1, 2)

1

(1,2)

We can use as-patterns with pattern matching on arbitrary
data constructors, which includes lists:
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doubleUp :: [a] -> [a]

doubleUp [] = []

doubleUp xs@(x:_) = x : xs

Prelude> doubleUp []

[]

Prelude> doubleUp [1]

[1,1]

Prelude> doubleUp [1, 2]

[1,1,2]

Prelude> doubleUp [1, 2, 3]

[1,1,2,3]

Use as-patterns in implementing the following functions:

1. This should return True if (and only if) all the values in
the first list appear in the second list, though they need
not be contiguous.

isSubseqOf :: (Eq a)

=> [a]

-> [a]

-> Bool

The following are examples of how this function should
work:
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Prelude> isSubseqOf "blah" "blahwoot"

True

Prelude> isSubseqOf "blah" "wootblah"

True

Prelude> isSubseqOf "blah" "wboloath"

True

Prelude> isSubseqOf "blah" "wootbla"

False

Prelude> isSubseqOf "blah" "halbwoot"

False

Prelude> isSubseqOf "blah" "blawhoot"

True

Remember that the sub-sequence has to be in the original
order!

2. Split a sentence into words, then tuple each word with the
capitalized form of each.

capitalizeWords :: String

-> [(String, String)]

Prelude> capitalizeWords "hello world"

[("hello", "Hello"), ("world", "World")]

Language exercises

1. Write a function that capitalizes a word.
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capitalizeWord :: String -> String

capitalizeWord = undefined

Example output.

Prelude> capitalizeWord "Chortle"

"Chortle"

Prelude> capitalizeWord "chortle"

"Chortle"

2. Write a function that capitalizes sentences in a paragraph.
Recognize when a new sentence has begun by checking
for periods. Reuse the capitalizeWord function.

capitalizeParagraph :: String -> String

capitalizeParagraph = undefined

Example result you should get from your function:

Prelude> let s = "blah. woot ha."

Prelude> capitalizeParagraph s

"Blah. Woot ha."

Phone exercise

This exercise by geophf8 originally for 1HaskellADay.9 Thank
you for letting us use this exercise!

8https://twitter.com/geophf
9https://twitter.com/1haskelladay

https://twitter.com/geophf
https://twitter.com/1haskelladay
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Remember old-fashioned phone inputs for writing text
where you had to press a button multiple times to get different
letters to come up? You may still have to do this when you try
to search for a movie to watch using your television remote
control. You’re going to write code to translate sequences of
button presses into strings and vice versa.

So! Here is the layout of the phone:

-----------------------------------------

| 1 | 2 ABC | 3 DEF |

_________________________________________

| 4 GHI | 5 JKL | 6 MNO |

-----------------------------------------

| 7 PQRS | 8 TUV | 9 WXYZ |

-----------------------------------------

| * ^ | 0 + _ | # ., |

-----------------------------------------

Where star (*) gives you capitalization of the letter you’re
writing to your friends, and 0 is your space bar. To represent
the digit itself, you press that digit once more than the letters it
represents. If you press a button one more than is required to
type the digit, it wraps around to the first letter. For example,

2 -> 'A'

22 -> 'B'

222 -> 'C'
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2222 -> '2'

22222 -> 'A'

So on and so forth. We’re going to kick this around.

1. Create a data structure that captures the phone layout
above. The data structure should be able to express enough
of how the layout works that you can use it to dictate the
behavior of the functions in the following exercises.

-- fill in the rest.

data DaPhone = DaPhone

2. Convert the following conversations into the keypresses
required to express them. We’re going to suggest types
and functions to fill in order to accomplish the goal, but
they’re not obligatory. If you want to do it differently, go
right ahead.
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convo :: [String]

convo =

["Wanna play 20 questions",

"Ya",

"U 1st haha",

"Lol ok. Have u ever tasted alcohol",

"Lol ya",

"Wow ur cool haha. Ur turn",

"Ok. Do u think I am pretty Lol",

"Lol ya",

"Just making sure rofl ur turn"]
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-- validButtons = "1234567890*#"

type Digit = Char

-- Valid presses: 1 and up

type Presses = Int

reverseTaps :: DaPhone

-> Char

-> [(Digit, Presses)]

reverseTaps = undefined

-- assuming the default phone definition

-- 'a' -> [('2', 1)]

-- 'A' -> [('*', 1), ('2', 1)]

cellPhonesDead :: DaPhone

-> String

-> [(Digit, Presses)]

cellPhonesDead = undefined

3. How many times do digits need to be pressed for each
message?

fingerTaps :: [(Digit, Presses)] -> Presses

fingerTaps = undefined

4. What was the most popular letter for each message? What
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was its cost? You’ll want to combine reverseTaps and fingerTaps

to figure out what it cost in taps. reverseTaps is a list be-
cause you need to press a different button in order to get
capitals.

mostPopularLetter :: String -> Char

mostPopularLetter = undefined

5. What was the most popular letter overall? What was the
most popular word?

coolestLtr :: [String] -> Char

coolestLtr = undefined

coolestWord :: [String] -> String

coolestWord = undefined

Hutton’s Razor

Hutton’s Razor10 is a very simple expression language that
expresses integer literals and addition of values in that expres-
sion language. The “trick” to it is that it’s recursive and the
two expressions you’re summing together could be literals or
themselves further addition operations. This sort of datatype
is stereotypical of expression languages used to motivate ideas
in research papers and functional pearls. Evaluating or folding
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a datatype is also in some sense what you’re doing most of the
time while programming anyway.

1. Your first task is to write the “eval” function which reduces
an expression to a final sum.

data Expr

= Lit Integer

| Add Expr Expr

eval :: Expr -> Integer

eval = error "do it to it"

Example of expected output:

Prelude> eval (Add (Lit 1) (Lit 9001))

9002

2. Write a printer for the expressions.

printExpr :: Expr -> String

printExpr = undefined

Expected output:
10 http://www.cs.nott.ac.uk/~pszgmh/bib.html#semantics

http://www.cs.nott.ac.uk/~pszgmh/bib.html#semantics
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Prelude> printExpr (Add (Lit 1) (Lit 9001))

"1 + 9001"

Prelude> let a1 = Add (Lit 9001) (Lit 1)

Prelude> let a2 = Add a1 (Lit 20001)

Prelude> let a3 = Add (Lit 1) a2

Prelude> printExpr a3

"1 + 9001 + 1 + 20001"

11.19 Definitions

1. A datatype is how we declare and create data for our func-
tions to receive as inputs. Datatype declarations begin
with the keyword data. A datatype is made up of a type
constructor and zero or more data constructors which
each have zero or more arguments.
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Signaling adversity

Thank goodness we don’t
have only serious
problems, but ridiculous
ones as well

Edsger W. Dijkstra
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12.1 Signaling adversity

Sometimes it’s not convenient or possible for every value
in a datatype to make sense for your programs. When that
happens in Haskell, we use explicit datatypes to signal when
our functions received a combination of inputs that don’t make
sense. Later, we’ll see how to defend against those adverse
inputs at the time we construct our datatypes, but the Maybe

and Either datatypes we will demonstrate here are common.
This chapter will include:

• Nothing, or Just Maybe;

• Either left or right, but not both;

• higher-kindedness;

• anamorphisms, but not animorphs.

12.2 How I learned to stop worrying
and love Nothing

Let’s consider the definition of Maybe again:

data Maybe a = Nothing | Just a

You don’t need to define this yourself, as it’s included in the
Prelude by default. It’s also a very common datatype in Haskell
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because it lets us return a default Nothing value when we don’t
have any sensible values to return for our intended type 𝑎.

In the following intentionally simplistic function, we could
do several things with the odd numbers — we could return
them unmodified, we could modify them in some way dif-
ferent from the evens, we could return a zero, or we could
write an explicit signal that nothing happened because the
number wasn’t even:

ifEvenAdd2 :: Integer -> Integer

ifEvenAdd2 n =

if even n then n+2 else ???

What can we do to make it say, “hey, this number wasn’t
even so I have nothing for you, my friend?” Instead of promis-
ing an Integer result, we can return Maybe Integer:

ifEvenAdd2 :: Integer -> Maybe Integer

ifEvenAdd2 n =

if even n then n+2 else Nothing

This isn’t quite complete or correct either. While Nothing

has the type Maybe a, and 𝑎 can be assumed to be any type the
Maybe constructor could contain, n+2 is still of the type Integer.
We need to wrap that value in the other constructor Maybe

provides: Just. Here’s the error you’d get if you tried to load
it:
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<interactive>:9:75:

Couldn't match expected type

‘Maybe Integer’

with actual type ‘Integer’

In the first argument of ‘(+)’, namely ‘n’

In the expression: n + 2

And here’s how we fix it:

ifEvenAdd2 :: Integer -> Maybe Integer

ifEvenAdd2 n =

if even n then Just (n+2) else Nothing

We had to parenthesize n+2 because function application
binds the most tightly in Haskell (has the highest precedence),
so the compiler otherwise would’ve parsed it as (Just n) + 2,
which is wrong and throws a type error. Now our function
is correct and explicit about the possibility of not getting a
result!

Smart constructors for datatypes

Let’s consider a Person type which keeps track of two things,
their name and their age. We’ll write this up as a simple prod-
uct type (note that Name and Age are type aliases):
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type Name = String

type Age = Integer

data Person = Person Name Age deriving Show

There are already a few problems here. One is that we could
construct a Person with an empty String for a name or make
a person who is negative years old. This is no problem to fix
with Maybe, though:

type Name = String

type Age = Integer

data Person = Person Name Age deriving Show

mkPerson :: Name -> Age -> Maybe Person

mkPerson name age

| name /= "" && age >= 0 =

Just $ Person name age

| otherwise = Nothing

And if you load this into your REPL:

Prelude> mkPerson "John Browning" 160

Just (Person "John Browning" 160)

Cool. What happens when we feed it adverse data?
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Prelude> mkPerson "" 160

Nothing

Prelude> mkPerson "blah" 0

Just (Person "blah" 0)

Prelude> mkPerson "blah" (-9001)

Nothing

mkPerson is what we call a smart constructor. It allows us to
construct values of a type only when they meet certain criteria,
so that we know we have a valid value, and return an explicit
signal when we do not.

This is much better than our original, but what if we want
to know if it was the name, age, or both that was bad? We may
want to tell our user something was wrong with their input.
Fortunately, we have a datatype for that!

12.3 Bleating either

We want a way to express why we didn’t get a successful result
back from our mkPerson constructor. To handle that, we’ve got
the Either datatype which is defined as follows in the Prelude:

data Either a b = Left a | Right b

What we want is a way to know why our inputs were incor-
rect if they were incorrect. So we’ll start by making a sum type
to enumerate our failure modes:
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data PersonInvalid = NameEmpty

| AgeTooLow

deriving (Eq, Show)

By now, you know why we derived Show, but it’s important
that we derive Eq because otherwise we can’t equality check the
constructors. Pattern matching is a case expression, where the
data constructor is the condition. Case expressions and pattern
matching will work without an Eq instance, but guards using
(==) will not. As we’ve shown you previously, you can write
your own Eq instance for your datatype if you want a specific
behavior, but it’s usually not necessary to do, so we will usually
derive the Eq instance. Here’s the difference demonstrated in
code:

module EqCaseGuard where

data PersonInvalid = NameEmpty

| AgeTooLow

-- Compiles without Eq

toString :: PersonInvalid -> String

toString NameEmpty = "NameEmpty"

toString AgeTooLow = "AgeTooLow"
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instance Show PersonInvalid where

show = toString

-- This does not work without an

-- Eq instance

blah :: PersonInvalid -> String

blah pi

| pi == NameEmpty = "NameEmpty"

| pi == AgeTooLow = "AgeTooLow"

| otherwise = "???"

It’s worth considering that if you needed to have an Eq in-
stance to pattern match, how would you write the Eq instances?

Next our constructor type is going to change to:

mkPerson :: Name

-> Age

-> Either PersonInvalid Person

This signifies that we’re going to get a Person value if we suc-
ceed but a PersonInvalid if it fails. Now we need to change our
logic to return PersonInvalid values inside a Left constructor
when the data is invalid, discriminating by each case as we go:
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type Name = String

type Age = Integer

data Person = Person Name Age deriving Show

data PersonInvalid = NameEmpty

| AgeTooLow

deriving (Eq, Show)

mkPerson :: Name

-> Age

-> Either PersonInvalid Person

-- [1] [2] [3]

mkPerson name age

| name /= "" && age >= 0 =

Right $ Person name age

-- [4]

| name == "" = Left NameEmpty

-- [5]

| otherwise = Left AgeTooLow

1. Our mkPerson type takes a Name and Age returns an Either

result.
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2. The Left result of the Either is an invalid person, when
either the name or age is an invalid input.

3. The Right result is a valid person.

4. The first case of our mkPerson function, then, matches on
the Right constructor of the Either and returns a Person

result. We could have written

name /= "" && age >= 0 =

Right (Person name age)

instead of using the dollar sign.

5. The next two cases match on the Left constructor and
allow us to tailor our invalid results based on the failure
reasons. We can pattern match on Left because it’s one of
the constructors of Either.

We use Left as our invalid or error constructor for a couple
of reasons. It is conventional to do so in Haskell, but that con-
vention came about for a reason. The reason has to do with the
ordering of type arguments and application of functions. Nor-
mally it is your error or invalid result that is going to cause a
stop to whatever work is being done by your program. Functor
will not map over the left type argument because it has been
applied away. You may remember Functor from our introduc-
tion of fmap back in the chapter about lists; don’t worry, a full
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explanation of Functor is coming soon. Since you normally
want to apply functions and map over the case that doesn’t
stop your program (that is, not the error case), it has become
convention that the Left of Either is used for whatever case is
going to cause the work to stop.

Let’s see what it looks like when we have good data, although
Djali isn’t a person.1

Prelude> :t mkPerson "Djali" 5

mkPerson "Djali" 5 :: Either PersonInvalid Person

Prelude> mkPerson "Djali" 5

Right (Person "Djali" 5)

Then we can see what this does for us when dealing with
bad data:

Prelude> mkPerson "" 10

Left NameEmpty

Prelude> mkPerson "Djali" (-1)

Left AgeTooLow

Prelude> mkPerson "" (-1)

Left NameEmpty

Notice in the last example that when both the name and
the age are wrong, we’re only going to see the result of the first
failure case, not both.

1 Don’t know what we mean? Check the name Djali on a search engine.
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This is imperfect in one respect, as it doesn’t let us express a
list of errors. We can fix this, too! One thing that will change is
that instead of validating all the data for a Person at once, we’re
going to make separate checking functions and then combine
the results. We’ll see means of abstracting patterns like this
out later. We’re adding a type alias that wasn’t in our previous
version; otherwise, these types are the same as above:

type Name = String

type Age = Integer

type ValidatePerson a =

Either [PersonInvalid] a

data Person = Person Name Age deriving Show

data PersonInvalid = NameEmpty

| AgeTooLow

deriving (Eq, Show)

Now we’ll write our checking functions. Although more
than one thing could hypothetically be wrong with the age
value, we’ll keep this simple and only check to make sure it’s a
positive Integer value:
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ageOkay :: Age

-> Either [PersonInvalid] Age

ageOkay age = case age >= 0 of

True -> Right age

False -> Left [AgeTooLow]

nameOkay :: Name

-> Either [PersonInvalid] Name

nameOkay name = case name /= "" of

True -> Right name

False -> Left [NameEmpty]

We can nest the PersonInvalid sum type right into the Left

position of Either, just as we saw in the previous chapter (al-
though we weren’t using Either there, but similar types).

A couple of things to note here:

• The Name value will only return this invalid result when
it’s an empty String.

• Since Name is only a String value, it can be any String with
characters inside it, so “42” is still going to be returned as
a valid name. Try it.

• If you try to put an Integer in for the name, you won’t get
a Left result, you’ll get a type error. Try it. You’ll get a



CHAPTER 12. SIGNALING ADVERSITY 717

similar result if you try to feed a string value to the ageOkay

function.

• We’re going to return a list of PersonInvalid results. That
will allow us to return both NameEmpty and AgeTooLow in cases
where both of those are true.

Now that our functions rely on Either to validate that the
age and name values are independently valid, we can write a
mkPerson function that will use our type alias ValidatePerson:
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mkPerson :: Name

-> Age

-> ValidatePerson Person

-- [1] [2]

mkPerson name age =

mkPerson' (nameOkay name) (ageOkay age)

-- [3] [4] [5]

mkPerson' :: ValidatePerson Name

-> ValidatePerson Age

-> ValidatePerson Person

-- [6]

mkPerson' (Right nameOk) (Right ageOk) =

Right (Person nameOk ageOk)

mkPerson' (Left badName) (Left badAge) =

Left (badName ++ badAge)

mkPerson' (Left badName) _ = Left badName

mkPerson' _ (Left badAge) = Left badAge

1. A type alias for Either [PersonInvalid] a.

2. This is the 𝑎 argument to ValidatePerson type.

3. Ourmain function now relies on a similarly-namedhelper
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function.

4. First argument to this function is the result of the nameOkay

function.

5. Second argument is the result of the ageOkay function.

6. The type relies on the synonym for Either.

The rest of our helper function mkPerson' consists of plain
old pattern matches.

Now let’s see what we get:

Prelude> mkPerson "" (-1)

Left [NameEmpty,AgeTooLow]

Ahh, that’s more like it. Now we can tell the user what was
incorrect in one go without them having to round-trip each
mistake! Later in the book, we’ll be able to replace mkPerson

and mkPerson' with the following:

mkPerson

:: Name

-> Age

-> Validation [PersonInvalid] Person

mkPerson name age =

liftA2

Person (nameOkay name) (ageOkay age)
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12.4 Kinds, a thousand stars in your
types

Kinds are types one level up. They are used to describe the
types of type constructors. One noteworthy feature of Haskell
is that it has higher-kinded types. Here the term ‘higher-kinded’
derives from higher-order functions, functions that take more
functions as arguments. Type constructors (that is, higher-
kinded types) are types that take more types as arguments. The
Haskell Report uses the term type constant to refer to types that
take no arguments and are already types. In the Report, type
constructor is used to refer to types which must have arguments
applied to become a type.

As we discussed in the last chapter, these are examples of
type constants:

Prelude> :kind Int

Int :: *

Prelude> :k Bool

Bool :: *

Prelude> :k Char

Char :: *

The :: syntax usually means “has type of,” but it is used for
kind signatures as well as type signatures.
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The following is an example of a type that has a type con-
structor rather than a type constant:

data Example a = Blah | RoofGoats | Woot a

Example is a type constructor rather than a constant because
it takes a type argument 𝑎 which is used with the Woot data
constructor. In GHCi we can query kinds with :k:

Prelude> data Example a = Blah | RoofGoats | Woot a

Prelude> :k Example

Example :: * -> *

Example has one parameter, so it must be applied to one type
in order to become a concrete type represented by a single *.
The two-tuple takes two arguments, so it must be applied to
two types to become a concrete type:

Prelude> :k (,)

(,) :: * -> * -> *

Prelude> :k (Int, Int)

(Int, Int) :: *

The Maybe and Either datatypes we’ve just reviewed also have
type constructors rather than constants. They have to be ap-
plied to an argument before they become concrete types. As
with the effect of currying in type signatures, applying Maybe
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to an 𝑎 type constructor relieves us of one arrow and makes it
a kind star:

Prelude> :k Maybe

Maybe :: * -> *

Prelude> :k Maybe Int

Maybe Int :: *

On the other hand, Either has to be applied to two argu-
ments, an 𝑎 and a 𝑏, so the kind of Either is star to star to star:

Prelude> :k Either

Either :: * -> * -> *

And, again, we can query the effects of applying it to argu-
ments:

Prelude> :k Either Int

Either Int :: * -> *

Prelude> :k Either Int String

Either Int String :: *

As we’ve said, the kind * represents a concrete type. There
is nothing left awaiting application.
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Lifted and unlifted types To be precise, kind * is the kind of
all standard lifted types, while types that have the kind # are
unlifted. A lifted type, which includes any datatype you could
define yourself, is any that can be inhabited by bottom. Lifted
types are represented by a pointer and include most of the
datatypes we’ve seen and most that you’re likely to encounter
and use. Unlifted types are any type which cannot be inhabited
by bottom. Types of kind # are often native machine types
and raw pointers. Newtypes are a special case in that they are
kind *, but are unlifted because their representation is identical
to that of the type they contain, so the newtype itself is not
creating any new pointer beyond that of the type it contains.
That fact means that the newtype itself cannot be inhabited
by bottom, only the thing it contains can be, so newtypes are
unlifted. The default kind of concrete, fully-applied datatypes
in GHC is kind *.

Now what happens if we let our type constructor take an
argument?

Prelude> data Identity a = Identity a

Prelude> :k Identity

Identity :: * -> *

As we discussed in the previous chapter, the arrow in the
kind signature, like the function arrow in type signatures, sig-
nals a need for application. In this case, we construct the type
by applying it to another type.
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Let’s consider the case of Maybe, which is defined as follows:

data Maybe a = Nothing | Just a

The type Maybe is a type constructor because it takes one
argument before it becomes a concrete type:

Prelude> :k Maybe

Maybe :: * -> *

Prelude> :k Maybe Int

Maybe Int :: *

Prelude> :k Maybe Bool

Maybe Bool :: *

Prelude> :k Int

Int :: *

Prelude> :k Bool

Bool :: *

Whereas the following will not work, because the kinds
don’t match up:

Prelude> :k Maybe Maybe

Expecting one more argument to ‘Maybe’
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The first argument of ‘Maybe’ should have kind ‘*’,

but ‘Maybe’ has kind ‘* -> *’

In a type in a GHCi command: Maybe Maybe

Maybe expects a single type argument of kind *, which Maybe

is not.
If we give Maybe a type argument that is kind *, it also be-

comes kind * so then it can be an argument to another Maybe:

Prelude> :k Maybe Char

Maybe Char :: *

Prelude> :k Maybe (Maybe Char)

Maybe (Maybe Char) :: *

Our Example datatype from earlier also won’t work as an
argument for Maybe by itself:

Prelude> data Example a = Blah | RoofGoats | Woot a

Prelude> :k Maybe Example

Expecting one more argument to ‘Example’

The first argument of ‘Maybe’ should have kind ‘*’,
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but ‘Example’ has kind ‘* -> *’

In a type in a GHCi command: Maybe Example

However, if we apply the Example type constructor, we can
make it work and create a value of that type:

Prelude> :k Maybe (Example Int)

Maybe (Example Int) :: *

Prelude> :t Just (Woot n)

Just (Woot n) :: Maybe (Example Int)

Note that the list type constructor [] is also kind * -> * and
otherwise unexceptional save for the bracket syntax that lets
you type [a] and [Int] instead of [] a and [] Int:

Prelude> :k []

[] :: * -> *

Prelude :k [] Int

[] Int :: *

Prelude> :k [Int]

[Int] :: *

So, we can’t have a Maybe [] for the same reason we couldn’t
have a Maybe Maybe, but we can have a Maybe [Bool]:



CHAPTER 12. SIGNALING ADVERSITY 727

Prelude> :k Maybe []

Expecting one more argument to ‘[]’

The first argument of ‘Maybe’ should have kind ‘*’,

but ‘[]’ has kind ‘* -> *’

In a type in a GHCi command: Maybe []

Prelude> :k Maybe [Bool]

Maybe [Bool] :: *

If you recall, one of the first times we used Maybe in the book
was to write a safe version of a tail function back in the chapter
on lists:

safeTail :: [a] -> Maybe [a]

safeTail [] = Nothing

safeTail (x:[]) = Nothing

safeTail (_:xs) = Just xs

As soon as we apply this to a value, the polymorphic type
variables become constrained or concrete types:

Prelude> safeTail "julie"

Just "ulie"

Prelude> :t safeTail "julie"

safeTail "julie" :: Maybe [Char]
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Prelude> safeTail [1..10]

Just [2,3,4,5,6,7,8,9,10]

Prelude> :t safeTail [1..10]

safeTail [1..10] :: (Num a, Enum a) => Maybe [a]

Prelude> :t safeTail [1..10 :: Int]

safeTail [1..10 :: Int] :: Maybe [Int]

We can expand on type constructors that take a single argu-
ment and see how the kind changes as we go:

Prelude> data Trivial = Trivial

Prelude> :k Trivial

Trivial :: *

Prelude> data Unary a = Unary a

Prelude> :k Unary

Unary :: * -> *

Prelude> data TwoArgs a b = TwoArgs a b

Prelude> :k TwoArgs

TwoArgs :: * -> * -> *

Prelude> data ThreeArgs a b c = ThreeArgs a b c

Prelude> :k ThreeArgs

ThreeArgs :: * -> * -> * -> *
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It may not be clear why this is useful to know right now,
other than helping to understand when your type errors are
caused by things not being fully applied. The implications of
higher-kindedness will be clearer in a later chapter.

Data constructors are functions

In the previous chapter, we noted the difference between data
constants and data constructors and noted that data construc-
tors that haven’t been fully applied have function arrows in
them. Once you apply them to their arguments, they return a
value of the appropriate type. In other words, data construc-
tors are functions. As it happens, they behave like Haskell
functions in that they are curried as well.

First let’s observe that nullary data constructors, which are
values taking no arguments, are not like functions:

Prelude> data Trivial = Trivial deriving Show

Prelude> Trivial 1

Couldn't match expected type ‘Integer -> t’

with actual type ‘Trivial’

(... etc ...)

However, data constructors that take arguments do behave
like functions:
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Prelude> data UnaryC = UnaryC Int deriving Show

Prelude> :t UnaryC

UnaryC :: Int -> UnaryC

Prelude> UnaryC 10

UnaryC 10

Prelude> :t UnaryC 10

UnaryC 10 :: UnaryC

Like functions, their arguments are typechecked against
the specification in the type:

Prelude> UnaryC "blah"

Couldn't match expected type ‘Int’

with actual type ‘[Char]’

If we wanted a unary data constructor which could contain
any type, we would parameterize the type like so:

Prelude> data Unary a = Unary a deriving Show

Prelude> :t Unary

Unary :: a -> Unary a

Prelude> :t Unary 10

Unary 10 :: Num a => Unary a

Prelude> :t Unary "blah"

Unary "blah" :: Unary [Char]
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And again, this works just like a function, except the type
of the argument can be whatever we want.

Note that if we want to use a derived (GHC generated) Show
instance for Unary, it has to be able to also show the contents,
the type 𝑎 value contained by Unary’s data constructor:

Prelude> :info Unary

data Unary a = Unary a

instance Show a => Show (Unary a)

If we try to use a type for 𝑎 that does not have a Show instance,
it won’t cause a problem until we try to show the value:

Prelude> :t (Unary id)

(Unary id) :: Unary (t -> t)

-- id doesn't have a Show instance

Prelude> show (Unary id)

<interactive>:53:1:

No instance for (Show (t0 -> t0))

...

The only way to avoid this would be to write an instance that
did not show the value contained in the Unary data constructor,
but that would be somewhat unusual.
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Another thing to keep in mind is that you can’t ordinarily
hide polymorphic types from your type constructor, so the
following is invalid:

Prelude> data Unary = Unary a deriving Show

Not in scope: type variable ‘a’

In order for the type variable 𝑎 to be in scope, we usually
need to introduce it with our type constructor. There are ways
around this, but they’re rarely necessary or a good idea and
not relevant to the beginning Haskeller.

Here’s an example using fmap and the Just data constructor
from Maybe to demonstrate how Just is also like a function:

Prelude> fmap Just [1, 2, 3]

[Just 1,Just 2,Just 3]

The significance and utility of this may not be immediately
obvious but will be more clear in later chapters.

12.5 Chapter Exercises

Determine the kinds

1. Given

id :: a -> a
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What is the kind of a?

2. r :: a -> f a

What are the kinds of a and f?

String processing

Because this is the kind of thing linguists ahem enjoy doing in
their spare time.

1. Write a recursive function named replaceThe which takes a
text/string, breaks it into words and replaces each instance
of “the” with “a”. It’s intended only to replace exactly
the word “the”. notThe is a suggested helper function for
accomplishing this.

-- example GHCi session

-- above the functions

-- >>> notThe "the"

-- Nothing

-- >>> notThe "blahtheblah"

-- Just "blahtheblah"

-- >>> notThe "woot"

-- Just "woot"

notThe :: String -> Maybe String

notThe = undefined
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-- >>> replaceThe "the cow loves us"

-- "a cow loves us"

replaceThe :: String -> String

replaceThe = undefined

2. Write a recursive function that takes a text/string, breaks
it into words, and counts the number of instances of ”the”
followed by a vowel-initial word.

-- >>> countTheBeforeVowel "the cow"

-- 0

-- >>> countTheBeforeVowel "the evil cow"

-- 1

countTheBeforeVowel :: String -> Integer

countTheBeforeVowel = undefined

3. Return the number of letters that are vowels in a word.

Hint: it’s helpful to break this into steps. Add any helper
functions necessary to achieve your objectives.

a) Test for vowelhood

b) Return the vowels of a string

c) Count the number of elements returned
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-- >>> countVowels "the cow"

-- 2

-- >>> countVowels "Mikolajczak"

-- 4

countVowels :: String -> Integer

countVowels = undefined

Validate the word

Use the Maybe type to write a function that counts the number
of vowels in a string and the number of consonants. If the
number of vowels exceeds the number of consonants, the
function returns Nothing. In many human languages, vowels
rarely exceed the number of consonants so when they do, it
may indicate the input isn’t a word (that is, a valid input to your
dataset):

newtype Word' =

Word' String

deriving (Eq, Show)

vowels = "aeiou"

mkWord :: String -> Maybe Word'

mkWord = undefined
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It’s only Natural

You’ll be presented with a datatype to represent the natural
numbers. The only values representable with the naturals
are whole numbers from zero to infinity. Your task will be
to implement functions to convert Naturals to Integers and
Integers to Naturals. The conversion from Naturals to Integers
won’t return Maybe because Integer is a strict superset of Natural.
Any Natural can be represented by an Integer, but the same is
not true of any Integer. Negative numbers are not valid natural
numbers.
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-- As natural as any

-- competitive bodybuilder

data Nat =

Zero

| Succ Nat

deriving (Eq, Show)

-- >>> natToInteger Zero

-- 0

-- >>> natToInteger (Succ Zero)

-- 1

-- >>> natToInteger (Succ (Succ Zero))

-- 2

natToInteger :: Nat -> Integer

natToInteger = undefined

-- >>> integerToNat 0

-- Just Zero

-- >>> integerToNat 1

-- Just (Succ Zero)

-- >>> integerToNat 2

-- Just (Succ (Succ Zero))

-- >>> integerToNat (-1)

-- Nothing

integerToNat :: Integer -> Maybe Nat

integerToNat = undefined
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Small library for Maybe

Write the following functions. This may take some time.

1. Simple boolean checks for Maybe values.

-- >>> isJust (Just 1)

-- True

-- >>> isJust Nothing

-- False

isJust :: Maybe a -> Bool

-- >>> isNothing (Just 1)

-- False

-- >>> isNothing Nothing

-- True

isNothing :: Maybe a -> Bool

2. The following is the Maybe catamorphism. You can turn a
Maybe value into anything else with this.

-- >>> mayybee 0 (+1) Nothing

-- 0

-- >>> mayybee 0 (+1) (Just 1)

-- 2

mayybee :: b -> (a -> b) -> Maybe a -> b
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3. In case you just want to provide a fallback value.

-- >>> fromMaybe 0 Nothing

-- 0

-- >>> fromMaybe 0 (Just 1)

-- 1

fromMaybe :: a -> Maybe a -> a

-- Try writing it in terms

-- of the maybe catamorphism

4. Converting between List and Maybe.

-- >>> listToMaybe [1, 2, 3]

-- Just 1

-- >>> listToMaybe []

-- Nothing

listToMaybe :: [a] -> Maybe a

-- >>> maybeToList (Just 1)

-- [1]

-- >>> maybeToList Nothing

-- []

maybeToList :: Maybe a -> [a]

5. For when we want to drop the Nothing values from our list.
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-- >>> catMaybes [Just 1, Nothing, Just 2]

-- [1, 2]

-- >>> let xs = take 3 $ repeat Nothing

-- >>> catMaybes xs

-- []

catMaybes :: [Maybe a] -> [a]

6. You’ll see this called “sequence” later.

-- >>> flipMaybe [Just 1, Just 2, Just 3]

-- Just [1, 2, 3]

-- >>> flipMaybe [Just 1, Nothing, Just 3]

-- Nothing

flipMaybe :: [Maybe a] -> Maybe [a]

Small library for Either

Write each of the following functions. If more than one possi-
ble unique function exists for the type, use common sense to
determine what it should do.

1. Try to eventually arrive at a solution that uses foldr, even
if earlier versions don’t use foldr.

lefts' :: [Either a b] -> [a]

2. Same as the last one. Use foldr eventually.
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rights' :: [Either a b] -> [b]

3. partitionEithers' :: [Either a b]

-> ([a], [b])

4. eitherMaybe' :: (b -> c)

-> Either a b

-> Maybe c

5. This is a general catamorphism for Either values.

either' :: (a -> c)

-> (b -> c)

-> Either a b

-> c

6. Same as before, but use the either' function you just
wrote.

eitherMaybe'' :: (b -> c)

-> Either a b

-> Maybe c

Most of the functions you just saw are in the Prelude, Data.Maybe,
or Data.Either but you should strive to write them yourself
without looking at existing implementations. You will deprive
yourself if you cheat.
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Unfolds

While the idea of catamorphisms is still relatively fresh in our
minds, let’s turn our attention to their dual: anamorphisms. If
folds, or catamorphisms, let us break data structures down
then unfolds let us build them up. There are, as with folds, a
few different ways to unfold a data structure. We can use them
to create finite and infinite data structures alike.

-- iterate is like a limited

-- unfold that never ends

Prelude> :t iterate

iterate :: (a -> a) -> a -> [a]

-- because it never ends, we must use

-- take to get a finite list

Prelude> take 10 $ iterate (+1) 0

[0,1,2,3,4,5,6,7,8,9]

-- unfoldr is more general

Prelude> :t unfoldr

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

-- Using unfoldr to do

-- the same thing as iterate

Prelude> take 10 $ unfoldr (\b -> Just (b, b+1)) 0
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[0,1,2,3,4,5,6,7,8,9]

Why bother?

We bother with this for the same reason we abstracted direct
recursion into folds, such as with sum, product, and concat.

import Data.List

mehSum :: Num a => [a] -> a

mehSum xs = go 0 xs

where go :: Num a => a -> [a] -> a

go n [] = n

go n (x:xs) = (go (n+x) xs)

niceSum :: Num a => [a] -> a

niceSum = foldl' (+) 0

mehProduct :: Num a => [a] -> a

mehProduct xs = go 1 xs

where go :: Num a => a -> [a] -> a

go n [] = n

go n (x:xs) = (go (n*x) xs)

niceProduct :: Num a => [a] -> a

niceProduct = foldl' (*) 1
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Remember the redundant structure when we looked at
folds?

mehConcat :: [[a]] -> [a]

mehConcat xs = go [] xs

where go :: [a] -> [[a]] -> [a]

go xs' [] = xs'

go xs' (x:xs) = (go (xs' ++ x) xs)

niceConcat :: [[a]] -> [a]

niceConcat = foldr (++) []

This may have given you a mild headache, but you may
also see that this same principle of abstracting out common
patterns and giving them names applies as well to unfolds as
it does to folds.

Write your own iterate and unfoldr

1. Write the function myIterate using direct recursion. Com-
pare the behavior with the built-in iterate to gauge cor-
rectness. Do not look at the source or any examples of
iterate so that you are forced to do this yourself.

myIterate :: (a -> a) -> a -> [a]

myIterate = undefined



CHAPTER 12. SIGNALING ADVERSITY 745

2. Write the function myUnfoldr using direct recursion. Com-
pare with the built-in unfoldr to check your implementa-
tion. Again, don’t look at implementations of unfoldr so
that you figure it out yourself.

myUnfoldr :: (b -> Maybe (a, b))

-> b

-> [a]

myUnfoldr = undefined

3. Rewrite myIterate into betterIterate using myUnfoldr. A
hint — we used unfoldr to produce the same results as
iterate earlier. Do this with different functions and see if
you can abstract the structure out.

-- It helps to have the

-- types in front of you

-- myUnfoldr :: (b -> Maybe (a, b))

-- -> b

-- -> [a]

betterIterate :: (a -> a) -> a -> [a]

betterIterate f x = myUnfoldr ...?

Remember, your betterIterate should have the same re-
sults as iterate.
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Prelude> take 10 $ iterate (+1) 0

[0,1,2,3,4,5,6,7,8,9]

Prelude> take 10 $ betterIterate (+1) 0

[0,1,2,3,4,5,6,7,8,9]

Finally something other than a list!

Given the BinaryTree from last chapter, complete the following
exercises. Here’s that datatype again:

data BinaryTree a =

Leaf

| Node (BinaryTree a) a (BinaryTree a)

deriving (Eq, Ord, Show)

1. Write unfold for BinaryTree.

unfold :: (a -> Maybe (a,b,a))

-> a

-> BinaryTree b

unfold = undefined

2. Make a tree builder.

Using the unfold function you’vemade for BinaryTree, write
the following function:
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treeBuild :: Integer -> BinaryTree Integer

treeBuild n = undefined

You should be producing results that look like the following:

Prelude> treeBuild 0

Leaf

Prelude> treeBuild 1

Node Leaf 0 Leaf

Prelude> treeBuild 2

Node (Node Leaf 1 Leaf)

0

(Node Leaf 1 Leaf)

Prelude> treeBuild 3

Node (Node (Node Leaf 2 Leaf)

1

(Node Leaf 2 Leaf))

0

(Node (Node Leaf 2 Leaf)

1

(Node Leaf 2 Leaf))

Or in a slightly different representation:

0

0
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/ \

1 1

0

/ \

1 1

/\ /\

2 2 2 2

Good work.

12.6 Definitions

1. A higher-kinded type type is any type whose kind has a
function arrow in it and which can be described as a type
constructor rather than a type constant. The following
types are of a higher kind than *:

Maybe :: * -> *

[] :: * -> *

Either :: * -> * -> *

(->) :: * -> * -> *

The following are not:



CHAPTER 12. SIGNALING ADVERSITY 749

Int :: *

Char :: *

String :: *

[Char] :: *

This is not to be confused with higher kinded polymor-
phism, which we’ll discuss later.



Chapter 13

Building projects

Wherever there is
modularity there is the
potential for
misunderstanding:
Hiding information
implies a need to check
communication

Alan Perlis

750
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13.1 Modules

Haskell programs are organized into modules. Modules con-
tain the datatypes, type synonyms, typeclasses, typeclass in-
stances, and values you’ve defined at the top level. They offer
a means to import other modules into the scope of your pro-
gram, and they also contain values that can be exported to
other modules. If you’ve ever used a language with names-
paces, it’s the same thing.

In this chapter, we will be building a small, interactive
hangman-style game. Students of Haskell often ask what kind
of project they should work on as a way to learn Haskell, and
they want to jump right into the kind of program they’re
used to building in the languages they already know. What
most often happens is the student realizes how much they still
don’t understand about Haskell, shakes their fist at the sky, and
curses Haskell’s very name and all the elitist jerks who write
Haskell and flees to relative safety. Nobody wants that. Haskell
is sufficiently different from other languages that we think it’s
best to spend time getting comfortable with how Haskell itself
works before trying to build substantial projects.

This chapter’s primary focus is not so much on code but on
how to set up a project in Haskell, use the package manager
known as Cabal, build the project with Stack, and work with
Haskell modules as they are. There are a few times we ask
you to implement part of the hangman game yourself, but
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much of the code is already written for you, and we’ve tried to
explain the structure as well as we can at this point in the book.
Some of it you won’t properly understand until we’ve covered
at least monads and IO. But if you finish the chapter feeling
like you now know how to set up a project environment and
get things running, then this chapter will have accomplished
its goal and we’ll all go off and take a much needed mid-book
nap.

Try to relax and have fun with this. You’ve earned it after
those binary tree exercises.

In this chapter, we’ll cover:

• writing Haskell programs with modules;

• using the Cabal package manager;

• building our project with Stack;

• conventions around project organization;

• building a small interactive game.

Note that you’ll need to have Stack1 and Git2 to follow along
with the instructions in this chapter. We’ll be using git to
download an example project. Depending on your level of
prior experience, some of this may not be new information

1http://haskellstack.org
2https://git-scm.com/

http://haskellstack.org
https://git-scm.com/
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for you. Feel free to move as quickly through this material as
feels comfortable.

13.2 Making packages with Stack

The Haskell Cabal, or Common Architecture for Building Ap-
plications and Libraries, is a package manager. A package is
a program you’re building, including all of its modules and
dependencies, whether you’ve written it or you’re building
someone else’s program. A package has dependencies which are
the interlinked elements of that program, the other packages
and libraries it may depend on and any tests and documenta-
tion associated with the project. Cabal exists to help organize
all this and make sure all dependencies are properly in scope.

Stack is a cross-platform program for developing Haskell
projects. It is aimed at Haskellers both new and experienced,
and it helps you manage both projects made up of multiple
packages as well as individual packages, whereas Cabal exists
primarily to describe a single package with a Cabal file that
has the .cabal file extension.

Stack is built on top of Cabal in some important senses,
so we will still be working with .cabal files. However, Stack
simplifies the process somewhat, especially in large projects
with multiple dependencies, by allowing you to build those
large libraries only once and use them across projects. Stack
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also relies on an LTS (long term support) snapshot of Haskell
packages from Stackage3 that are guaranteed to work together,
unlike packages from Hackage which may have conflicting
dependencies.

While the Haskell community does not have a prescribed
project layout, we recommend the basic structure embodied
in the Stack templates.

13.3 Working with a basic project

We’re going to start learning Cabal and Stack by building a
sample project called hello. To make this less tedious, we’re
going to use git to checkout the sample project. In an appro-
priate directory for storing your projects, you’ll want to git

clone the repository https://github.com/haskellbook/hello.

Building the project

Change into the project directory that the git clone invocation
created.

$ cd hello

You could edit the hello.cabal file. There you can replace
“Your Name Here” with…your name. We’ll next build our
project:

3https://www.stackage.org/

https://www.stackage.org/
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$ stack build

If it complains about needing GHC to be installed, don’t
panic! Part of the benefit of Stack is that it can manage your
GHC installs for you. Before re-attempting stack build, do the
following:

$ stack setup

The setup command for Stack determines what version of
GHC you need based on the LTS snapshot specified in the
stack.yaml file of your project. The stack.yaml file is used to
determine the versions of your packages and what version
of GHC they’ll work best with. If you didn’t need to do this,
it’s possible you had a compatible version of GHC already
installed or that you’d run setup for an LTS snapshot that
needed the same version of GHC in the past. To learn more
about this, check out the Stackage website.

Loading and running code from the REPL

Having done that, next we’ll fire up the REPL.

$ stack ghci

[... some other noise...]

Ok, modules loaded: Main.

Prelude> :l Main
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[1 of 1] Compiling Main

Ok, modules loaded: Main.

Prelude> main

hello world

Above, we successfully started a GHCi REPL that is aware
of our project, loaded our Main module, and then ran the main

function. Using Stack’s GHCi integration to fire up a REPL
doesn’t just let us load and run code in our project, but also
enables us to make use of our project’s dependencies. We’ll
demonstrate this later. indexmain@main

stack exec

When you ran build earlier, you may have seen something
like:

Linking .stack-work/dist/{...noise...}/hello

This noise is Stack compiling an executable binary and
linking to it. You can type the full path that Stack mentioned
in order to run the binary, but there’s an easier way — exec!
From our project directory, consider the following:

$ hello

zsh: command not found: hello

$ stack exec -- hello

hello world
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Stack knows what paths any executables might be located in,
so using Stack’s exec command saves you the hassle of typing
out a potentially verbose path.

Executable stanzas in Cabal files

Stack created an executable earlier because of the following
stanza in the hello.cabal file:

executable hello

-- [1]

hs-source-dirs: src

-- [2]

main-is: Main.hs

-- [3]

default-language: Haskell2010

-- [4]

build-depends: base >= 4.7 && < 5

-- [5]

1. This name following the declaration of an executable stanza
tells Stack or Cabal what to name the binary or executable
it creates.

2. Tells this stanza where to look for source code — in this
case, the src subdirectory.
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3. Execution of this binary should begin by looking for a main

function inside a file named Main with the module name
Main. Note that module names have to match filenames.
Your compiler (not just Stack) will reject using a file that
isn’t a Main module as the entry point to executing the
program. Also note that it’ll look for the Main.hs file under
all directories you specified in hs-source-dirs. Since we
specified only one, it’ll find this in src/Main.hs, which is
our only source file right now anyway.

4. Defines the version of the Haskell standard to expect. Not
very interesting and doesn’t do much — mostly boiler-
plate, but necessary.

5. This is usually a meatier part of any Cabal stanza, whether
it’s an executable, library, or test suite. This example (base)
is really the bare minimum or baseline dependency in
almost any Haskell project as you can’t really get anything
done without the base library. We’ll show you how to add
and install dependencies later.

A sidebar about executables and libraries Our project here
only has an executable stanza, which is appropriate for mak-
ing a command-line application which will be run and used.
When we’re writing code we want people to be able to reuse
in other projects, we need a library stanza in the .cabal file
and to choose which modules we want to expose. Executables
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are applications that the operating system will run directly,
while software libraries are code arranged in a manner so that
they can be reused by the compiler in the building of other
libraries and programs.

13.4 Making our project a library

First we’re going to add a library stanza to hello.cabal:

library

hs-source-dirs: src

exposed-modules: Hello

build-depends: base >= 4.7 && < 5

default-language: Haskell2010

Then we’re going to create a file located at src/Hello.hs:

module Hello where

sayHello :: IO ()

sayHello = do

putStrLn "hello world"

Then we’re going to change our Main module to use this
library function:
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module Main where

import Hello

main :: IO ()

main = do

sayHello

If we try to build and run this now, it’ll work.

$ stack build

$ stack exec hello

hello world

But what if we had made a separate exe directory?

$ mkdir exe

$ mv src/Main.hs exe/Main.hs

Then we need to edit the .cabal file to let it know our hello

executable uses the exe directory:

executable hello

hs-source-dirs: exe

main-is: Main.hs

default-language: Haskell2010

build-depends: base >= 4.7 && < 5
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If you then attempt to build this, it will fail.

hello/exe/Main.hs:3:8:

Could not find module ‘Hello’

It is a member of the hidden package

‘hello-0.1.0.0@hello_IJIUuynUbgsHAquBKsAsb5’.

Perhaps you need to add ‘hello’ to the

build-depends in your .cabal file.

Use -v to see a list of the files searched for.

We have two paths for fixing this, one better than the other.
One way is to simply add src to the source directories the
executable is permitted to search. But it turns out that Cabal’s
suggestion here is precisely right. The better way to fix this is
to respect the boundaries of the library and executable and
instead to add your own library as a dependency:

executable hello

hs-source-dirs: exe

main-is: Main.hs

default-language: Haskell2010

build-depends: base >= 4.7 && < 5

, hello

The build will now succeed. This also makes it easier to
know when you need to change what is exposed or exported
in your library, because you’re using your own interface.
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13.5 Module exports

By default, when you don’t specify any exports in a module,
every top-level binding is exported and can be imported by
another module. This is the case in our Hello module:

module Hello where

sayHello :: IO ()

sayHello = do

putStrLn "hello world"

But what happens if we specify an empty export list?

module Hello

()

where

sayHello :: IO ()

sayHello = do

putStrLn "hello world"

We’ll get the following error if we attempt to build it:

Not in scope: ‘sayHello’

To fix that explicitly, we add the top-level binding to the
export list:
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module Hello

( sayHello )

where

sayHello :: IO ()

sayHello = do

putStrLn "hello world"

Now the sayHello function will be exported. It seems point-
less in a module like this, but in bigger projects, it sometimes
makes sense to specify your exports in this way.

Exposing modules

First we’ll add a new module with a new IO action for our main

action to run: indexmain@main

-- src/DogsRule.hs

module DogsRule

( dogs )

where

dogs :: IO ()

dogs = do

putStrLn "Who's a good puppy?!"

putStrLn "YOU ARE!!!!!"
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Then we’ll change our Main module to make use of this:

module Main where

import DogsRule

import Hello

main :: IO ()

main = do

sayHello

dogs

But if we attempt to build this, we’ll get the following error:

Could not find module ‘DogsRule’

As we did earlier with our library stanza, we need to also
expose the DogsRule module:

library

hs-source-dirs: src

exposed-modules: DogsRule

, Hello

build-depends: base >= 4.7 && < 5

default-language: Haskell2010

Now it should be able to find our very important dog prais-
ing.
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13.6 More on importing modules

Importing modules brings more functions into scope beyond
those available in the standard Prelude. Imported modules
are top-level declarations. The entities imported as part of
those declarations, like other top-level declarations, have scope
throughout the module, although they can be shadowed by
local bindings. The effect of multiple import declarations is cu-
mulative, but the ordering of import declarations is irrelevant.
An entity is in scope for the entire module if it is imported by
any of the import declarations.

In previous chapters, we’ve brought functions like bool and
toUpper into scope for exercises by importing the modules they
are part of, Data.Bool and Data.Char, respectively.

Let’s refresh our memory of how to do this in GHCi. The
:browse command allows us to see what functions are included
in the named module, while importing the module allows
us to use those functions. You can browse modules that you
haven’t imported yet, which can be useful if you’re not sure
which module the function you’re looking for is in:

Prelude> :browse Data.Bool

bool :: a -> a -> Bool -> a

(&&) :: Bool -> Bool -> Bool

data Bool = False | True

not :: Bool -> Bool
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otherwise :: Bool

(||) :: Bool -> Bool -> Bool

Prelude> import Data.Bool

Prelude> :t bool

bool :: a -> a -> Bool -> a

In the example above, we used an unqualified import of
everything in Data.Bool. What if we only wanted bool from
Data.Bool?

First, we’re going to turn off Prelude so that we don’t have
any of the default imports. We will use another extension
when we start GHCi to turn Prelude off. You’ve previously seen
how to use language extensions in source files, but now we’ll
enter -XNoImplicitPrelude right when we enter our REPL:

-- Do this outside of any projects

$ stack ghci --ghci-options -XNoImplicitPrelude

Prelude>

We can check that bool and not are not in scope yet:

Prelude> :t bool

<interactive>:1:1: Not in scope: ‘bool’

Prelude> :t not
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<interactive>:1:1: Not in scope: ‘not’

Next we’ll do a selective import from Data.Bool, specifying
that we only want to import bool:

Prelude> import Data.Bool (bool)

Prelude> :t bool

bool :: a -> a -> GHC.Types.Bool -> a

Prelude> :t not

<interactive>:1:1: Not in scope: ‘not’

Now, normally in the Prelude, not is in scope already but
bool is not. So you can see that by turning off Prelude, taking
its standard functions out of scope, and then importing only
bool, we no longer have the standard not function in scope.

You can import one or more functions from a module or
library. The syntax is just as we demonstrated with GHCi,
but your import declarations have to be at the beginning of
a module. Putting import Data.Char (toUpper) in the import
declarations of a module will ensure that toUpper, but not any
of the other entities contained in Data.Char, is in scope for that
module.

For the examples in the next section, you’ll want Prelude

back on, so please restart GHCi before proceeding.
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Qualified imports

What if you wanted to know where something you imported
came from in the code that uses it? We can use qualified
imports to make the names more explicit.

We use the qualified keyword in our imports to do this.
Sometimes you’ll have stuff with the same name imported
from two different modules; qualifying your imports is a com-
mon way of dealing with this. We’ll go through an example of
how you might use a qualified import.

Prelude> import qualified Data.Bool

Prelude> :t bool

<interactive>:1:1:

Not in scope: ‘bool’

Perhaps you meant ‘Data.Bool.bool’

Prelude> :t Data.Bool.bool

Data.Bool.bool :: a -> a -> Bool -> a

Prelude> :t Data.Bool.not

Data.Bool.not :: Bool -> Bool

In the case of import qualified Data.Bool, everything from
Data.Bool is in scope, but only when accessed with the full
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Data.Bool namespace. Now we are marking where the func-
tions that we’re using came from, which can be useful.

We can also provide aliases or alternate names for our mod-
ules when we qualify them so we don’t have to type out the
full namespace:

Prelude> import qualified Data.Bool as B

Prelude> :t bool

<interactive>:1:1:

Not in scope: ‘bool’

Perhaps you meant ‘B.bool’

Prelude> :t B.bool

B.bool :: a -> a -> Bool -> a

Prelude> :t B.not

B.not :: Bool -> Bool

You can do qualified imports in the import declarations at
the beginning of your module in the same way.

Setting the Prelude prompt When you imported Data.Bool

as B above, you may have seen your prompt change:

Prelude> import qualified Data.Bool as B

Prelude B>
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And if you don’t want to unload the imported modules
(because you want them all to stay in scope), your prompt
could keep growing:

Prelude B> import Data.Char

Prelude B Data.Char>

(Reminder: you can use :m to unload the modules, which
does, of course, prevent the prompt from growing ever larger,
but also, well, unloads the modules so they’re not in scope
anymore!)

If you want to prevent the ever-growing prompt, you can
use the :set command to set the prompt to whatever you
prefer:

Prelude> :set prompt "Lambda> "

Lambda> import Data.Char

Lambda> :t B.bool

B.bool :: a -> a -> Bool -> a

As you can see, Data.Bool is still in scope as B, but it doesn’t
show up in our prompt. You can set your Prelude prompt
permanently, if you wish, by changing it in your GHCi config-
uration file, but instructions for doing that are somewhat out
of the scope of the current chapter.
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Intermission: Check your understanding

Here is the import list from one of the modules in Chris’s
library called blacktip:

import qualified Control.Concurrent

as CC

import qualified Control.Concurrent.MVar

as MV

import qualified Data.ByteString.Char8

as B

import qualified Data.Locator

as DL

import qualified Data.Time.Clock.POSIX

as PSX

import qualified Filesystem

as FS

import qualified Filesystem.Path.CurrentOS

as FPC

import qualified Network.Info

as NI
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import qualified Safe

import Control.Exception (mask, try)

import Control.Monad (forever, when)

import Data.Bits

import Data.Bits.Bitwise (fromListBE)

import Data.List.Split (chunksOf)

import Database.Blacktip.Types

import System.IO.Unsafe (unsafePerformIO)

For our purposes right now, it does not matter whether you
are familiar with the modules referenced in the import list.
Look at the declarations and answer the questions below:

1. What functions are being imported from Control.Monad?

2. Which imports are both unqualified and imported in their
entirety?

3. From the name, what do you suppose importing blacktip’s
Types module brings in?

4. Now let’s compare a small part of blacktip’s code to the
above import list:
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writeTimestamp :: MV.MVar ServerState

-> FPC.FilePath

-> IO CC.ThreadId

writeTimestamp s path = do

CC.forkIO go

where go = forever $ do

ss <- MV.readMVar s

mask $ \_ -> do

FS.writeFile path

(B.pack (show (ssTime ss)))

-- sleep for 1 second

CC.threadDelay 1000000

a) The type signature refers to three aliased imports.
What modules are named in those aliases?

b) Which import does FS.writeFile refer to?

c) Which import did forever come from?

13.7 Making our program interactive

Now we’re going to make our program ask for your name, then
greet you by name. First, we’ll rewrite our sayHello function
to take an argument:
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sayHello :: String -> IO ()

sayHello name =

putStrLn ("Hi " ++ name ++ "!")

Note we parenthesized the appending (++) function of the
String argument to putStrLn.

Next we’ll change main to get the user’s name:

-- src/Main.hs

main :: IO ()

main = do

name <- getLine

sayHello name

dogs

There are a couple of new things here. We’re using some-
thing called do syntax, which is syntactic sugar. We use do

inside functions that return IO in order to sequence side effects
in a convenient syntax. Let’s decompose what’s going on here:
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main :: IO ()

main = do

-- [1]

name <- getLine

-- [4] [3] [2]

sayHello name

-- [5]

dogs

-- [6]

1. The do here begins the block.

2. getLine has type IO String, because it must perform I/O
(input/output, side effects) in order to obtain the String.
getLine is what will allow you to enter your name to be
used in the main function.

3. <- in a do block is pronounced bind. We’ll explain what
this is and how it works in the chapters on Monad and IO.

4. The result of binding (<-) over the IO String is String. We
bound it to the variable name. Remember, getLine has type
IO String, name has type String.

5. sayHello expects an argument String, which is the type of
name but not getLine.
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6. dogs4 expects nothing and is an IO action of type IO (),
which fits the overall type of main.

indexmain@main

Now we’ll fire off a build:

$ stack build

And run the program:

$ stack exec hello

After you hit enter, the program is going to wait for your
input. You’ll just see the cursor blinking on the line, waiting
for you to enter your name. As soon as you do, and hit enter,
it should greet you and then rave about the wonderfulness of
a dog.

What if we tried to pass getLine to sayHello? If we tried to
write main without the use of do syntax, particularly without
using <- such as in the following example:

main :: IO ()

main = sayHello getLine

We’d get the following type error:
4Much like actual dogs.
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$ stack build

[2 of 2] Compiling Main

src/Main.hs:8:17:

Couldn't match type ‘IO String’ with ‘[Char]’

Expected type: String

Actual type: IO String

In the first argument of ‘sayHello’, namely ‘getLine’

In the expression: sayHello getLine

This is because getLine is an IO action with type IO String,
whereas sayHello expects a value of type String. We have to
use <- to bind over the IO to get the string that we want to
pass to sayHello. This will be explained in more detail — a bit
more detail later in the chapter, and a lot more detail in a later
chapter.

Adding a prompt

Let’s make our program a bit easier to use by adding a prompt
that tells us our program is expecting input! We need to change
main:
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module Main where

import DogsRule

import Hello

import System.IO

main :: IO ()

main = do

hSetBuffering stdout NoBuffering

putStr "Please input your name: "

name <- getLine

sayHello name

dogs

We did several things here. One is that we used putStr in-
stead of putStrLn so that our input could be on the same line as
our prompt. We also imported from System.IO so that we could
use hSetBuffering, stdout, and NoBuffering. That line of code is
so that putStr isn’t buffered (deferred) and prints immediately.
Rebuild and rerun your program, and it should now work like
this:

$ stack exec hello

Please input your name: julie

Hi julie!

Who's a good puppy?!
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YOU ARE!!!!!

You can try removing the NoBuffering line (that whole first
line) from main and rebuilding and running your program
to see how it changes. We will be using this as part of our
hangman game in a bit, but it isn’t necessary at this point to
understand how the buffering functions work in any detail.

13.8 do syntax and IO

We touched on do notation a bit above, but we want to explain
a few more things about it. do blocks are convenient syntactic
sugar that allow for sequencing actions, but because they are
only syntactic sugar, they are not, strictly speaking, necessary.
They can make blocks of code more readable and also hide
the underlying nesting, and that can help you write effectful
code before you understand monads and IO. So you’ll see it
a lot in this chapter (and, indeed, you’ll see it quite a bit in
idiomatic Haskell code).

The main executable in a Haskell program must always have
the type IO (). The do syntax specifically allows us to sequence
monadic actions. Monad is a typeclass we’ll explain in great detail
in a later chapter; here, the instance of Monad we care about is
IO. That is why main functions are often (not always) do blocks.
indexmain@main
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This syntax also provides a way of naming values returned
by monadic IO actions so that they can be used as inputs to
actions that happen later in the program. Let’s look at a very
simple do block and try to get a feel for what’s happening here:

main = do

-- [1]

x1 <- getLine

-- [2] [3] [4]

x2 <- getLine

-- [5]

return (x1 ++ x2)

-- [6] [7]

1. do introduces the block of IO actions.

2. 𝑥1 is a variable representing the value obtained from the
IO action getLine.

3. <- binds the variable on the left to the result of the IO
action on the right.

4. getLine has the type IO String and takes user input of a
string value. In this case, the string the user inputs will be
the value bound to the 𝑥1 name.



CHAPTER 13. BUILDING PROJECTS 781

5. 𝑥2 is a variable representing the value obtained from our
second getLine. As above it is bound to that value by the
<-.

6. return will be discussed in more detail shortly, but here it
is the concluding action of our do block.

7. This is the value return, well, returns — the conjunction of
the two strings we obtained from our two getLine actions.

While <- is used to bind a variable, it is different from other
methods we’ve seen in earlier chapters for naming and binding
variables. This arrow is part of the special do sugar and specif-
ically binds a name to the 𝑎 of an m a value, where 𝑚 is some
monadic structure, in this case IO. The <- allows us to extract
that 𝑎 and name it within the limited scope of the do block
and use that named value as an input to another expression
within that same scope. Each assignment using <- creates a
new variable rather than mutating an existing variable because
data is immutable.

return

This function really doesn’t do a lot, but the purpose it serves
is important, given the way monads and IO work. It does noth-
ing but return a value, but it returns a value inside monadic
structure:
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Prelude> :t return

return :: Monad m => a -> m a

For our purposes in this chapter, return returns a value in
IO. Because the obligatory type of main is IO (), the final value
must also have an IO () type, and return gives us a way to add
no extra function except putting the final value in IO. If the
final action of a do block is return (), that means there is no
real value to return at the end of performing the I/O actions,
but since Haskell programs can’t return literally nothing, they
return this empty tuple called unit simply to have something
to return. That empty tuple will not print to the screen in the
REPL, but it’s there in the underlying representation.

Let’s take a look at return in action. Let’s say you want to get
user input of two characters and test them for equality. You
can’t do this:

twoo :: IO Bool

twoo = do c <- getChar

c' <- getChar

c == c'

Try it and see what your type error looks like. It should
tell you that it can’t match the expected type IO Bool with the
actual type of c == c', which is Bool. So, our final line needs to
return that Bool value in IO:
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twoo :: IO Bool

twoo = do c <- getChar

c' <- getChar

return (c == c')

We put the Bool value into IO by using return. Cool. How
about if we have cases where we want to return nothing? We’ll
reuse the same basic code from above but make an if-then-else

within our do block:

main :: IO ()

main = do c <- getChar

c' <- getChar

if c == c'

then putStrLn "True"

else return ()

What happens when the two input characters are equal?
What happens when they aren’t?

Some people have noted that do syntax makes it feel like
you’re doing imperative programming in Haskell. It’s impor-
tant to note that this effectful imperative style requires having
IO in our result type. We cannot perform effects without evi-
dence of having done so in the type. do is only syntactic sugar,
but the monadic syntax we’ll cover in a later chapter works in
a similar way for monads other than IO.
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Do notation considered harmful! Just kidding. But some-
times enthusiastic programmers overuse do blocks. It is not
necessary, and considered bad style, to use do in single-line
expressions. You will eventually learn to use >>= in single-
line expressions instead of do (there’s an example of that in
this chapter). Similarly, it is unnecessary to use do with func-
tions like putStrLn and print that already have the effects baked
in. In the function above, we could have put do in front of
both putStrLn and return and it would have worked the same,
but things get messy and the Haskell ninjas will come and be
severely disappointed in you.

13.9 Hangman game

Now we’re ready to build a game. We’ll use Stack’s new com-
mand to create this project:

$ stack new hangman simple

That will generate a directory named hangman for you and
some put some default files into the directory.

You need a words file for getting words from. Most Unix-
based operating systems will have a words list located at a
directory like the following:

$ ls /usr/share/dict/

american-english british-english
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cracklib-small README.select-wordlist

words words.pre-dictionaries-common

In this case, we’ll use the words word list which should be
your operating system’s default. You may have one that is
differently located, or you may need to download one. We
put it in the working directory at data/dict.txt:

$ tree .

.

├── LICENSE

├── Setup.hs

├── data

│ └── dict.txt

├── hangman.cabal

├── src

│ └── Main.hs

└── stack.yaml

The file was newline separated and so looked like:

$ head data/dict.txt

A

a

aa

aal

aalii
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aam

Aani

aardvark

aardwolf

Aaron

Now edit the .cabal file as follows:

name: hangman

version: 0.1.0.0

synopsis: Playing Hangman

homepage: Chris N Julie

license: BSD3

license-file: LICENSE

author: Chris Allen and Julie Moronuki

maintainer: haskellbook.com

category: Game

build-type: Simple

extra-source-files: data/dict.txt

cabal-version: >=1.10

executable hangman

main-is: Main.hs

hs-source-dirs: src

build-depends: base >=4.7 && <5

, random

, split

default-language: Haskell2010
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The important bit here is that we used two libraries: random
and split. Normally you’d do version ranges for your depen-
dencies like you see with base, but we left the versions of random
and split unassigned because they do not change much. The
primary and only source file was in src/Main.hs.

13.10 Step One: Importing modules

-- src/Main.hs

module Main where

import Control.Monad (forever) -- [1]

import Data.Char (toLower) -- [2]

import Data.Maybe (isJust) -- [3]

import Data.List (intersperse) -- [4]

import System.Exit (exitSuccess) -- [5]

import System.Random (randomRIO) -- [6]

Here the imports are enumerated in the source code. For
your version of this project, you don’t need to add the enumer-
ating comments. All modules listed below are part of the main
base library that comes with your GHC install unless otherwise
noted.
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1. We’re using forever from Control.Monad to make an infinite
loop. A couple points to note:

a) You don’t have to use forever to do this, but we’re going
to.

b) You are not expected to understand what it does or
how it works exactly. Basically it allows us to execute
a function over and over again, infinitely, or until we
cause the program to exit or fail, instead of evaluating
once and then stopping.

2. We will use toLower from Data.Char to convert all characters
of our string to lowercase:

Prelude> import Data.Char (toLower)

Prelude> toLower 'A'

'a'

Be aware that if you pass a character that doesn’t have a
sensible lowercase, toLower will kick the same character
back out:

Prelude> toLower ':'

':'
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3. We will use isJust from Data.Maybe to determine if every
character in our puzzle has been discovered already or
not:

Prelude> import Data.Maybe (isJust)

Prelude> isJust Nothing

False

Prelude> isJust (Just 10)

True

We will combine this with all, a standard function in the
Prelude. Here all is a function which answers the question,
“given a function that will return True or False for each
element, does it return True for all of them?”

Prelude> all even [2, 4, 6]

True

Prelude> all even [2, 4, 7]

False

Prelude> all isJust [Just 'd', Nothing, Just 'g']

False

Prelude> all isJust [Just 'd', Just 'o', Just 'g']

True

The function all has the type:



CHAPTER 13. BUILDING PROJECTS 790

Foldable t => (a -> Bool) -> t a -> Bool

We haven’t explained the Foldable typeclass. For your
purposes you can assume it’s a set of operations for types
that can be folded in a manner conceptually similar to
the list type but which don’t necessarily contain more than
one value (or any values at all) the way a list or similar
datatype does. We can make the type more specific by
asserting a type signature like so:

Prelude> :t all :: (a -> Bool) -> [a] -> Bool

all :: (a -> Bool) -> [a] -> Bool

This will work for any type which has a Foldable instance:

Prelude> :t all :: (a -> Bool) -> Maybe a -> Bool

all :: (a -> Bool) -> Maybe a -> Bool

-- note the type variables used and

-- experiment independently

Prelude> :t all :: (a -> Bool) -> Either b a -> Bool

all :: (a -> Bool) -> Either b a -> Bool

But it will not work if the datatype doesn’t have an instance
of Foldable:
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Prelude> :t all :: (a -> Bool) -> (b -> a) -> Bool

No instance for (Foldable ((->) b1)) arising

from a use of ‘all’

In the expression:

all :: (a -> Bool) -> (b -> a) -> Bool

4. Weuse intersperse from Data.List to…intersperse elements
in a list. In this case, we’re putting spaces between the
characters guessed so far by the player. You may remem-
ber we used intersperse back in the Recursion chapter to
put hyphens in our Numbers Into Words exercise:

Prelude> import Data.List (intersperse)

Prelude> intersperse ' ' "Blah"

"B l a h"

Conveniently, the type of intersperse says nothing about
characters or strings, so we can use it with lists containing
elements of any type:

Prelude> :t intersperse

intersperse :: a -> [a] -> [a]

Prelude> intersperse 0 [1, 1, 1]
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[1,0,1,0,1]

5. We use exitSuccess from System.Exit to exit successfully —
no errors, we’re simply done. We indicate whether it was
a success or not so our operating system knows whether
an error occurred. Note that if you evaluate exitSuccess

in the REPL, it’ll report that an exception occurred. In a
normal running program that doesn’t catch the exception,
it’ll end your whole program.

6. We use randomRIO from System.Random to select a word from
our dictionary at random. System.Random is in the library
random. Once again, you’ll need to have the library in scope
for your REPL to be able to load it. Once it’s in scope,
we can use randomRIO to get a random number. You can
see from the type signature that it takes a tuple as an
argument, but it uses the tuple as a range from which to
select a random item:

Prelude> import System.Random

Prelude System.Random> :t randomRIO

randomRIO :: Random a => (a, a) -> IO a

Prelude System.Random> randomRIO (0, 5)

4

Prelude System.Random> randomRIO (1, 100)

71
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Prelude System.Random> randomRIO (1, 100)

12

We will later use this random number generation to pro-
duce a random index of a word list to provide a means of
selecting random words for our puzzle.

13.11 Step Two: Generating a word list

For clarity’s sake, we’re using a type synonym to declare what
we mean by [String] in our types. Later we’ll show you a
version that’s even more explicit using newtype. We also use do

syntax to read the contents of our dictionary into a variable
named dict. We use the lines function to split our big blob
string we read from the file into a list of string values each
representing a single line. Each line is a single word, so our
result is the WordList:

type WordList = [String]

allWords :: IO WordList

allWords = do

dict <- readFile "data/dict.txt"

return (lines dict)

Let’s take a moment to look at lines, which splits strings at
the newline marks and returns a list of strings:
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Prelude> lines "aardvark\naaron"

["aardvark","aaron"]

Prelude> length $ lines "aardvark\naaron"

2

Prelude> length $ lines "aardvark\naaron\nwoot"

3

Prelude> lines "aardvark aaron"

["aardvark aaron"]

Prelude> length $ lines "aardvark aaron"

1

Note that this does something similar but different from
words which splits by spaces (ostensibly between words) and
newlines:

Prelude> words "aardvark aaron"

["aardvark","aaron"]

Prelude> words "aardvark\naaron"

["aardvark","aaron"]

The next part of building our word list for our puzzle is to
set upper and lower bounds for the size of words we’ll use in
the puzzles. Feel free to change them if you want:
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minWordLength :: Int

minWordLength = 5

maxWordLength :: Int

maxWordLength = 9

The next thing we’re going to do is take the output of
allWords and filter it to fit the length criteria we defined above.
That will give us a shorter list of words to use in the puzzles:

gameWords :: IO WordList

gameWords = do

aw <- allWords

return (filter gameLength aw)

where gameLength w =

let l = length (w :: String)

in l >= minWordLength

&& l < maxWordLength

We next need to write a pair of functions that will pull a
random word out of our word list for us, so that the puzzle
player doesn’t know what the word will be. We’re going to use
the randomRIO function we mentioned above to facilitate that.
We’ll pass randomRIO a tuple of zero (the first indexed position
in our word list) and the number that is the length of our word
list minus one. Why minus one?
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We have to subtract one from the length of the word list
in order to index it because length starts counting from 1 but
an index of the list starts from 0. A list of length 5 does not
have a member indexed at position 5 — it has inhabitants at
positions 0-4 instead:

Prelude> [1..5] !! 4

5

Prelude> [1..5] !! 5

*** Exception: Prelude.(!!): index too large

In order to get the last value in the list, then, we must ask
for the member in the position of the length of the list minus
one:

Prelude> let myList = [1..5]

Prelude> length myList

5

Prelude> myList !! length myList

*** Exception: Prelude.!!: index too large

Prelude> myList !! (length myList - 1)

5

The next two functions work together to pull a random
word out of the gameWords list we had created above. Roughly
speaking, randomWord generates a random index number based
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on the length of a word list, wl, and then selects the member
of that list that is at that indexed position and returns an IO

String. Given what you know about randomRIO and indexing,
you should be able to supply the tuple argument to randomRIO

yourself:

randomWord :: WordList -> IO String

randomWord wl = do

randomIndex <- randomRIO ( , )

-- fill this part in ^^^

return $ wl !! randomIndex

The second function, randomWord' binds the gameWords list to
the randomWord function so that the random word we’re getting
is from that list. We’re going to delay a full discussion of the
>>= operator known as “bind” until we get to the Monad chapter.
For now, we can say that, as we said about do syntax, bind allows
us to sequentially compose actions such that a value generated
by the first becomes an argument to the second:

randomWord' :: IO String

randomWord' = gameWords >>= randomWord

Now that we have a word list, we turn our attention to the
building of an interactive game using it.
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13.12 Step Three: Making a puzzle

Our next step is to formulate the core game play. We need a
way to hide the word from the player (while giving them an
indication of how many letters it has) and create a means of
asking for letter guesses, determining if the guessed letter is
in the word, putting it in the word if it is and putting it into
an “already guessed” list if it’s not, and determining when the
game ends.

We start with a datatype for our puzzle. The puzzle is a
product of a String, a list of Maybe Char, and a list of Char:

data Puzzle =

Puzzle String [Maybe Char] [Char]

-- [1] [2] [3]

1. the word we’re trying to guess

2. the characters we’ve filled in so far

3. the letters we’ve guessed so far

Next we’re going to write an instance of the typeclass Show

for our datatype Puzzle. You may recall that show allows us to
print human-readable stringy things to the screen, which is
obviously something we have to do to interact with our game.
But we want it to print our puzzle a certain way, so we define
this instance.
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Notice how the argument to show lines up with our datatype
definition above. Now discovered refers to our list of Maybe Char

and guessed is what we’ve named our list of Char, but we’ve
done nothing with the String itself:

instance Show Puzzle where

show (Puzzle _ discovered guessed) =

(intersperse ' ' $

fmap renderPuzzleChar discovered)

++ " Guessed so far: " ++ guessed

This is going to show us two things as part of our puzzle:
the list of Maybe Char which is the string of characters we have
correctly guessed and the rest of the characters of the puzzle
word represented by underscores, interspersed with spaces;
and a list of Char that reminds us of which characters we’ve
already guessed. We’ll talk about renderPuzzleChar below.

First we’re going to write a function that will take our puzzle
word and turn it into a list of Nothing. This is the first step in
hiding the word from the player. We’re going to ask you to
write this one yourself, using the following information:

• We’ve given you a type signature. Your first argument is a
String, which will be the word that is in play. It will return
a value of type Puzzle. Remember that the Puzzle type is a
product of three things.
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• Your first value in the output will be the same string as
the argument to the function.

• The second value will be the result of mapping a function
over that String argument. Consider using const in the
mapped function, as it will always return its first argument,
no matter what its second argument is.

• For purposes of this function, the final argument of Puzzle
is an empty list.

Go for it:

freshPuzzle :: String -> Puzzle

freshPuzzle = undefined

Now we need a function that looks at the Puzzle String and
determines whether the character you guessed is an element
of that string. Here are some hints:

• This is going to need two arguments, and one of those
is of type Puzzle which is a product of 3 types. But for
the purpose of this function, we only care about the first
argument to Puzzle.

• We can use underscores to signal that there are values
we don’t care about and tell the function to ignore them.
Whether you use underscores to represent the arguments
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you don’t care about or go ahead and put the names of
those in won’t affect the result of the function. It does,
however, keep your code a bit cleaner and easier to read
by explicitly signaling which arguments you care about
in a given function.

• The standard function elem works like this:

Prelude> :t elem

elem :: Eq a => a -> [a] -> Bool

Prelude> elem 'a' "julie"

False

Prelude> elem 3 [1..5]

True

So, here you go:

charInWord :: Puzzle -> Char -> Bool

charInWord = undefined

The next function is very similar to the one you just wrote,
but this time we don’t care if the Char is part of the String

argument — this time we want to check and see if it is an
element of the guessed list.

You’ve totally got this:

alreadyGuessed :: Puzzle -> Char -> Bool

alreadyGuessed = undefined
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OK, so far we have ways to choose a word that we’re trying
to guess and determine if a guessed character is part of that
word or not. But we need a way to hide the rest of the word
from the player while they’re guessing. Computers are a bit
dumb, after all, and can’t figure out how to keep secrets on
their own. Back when we defined our Show instance for this
puzzle, we fmapped a function called renderPuzzleChar over
our second Puzzle argument. Let’s work on that function next.

The goal here is to use Maybe to permit two different out-
comes. It will be mapped over a string in the typeclass instance,
so this function works on only one character at a time. If that
character has not been correctly guessed yet, it’s a Nothing value
and should appear on the screen as an underscore. If the char-
acter has been guessed, we want to display that character so
the player can see which positions they’ve correctly filled:

Prelude> renderPuzzleChar Nothing

'_'

Prelude> renderPuzzleChar (Just 'c')

'c'

Prelude> let n = Nothing

Prelude> let daturr = [n, Just 'h', n, Just 'e', n]

Prelude> fmap renderPuzzleChar daturr

"_h_e_"

Your turn. Remember, you don’t need to do the mapping
part of it here:
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renderPuzzleChar :: Maybe Char -> Char

renderPuzzleChar = undefined

The next bit is a touch tricky. The point is to insert a cor-
rectly guessed character into the string. Although none of the
components here are new to you, they’re put together in a
somewhat dense manner, so we’re going to unpack it (obvi-
ously, when you type this into your own file, you do not need
to add the enumerations):
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fillInCharacter :: Puzzle -> Char -> Puzzle

fillInCharacter (Puzzle word

-- [1]

filledInSoFar s) c =

-- [2]

Puzzle word newFilledInSoFar (c : s)

-- [ 3 ]

where zipper guessed wordChar guessChar =

-- [4] [5] [6] [7]

if wordChar == guessed

then Just wordChar

else guessChar

-- [ 8 ]

newFilledInSoFar =

-- [9]

zipWith (zipper c)

word filledInSoFar

-- [ 10 ]

1. The first argument is our Puzzle with its three arguments,
with 𝑠 representing the list of characters already guessed.

2. The 𝑐 is our Char argument and is the character the player
guessed on this turn.

3. Our result is the Puzzle with the filledInSoFar replaced by
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newFilledInSoFar the 𝑐 consed onto the front of the 𝑠 list.

4. zipper is a combining function for deciding how to handle
the character in the word, what’s been guessed already,
and the character that was just guessed. If the current
character in the word is equal to what the player guessed,
then we go ahead and return Just wordChar to fill in that
spot in the puzzle. Otherwise, we kick the guessChar back
out. We kick guessChar back out because it might either be
a previously correctly guessed character or a Nothing that
has not been guessed correctly this time nor in the past.

5. guessed is the character they guessed.

6. wordChar is the characters in the puzzle word — not the
ones they’ve guessed or not guessed, but the characters
in the word that they’re supposed to be guessing.

7. guessChar is the list that keeps track of the characters the
player has guessed so far.

8. This if-then-else expression checks to see if the guessed
character is one of the word characters. If it is, it wraps it
in a Just because our puzzle word is a list of Maybe values.

9. newFilledInSoFar is the new state of the puzzle which uses
zipWith and the zipper combining function to fill in char-
acters in the puzzle. The zipper function is first applied to
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the character the player just guessed because that doesn’t
change. Then it’s zipped across two lists. One list is word

which is the word the user is trying to guess. The second
list, filledInSoFar is the puzzle state we’re starting with of
type [Maybe Char]. That’s telling us which characters in
word have been guessed.

10. Now we’re going to make our newFilledInSoFar by using
zipWith. You may remember this from the Lists chapter.
It’s going to zip the wordwith the filledInSoFar values while
applying the zipper function from just above it to the
values as it does.

Next we have this big do block with a case expression and
each case also has a do block inside it. Why not, right?

First, it tells the player what you guessed. The case ex-
pression is to give different responses based on whether the
guessed character:

• had already been guessed previously;

• is in the word and needs to be filled in;

• or, was not previously guessed but also isn’t in the puzzle
word.

Despite the initial appearance of complexity, most of this
is syntax you’ve seen before, and you can look through it step-
by-step and see what’s going on:
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handleGuess :: Puzzle -> Char -> IO Puzzle

handleGuess puzzle guess = do

putStrLn $ "Your guess was: " ++ [guess]

case (charInWord puzzle guess

, alreadyGuessed puzzle guess) of

(_, True) -> do

putStrLn "You already guessed that\

\ character, pick \

\ something else!"

return puzzle

(True, _) -> do

putStrLn "This character was in the\

\ word, filling in the word\

\ accordingly"

return (fillInCharacter puzzle guess)

(False, _) -> do

putStrLn "This character wasn't in\

\ the word, try again."

return (fillInCharacter puzzle guess)

All right, next we need to devise a way to stop the game
after a certain number of guesses. Hangman games normally
stop only after a certain number of incorrect guesses, but for
the sake of simplicity here, we’re stopping after a set number
of guesses, whether they’re correct or not. Again, the syntax
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here should be comprehensible to you from what we’ve done
so far:

gameOver :: Puzzle -> IO ()

gameOver (Puzzle wordToGuess _ guessed) =

if (length guessed) > 7 then

do putStrLn "You lose!"

putStrLn $

"The word was: " ++ wordToGuess

exitSuccess

else return ()

Notice the way it’s written says you lose and exits the game
once you’ve guessed seven characters, even if the final (seventh)
guess is the final letter to fill into the word. There are, of course,
ways to modify that to make it more the way you’d expect a
hangman game to go, and we encourage you to play with that.

Next we need to provide a way to exit after winning the
game. We showed you how the combination of isJust and all

works earlier in the chapter, and you can see that in action
here. Recall that our puzzle word is a list of Maybe values, so
when each character is represented by a Just Char rather than
a Nothing, you win the game and we exit:
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gameWin :: Puzzle -> IO ()

gameWin (Puzzle _ filledInSoFar _) =

if all isJust filledInSoFar then

do putStrLn "You win!"

exitSuccess

else return ()

Next is the instruction for running a game. Here we use
forever so that this will execute this series of actions indef-
initely:

runGame :: Puzzle -> IO ()

runGame puzzle = forever $ do

gameOver puzzle

gameWin puzzle

putStrLn $

"Current puzzle is: " ++ show puzzle

putStr "Guess a letter: "

guess <- getLine

case guess of

[c] -> handleGuess puzzle c >>= runGame

_ ->

putStrLn "Your guess must\

\ be a single character"

And, finally, here is main bringing everything together: it
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gets a word from the word list we generated, generates a fresh
puzzle, and then executes the runGame actions we saw above,
until such time as you guess all the characters in the word
correctly or have made seven guesses, whichever comes first:
indexmain@main

main :: IO ()

main = do

word <- randomWord'

let puzzle =

freshPuzzle (fmap toLower word)

runGame puzzle

13.13 Adding a newtype

Another way you could modify your code in the above and
gain, perhaps, more clarity in places is with the use of newtype:

-- replace this type synonym

-- type WordList = [String]

newtype WordList =

WordList [String]

deriving (Eq, Show)
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allWords :: IO WordList

allWords = do

dict <- readFile "data/dict.txt"

return $ WordList (lines dict)

gameWords :: IO WordList

gameWords = do

(WordList aw) <- allWords

return $ WordList (filter gameLength aw)

where gameLength w =

let l = length (w :: String)

in l > minWordLength

&& l < maxWordLength

randomWord :: WordList -> IO String

randomWord (WordList wl) = do

randomIndex <-

randomRIO (0, (length wl) - 1)

return $ wl !! randomIndex

13.14 Chapter exercises

Hangman game logic

You may have noticed when you were playing with the hang-
man game, that there are some weird things about its game
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logic:

• although it can play with words up to 9 characters long,
you only get to guess 7 characters;

• it ends the game after 7 guesses, whether they were correct
or incorrect;

• if your 7th guess supplies the last letter in the word, it may
still tell you you lost;

• it picks some very strange words that you didn’t suspect
were even in the dictionary.

These make it unlike hangman as you might have played it
in the past. Ordinarily, only incorrect guesses count against
you, so you can make as many correct guesses as you need
to fill in the word. Modifying the game so that it either gives
you more guesses before the game ends or only uses shorter
words (or both) involves only a couple of uncomplicated steps.

A bit more complicated but worth attempting as an exercise
is changing the game so that, as with normal hangman, only
incorrect guesses count towards the guess limit.

Modifying code

1. Ciphers: Open your Ciphers module and modify it so that
the Caesar and Vigenère ciphers work with user input.
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2. Here is a very simple, short block of code. Notice it has
a forever that will make it keep running, over and over
again. Load it into your REPL and test it out. Then refer
back to the chapter and modify it to exit successfully after
a False result.

import Control.Monad

palindrome :: IO ()

palindrome = forever $ do

line1 <- getLine

case (line1 == reverse line1) of

True -> putStrLn "It's a palindrome!"

False -> putStrLn "Nope!"

3. If you tried using palindrome on a sentence such as “Madam
I’mAdam,” youmayhave noticed that palindrome checker
doesn’t work on that. Modifying the above so that it works
on sentences, too, involves several steps. You may need
to refer back to previous examples in the chapter to get
ideas for proper ordering and nesting. You may wish to
import Data.Char to use the function toLower. Have fun.
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4. type Name = String

type Age = Integer

data Person = Person Name Age deriving Show

data PersonInvalid =

NameEmpty

| AgeTooLow

| PersonInvalidUnknown String

deriving (Eq, Show)

mkPerson :: Name

-> Age

-> Either PersonInvalid Person

mkPerson name age

| name /= "" && age > 0 =

Right $ Person name age

| name == "" = Left NameEmpty

| not (age > 0) = Left AgeTooLow

| otherwise =

Left $ PersonInvalidUnknown $

"Name was: " ++ show name ++

" Age was: " ++ show age

Your job is to write the following function withoutmodi-
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fying the code above.

gimmePerson :: IO ()

gimmePerson = undefined

Since IO () is about the least informative type imaginable,
we’ll tell what it should do.

a) It should prompt the user for a name and age input.

b) It should attempt to construct a Person value using
the name and age the user entered. You’ll need the
read function for Age because it’s an Integer rather
than a String.

c) If it constructed a successful person, it should print
”Yay! Successfully got a person:” followed by the Per-
son value.

d) If it got an error value, report that an error occurred
and print the error.

13.15 Follow-up resources

1. Stack
https://github.com/commercialhaskell/stack

2. How I Start: Haskell
http://bitemyapp.com/posts/2014-11-18-how-i-start-haskell.

html

https://github.com/commercialhaskell/stack
http://bitemyapp.com/posts/2014-11-18-how-i-start-haskell.html
http://bitemyapp.com/posts/2014-11-18-how-i-start-haskell.html
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3. Cabal FAQ
https://www.haskell.org/cabal/FAQ.html

4. Cabal user’s guide
https://www.haskell.org/cabal/users-guide/

5. A Gentle Introduction to Haskell, Modules chapter.
https://www.haskell.org/tutorial/modules.html

https://www.haskell.org/cabal/FAQ.html
https://www.haskell.org/cabal/users-guide/
https://www.haskell.org/tutorial/modules.html


Chapter 14

Testing

We’ve tended to forget
that no computer will
ever ask a new question.

Grace Murray Hopper

817
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14.1 Testing

This chapter, like the one before it, is more focused on practical
matters rather than writing Haskell code per se. We will be
covering two testing libraries (there are others) and how and
when to use them. You will not be writing much of the code
in the chapter on your own; instead, please follow along by
entering it into files as directed (you will learn more if you
type rather than copy and paste). At the end of the chapter,
there are a number of exercises that ask you to write your own
tests for practice.

Testing is a core part of the working programmer’s toolkit,
and Haskell is no exception. Well-specified types can enable
programmers to avoid many obvious and tedious tests that
might otherwise be necessary tomaintain in untypedprogram-
ming languages, but there’s still a lot of value to be obtained
in executable specifications. This chapter will introduce you
to testing methods for Haskell.

This chapter will cover:

• the whats and whys of testing;

• using the testing libraries Hspec and QuickCheck;

• a bit of fun with Morse code.
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14.2 A quick tour of testing for the
uninitiated

When we write Haskell, we rely on the compiler to judge for
us whether our code is well formed. That prevents a great
number of errors, but it does not prevent them all. It is still
possible to write well-typed code that doesn’t perform as ex-
pected, and runtime errors can still occur. That’s where testing
comes in.

In general, tests allow you to state an expectation and then
verify that the result of an operation meets that expectation.
They allow you to verify that your code will do what you want
when executed.

For the sake of simplicity, we’ll say there are two broad cate-
gories of testing: unit testing and property testing. Unit testing
tests the smallest atomic units of software independently of
one another. Unit testing allows the programmer to check that
each function is performing the task it is meant to do. You
assert that when the code runs with a specified input, the result
is equal to the result you want.

Spec testing is a somewhat newer version of unit testing.
Like unit testing, it tests specific functions independently and
asks you to assert that, when given the declared input, the result
of the operation will be equal to the desired result. When you
run the test, the computer checks that the expected result is
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equal to the actual result and everyone moves on with their day.
Some people prefer spec testing to unit testing because spec
testing is more often written in terms of assertions that are in
human-readable language. This can be especially valuable if
nonprogrammers need to be able to read and interpret the
results of the tests — they can read the English-language results
of the tests and, in some cases, write tests themselves.

Haskell provides libraries for both unit and spec testing.
We’ll focus on specification testing with the hspec library in
this chapter, but HUnit is also available. One limitation to unit
and spec testing is that they test atomic units of code indepen-
dently, so they do not verify that all the pieces work together
properly.

Property testing is a different beast. This kind of testing
was pioneered in Haskell because the type system and straight-
forward logic of the language lend themselves to property
tests, but it has since been adopted by other languages as well.
Property tests test the formal properties of programs without
requiring formal proofs by allowing you to express a truth-
valued, universally quantified (that is, will apply to all cases)
function — usually equality — which will then be checked
against randomly generated inputs.

The inputs are generated randomly by the standard func-
tions inside the QuickCheck library we use for property testing.
This relies on the type system to know what kinds of data to
generate. The default setting is for 100 inputs to be generated,
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giving you 100 results. If it fails any one of these, then you
know your program doesn’t have the specified property. If
it passes, you can’t be positive it will never fail because the
data are randomly generated — there could be a weird edge
case out there that will cause your software to fail. QuickCheck is
cleverly written to be as thorough as possible and will usually
check the most common edge cases (for example, empty lists
and the maxBound and minBounds of the types in question, where
appropriate). You can also change the setting so that it runs
more tests.

Property testing is fantastic for ensuring that you’ve met
the minimum requirements to satisfy laws, such as the laws
of monads or basic associativity. It is not appropriate for all
programs, though, as it is not useful for times when there are
no assertable, truth-valued properties of the software.

14.3 Conventional testing

We are going to use the library hspec1 to demonstrate a test
case, but we’re not going to explain hspec deeply. The current
chapter will equip you with a means of writing tests for your
code later, but it’s not necessary to understand the details of
how the library works to do that. Some of the concepts hspec

leans on, such as functor, applicative, and monad, are covered
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later as independent concepts.
First, let’s come up with a test case for addition. Generally

we want to make a Cabal project, even for small experiments.
Having a permanent project for experiments can eliminate
some of this overhead, but we’ll assume you haven’t done this
yet and start a small project:

-- addition.cabal

name: addition

version: 0.1.0.0

license-file: LICENSE

author: Chicken Little

maintainer: sky@isfalling.org

category: Text

build-type: Simple

cabal-version: >=1.10

library

exposed-modules: Addition

ghc-options: -Wall -fwarn-tabs

build-depends: base >=4.7 && <5

, hspec

hs-source-dirs: .

default-language: Haskell2010

1 http://hackage.haskell.org/package/hspec

http://hackage.haskell.org/package/hspec
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Note we’ve specified the hspec dependency, but not a version
range for it. You’ll probably want whatever the newest version
of it is but can probably get away with not specifying it for
now.

Next we’ll make the Addition module (exposed-modules) in
the samedirectory as ourCabal file. This is why the hs-source-dirs

option in the library stanza was set to . — this is the convention
for referring to the current directory.

For now, we’ll write a simple placeholder function to make
sure everything’s working:

-- Addition.hs

module Addition where

sayHello :: IO ()

sayHello = putStrLn "hello!"

Then you can create an empty LICENSE file so the build
doesn’t complain:

$ touch LICENSE

Your local project directory should look like this now, before
having run any Stack commands:

$ tree

.
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├── Addition.hs

└── addition.cabal

└── LICENSE

The next steps are to initialize the Stack file for describing
what snapshot of Stackage we’ll use:

$ stack init

Then we’ll want to build our project which will also install
the dependencies we need:

$ stack build

If that succeeded, let’s fire up a REEEEEEEPL and see if we
can call sayHello:

$ stack ghci

[some noise about configuring, loading packages, etc.]

Ok, modules loaded: Addition.

Prelude> sayHello

hello!

If you got here, you’ve got a working test bed for making a
simple test case in hspec!
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Truth according to Hspec

Next we’ll add the import of hspec’s primary module:

module Addition where

import Test.Hspec

sayHello :: IO ()

sayHello = putStrLn "hello!"

Note that all of your imports must occur after the module
has been declared and before any expressions have been de-
fined in your module. You may have encountered an error or
a mistake might’ve been made. Here are a couple of examples.

module Addition where

sayHello :: IO ()

sayHello = putStrLn "hello!"

import Test.Hspec

Here we put an import after at least one declaration. The
compiler parser doesn’t have a means of recognizing this spe-
cific mistake, so it can’t tell you properly what the error is:
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Prelude> :r

[1 of 1] Compiling Addition

Addition.hs:7:1: parse error on input ‘import’

Failed, modules loaded: none.

What else may have gone wrong? Well, we might have the
package hspec installed, but not included in our build-depends

for our project. Note you’ll need to quit and reopen the REPL
if you’ve made any changes to your .cabal file to reproduce
this error or fixed a mistake:

$ stack build

{... noise ...}

Could not find module ‘Test.Hspec’

It is a member of the hidden package

‘hspec-2.2.3@hspec_JWyjr3DNMsw1kiPzf88M5w’.

Perhaps you need to add ‘hspec’ to the

build-depends in your .cabal file.

Use -v to see a list of the files searched for.

{... other noise ...}

Process exited with code: ExitFailure 1
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If you changed anything in order to test these error modes,
you’ll need to add hspec back to your build-depends and reinstall
it. If hspec is listed in your dependencies, stack build will set
you right.

Assuming everything is in order and Test.Hspec is being
imported, we can do a little exploration. We can use the :browse

command to get a listing of types from a module and get a
thousand-foot-view of what it offers:

Prelude> :browse Test.Hspec

context :: String -> SpecWith a -> SpecWith a

example :: Expectation -> Expectation

specify :: Example a => String -> a -> SpecWith (Arg a)

(... list goes on for awhile ..)

Prelude>

:browse is more useful when you already have some famil-
iarity with the library and how it works. When you’re using
an unfamiliar library, documentation is easier to digest. Good
documentation explains how important pieces of the library
work and gives examples of their use. This is especially valu-
able when encountering new concepts. As it happens, hspec
has some pretty good documentation at their website.2

2 http://hspec.github.io/

http://hspec.github.io/
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Our first Hspec test

Let’s add a test assertion to our module now. If you glance
at the documentation, you’ll see that our example isn’t very
interesting, but we’ll make it somewhat more interesting soon:

module Addition where

import Test.Hspec

main :: IO ()

main = hspec $ do

describe "Addition" $ do

it "1 + 1 is greater than 1" $ do

(1 + 1) > 1 `shouldBe` True

We’ve asserted in both English and code that (1 + 1) should
be greater than 1, and that is what hspec will test for us. You
may recognize the do notation from the previous chapter. As
we said then, this syntax allows us to sequence monadic actions.
In the previous chapter, the monad in question was IO.

Here, we’re nesting multiple do blocks. The types of the do

blocks passed to hspec, describe, and it aren’t IO () but some-
thing more specific to hspec. They result in IO () in the end, but
there are other monads involved. We haven’t covered monads
yet, and this works fine without understanding precisely how
it works, so let’s just roll with it for now.
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Note that you’ll get warnings about the Num a => a literals
getting defaulted to Integer. You can ignore this or add explicit
type signatures, it is up to you. With the above code in place,
we can load or reload our module and run main to see the test
results:

Prelude> main

Addition

1 + 1 is greater than 1

Finished in 0.0041 seconds

1 example, 0 failures

OK, so what happened here? Basically, hspec runs your code
and verifies that the arguments you passed to shouldBe are
equal. Let’s look at the types:

shouldBe :: (Eq a, Show a)

=> a -> a -> Expectation

-- contrast with

(==) :: Eq a => a -> a -> Bool

In a sense, it’s an augmented == embedded in hspec’s model
of the universe. It needs the Show instance in order to render a
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value. That is, the Show instance allows hspec to show you the
result of the tests, not just return a Bool value.

Let’s add another test, one that reads a little differently:

main :: IO ()

main = hspec $ do

describe "Addition" $ do

it "1 + 1 is greater than 1" $ do

(1 + 1) > 1 `shouldBe` True

it "2 + 2 is equal to 4" $ do

2 + 2 `shouldBe` 4

Modify your describe block about Addition so that it looks
like the above and run it in the REPL:

Prelude> main

Addition

1 + 1 is greater than 1

2 + 2 is equal to 4

Finished in 0.0004 seconds

2 examples, 0 failures

For fun, we’ll look back to something you wrote early in the
book and write a short hspec test for it. Back in the Recursion
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chapter, we wrote our own division function that looked like
this:

dividedBy :: Integral a => a -> a -> (a, a)

dividedBy num denom = go num denom 0

where go n d count

| n < d = (count, n)

| otherwise =

go (n - d) d (count + 1)

We want to test that to see that it works as it should. To keep
things simple, we added dividedBy to our Addition.hs file and
then rewrote the hspec tests that were already there. We want
to test that the function is both subtracting the correct number
of times and keeping an accurate count of that subtraction
and also that it’s telling us the correct remainder, so we’ll give
hspec two things to test for:

main :: IO ()

main = hspec $ do

describe "Addition" $ do

it "15 divided by 3 is 5" $ do

dividedBy 15 3 `shouldBe` (5, 0)

it "22 divided by 5 is\

\ 4 remainder 2" $ do

dividedBy 22 5 `shouldBe` (4, 2)
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That’s it. When we reload Addition.hs in our REPL, we can
test our division function:

*Addition> main

Addition

15 divided by 3 is 5

22 divided by 5 is 4 remainder 2

Finished in 0.0012 seconds

2 examples, 0 failures

Hurrah! We can do arithmetic!

Intermission: Short Exercise

In the Chapter Exercises at the end of Recursion, you were
given this exercise:

Write a function that multiplies two numbers using recur-
sive summation. The type should be (Eq a, Num a) => a -> a

-> a although, depending on how you do it, you might also
consider adding an Ord constraint.

If you still have your answer, great! If not, rewrite it and
then write hspec tests for it.

The above examples demonstrate the basics of writing in-
dividual tests to test particular values. If you’d like to see a
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more developed example, you could refer to Chris’s library,
Bloodhound.3

14.4 Enter QuickCheck

hspec does a nice job with spec testing, but we’re Haskell users
— we’re never satisfied!! hspec can only prove something about
particular values. Can we get assurances that are stronger,
something closer to proofs? As it happens, we can.

QuickCheck was the first library to offer what is today called
property testing. hspec testing is more like what is known
as unit testing — the testing of individual units of code —
whereas property testing is done with the assertion of laws or
properties.

First, we’ll need to add QuickCheck to our build-depends. Open
your .cabal file and add it. Be sure to capitalize QuickCheck (un-
like hspec, which begins with a lowercase ℎ). It should already
be installed, as hspec has QuickCheck as a dependency, but you
may need to reinstall it (stack build). Then open a new stack

ghci session.
hspec has QuickCheck integration out of the box, so once that

is done, add the following to your module:
3 https://github.com/bitemyapp/bloodhound

https://github.com/bitemyapp/bloodhound
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-- with your imports

import Test.QuickCheck

-- to the same describe block as the others

it "x + 1 is always\

\ greater than x" $ do

property $ \x -> x + 1 > (x :: Int)

If we had not asserted the type of 𝑥 in the property test, the
compiler would not have known what concrete type to use,
and we’d see a message like this:

No instance for (Show a0) arising from a use of ‘property’

The type variable ‘a0’ is ambiguous

...

No instance for (Num a0) arising from a use of ‘+’

The type variable ‘a0’ is ambiguous

...

No instance for (Ord a0) arising from a use of ‘>’

The type variable ‘a0’ is ambiguous

Avoid this by asserting a concrete type, for example, (x ::

Int), in the property.
Assuming all is well, when we run it, we’ll see something

like the following:

Prelude> main
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Addition

1 + 1 is greater than 1

2 + 2 is equal to 4

x + 1 is always greater than x

Finished in 0.0067 seconds

3 examples, 0 failures

What’s being hidden a bit by hspec is that QuickCheck tests
many values to see if your assertions hold for all of them. It
does this by randomly generating values of the type you said
you expected. So, it’ll keep feeding our function random Int

values to see if the property is ever false. The number of tests
QuickCheck runs defaults to 100.

Arbitrary instances

QuickCheck relies on a typeclass called Arbitrary and a newtype

called Gen for generating its random data.
arbitrary is a value of type Gen:

Prelude> :t arbitrary

arbitrary :: Arbitrary a => Gen a

This is a way to set a default generator for a type. When
you use the arbitrary value, you have to specify the type to
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dispatch the right typeclass instance, as types and typeclass
instances form unique pairings. But this is just a value. How
do we see a list of values of the correct type?

We can use sample and sample' from the Test.QuickCheckmod-
ule in order to see some random data:

-- this prints each value on a new line

Prelude> :t sample

sample :: Show a => Gen a -> IO ()

-- this one returns a list

Prelude> :t sample'

sample' :: Gen a -> IO [a]

The IO is necessary because it’s using a global resource of
random values to generate the data. A common way to gener-
ate pseudorandom data is to have a function that, given some
input “seed” value, returns a value and another seed value for
generating a different value. You can bind the two actions
together, as we explained in the last chapter, to pass a new seed
value each time and keep generating seemingly random data.
In this case, however, we’re not doing that. Here we’re using
IO so that our function that generates our data can return a
different result each time (not something pure functions are
allowed to do) by pulling from a global resource of random
values. If this doesn’t make a great deal of sense at this point,
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it will be more clear once we’ve covered monads, and even
more so once we cover IO.

We use the Arbitrary typeclass in order to provide a genera-
tor for sample. It isn’t a terribly principled typeclass, but it is
popular and useful for this. We say it is unprincipled because
it has no laws and nothing specific it’s supposed to do. It’s a
convenient way of plucking a canonical generator for Gen a

out of thin air without having to know where it comes from.
If it feels a bit like *MAGICK* at this point, that’s fine. It is, a
bit, and the inner workings of Arbitrary are not worth fussing
over right now.

As you’ll see later, this isn’t necessary if you have a Gen value
ready to go already. Gen is a newtype with a single type argu-
ment. It exists for wrapping up a function to generate pseudo-
random values. The function takes an argument that is usually
provided by some kind of random value generator to give you
a pseudorandom value of that type, assuming it’s a type that
has an instance of the Arbitrary typeclass.

And this is what we get when we use the sample functions.
We use the arbitrary value but specify the type, so that it gives
us a list of random values of that type:

Prelude> sample (arbitrary :: Gen Int)

0

-2

-1
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4

-3

4

2

4

-3

2

-4

Prelude> sample (arbitrary :: Gen Double)

0.0

0.13712502861905426

2.9801894108743605

-8.960645064542609

4.494161946149201

7.903662448338119

-5.221729489254451

31.64874305324701

77.43118278366954

-539.7148886375935

26.87468214215407

If you run sample arbitrary directly in GHCi without speci-
fying a type, it will default the type to () and give you a very
nice list of empty tuples. If you try loading an unspecified
sample arbitrary from a source file, though, you will get an af-
fectionate message from GHC about having an ambiguous
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type. Try it if you like. GHCi has somewhat different rules for
default types than GHC does.

We can specify our own data for generating Gen values. In
this example, we’ll specify a trivial function that always returns
a 1 of type Int:

-- trivial generator of values

trivialInt :: Gen Int

trivialInt = return 1

You may remember return from the previous chapter as
well. Here, it provides an expedientway to construct a function.
In the last chapter, we noted that it doesn’t do awhole lot except
return a value inside of a monad. Before we were using it to
put a value into IO but it’s not limited to use with that monad:

return :: Monad m => a -> m a

-- when `m` is Gen:

return :: a -> Gen a

Putting 1 into the Gen monad constructs a generator that
always returns the same value, 1.

So, what happens when we sample data from this?



CHAPTER 14. TESTING 840

Prelude> sample' trivialInt

[1,1,1,1,1,1,1,1,1,1,1]

Notice now our value isn’t arbitrary for some type, but the
trivialInt value we defined above. That generator always re-
turns 1, so all sample' can return for us is a list of 1.

Let’s explore different means of generating values:

oneThroughThree :: Gen Int

oneThroughThree = elements [1, 2, 3]

Try loading that via your Addition module and asking for a
sample set of random oneThroughThree values:

*Addition> sample' oneThroughThree

[2,3,3,2,2,1,2,1,1,3,3]

Yep, it gave us random values from only that limited set.
At this time, each number in that set has the same chance of
showing up in our random data set. We could tinker with
those odds by having a list with repeated elements to give
those elements a higher probability of showing up in each
generation:

oneThroughThree :: Gen Int

oneThroughThree =

elements [1, 2, 2, 2, 2, 3]
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Try running sample' again with this set and see if you no-
tice the difference. You may not, of course, because due to
the nature of probability, there is at least some chance that
2 wouldn’t show up any more than it did with the previous
sample.

Next we’ll use choose and elements from the QuickCheck library
as generators of values:

-- choose :: System.Random.Random a

-- => (a, a) -> Gen a

-- elements :: [a] -> Gen a

genBool :: Gen Bool

genBool = choose (False, True)

genBool' :: Gen Bool

genBool' = elements [False, True]

genOrdering :: Gen Ordering

genOrdering = elements [LT, EQ, GT]

genChar :: Gen Char

genChar = elements ['a'..'z']

You should enter all these into your Addition module, load
them into your REPL, and play with getting lists of sample
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data for each.
Our next examples are a bit more complex:

genTuple :: (Arbitrary a, Arbitrary b)

=> Gen (a, b)

genTuple = do

a <- arbitrary

b <- arbitrary

return (a, b)

genThreeple :: (Arbitrary a, Arbitrary b,

Arbitrary c)

=> Gen (a, b, c)

genThreeple = do

a <- arbitrary

b <- arbitrary

c <- arbitrary

return (a, b, c)

Here’s how to use generators when they have polymor-
phic type arguments. Remember that if you leave the types
unspecified, the extended defaulting behavior of GHCi will
(helpfully?) pick ()) for you. Outside of GHCi, you’ll get an
error about an ambiguous type — we covered some of this
when we explained typeclasses earlier:
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Prelude> sample genTuple

((),())

((),())

((),())

Here it’s defaulting the 𝑎 and 𝑏 to (). We can get more
interesting output if we tell it what we expect 𝑎 and 𝑏 to be.
Note it’ll always pick 0 and 0.0 for the first numeric values:

Prelude> sample (genTuple :: Gen (Int, Float))

(0,0.0)

(-1,0.2516606)

(3,0.7800742)

(5,-61.62875)

We can ask for lists and characters, or anything with an
instance of the Arbitrary typeclass:

Prelude> sample (genTuple :: Gen ([()], Char))

([],'\STX')

([()],'X')

([],'?')

([],'\137')

([(),()],'\DC1')

([(),()],'z')

You can use :info Arbitrary in your GHCi to see what in-
stances are available.
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We can also generate arbitrary Maybe and Either values:

genEither :: (Arbitrary a, Arbitrary b)

=> Gen (Either a b)

genEither = do

a <- arbitrary

b <- arbitrary

elements [Left a, Right b]

-- equal probability

genMaybe :: Arbitrary a => Gen (Maybe a)

genMaybe = do

a <- arbitrary

elements [Nothing, Just a]

-- What QuickCheck does so

-- you get more Just values

genMaybe' :: Arbitrary a => Gen (Maybe a)

genMaybe' = do

a <- arbitrary

frequency [ (1, return Nothing)

, (3, return (Just a))]

-- frequency :: [(Int, Gen a)] -> Gen a

For now, you should play with this in the REPL; it will
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become useful to know later on.

Using QuickCheck without Hspec

We can also use QuickCheck without hspec. In that case, we no
longer need to specify 𝑥 in our expression, because the type
of prop_additionGreater provides for it. Thus, we rewrite our
previous example as follows:

prop_additionGreater :: Int -> Bool

prop_additionGreater x = x + 1 > x

runQc :: IO ()

runQc = quickCheck prop_additionGreater

For now, we don’t need to worry about how runQc does its
work. It’s a generic function, like main, that signals that it’s time
to do stuff. Specifically, in this case, it’s time to perform the
QuickCheck tests.

Now, when we run it in the REPL, instead of the mainwe were
calling with hspec, we’ll call runQc, which will call on QuickCheck

to test the property we defined. When we run QuickCheck di-
rectly, it reports how many tests it ran:

Prelude> runQc

+++ OK, passed 100 tests.

What happens if we assert something untrue?
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prop_additionGreater x = x + 0 > x

Prelude> :r

[1 of 1] Compiling Addition

Ok, modules loaded: Addition.

Prelude> runQc

*** Failed! Falsifiable (after 1 test):

0

Conveniently, QuickCheck doesn’t only tell us that our test
failed, but it tells us the first input it encountered that it failed
on. If you try to keep running it, you may notice that the
value that it fails on is always 0. A while ago, we said that
QuickCheck has some built-in cleverness and tries to ensure that
common error boundaries will always get tested. The input 0
is a frequent point of failure, so QuickCheck tries to ensure that
it is always tested (when appropriate, given the types, etc etc).

14.5 Morse code

In the interest of playing with testing, we’ll work through an
example project where we translate text to and from Morse
code. We’re going to start a new project for this. When you
do use stack new project-name to start a new project instead of
stack init for an existing project, it automatically generates a
file called Setup.hs that looks like this:
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import Distribution.Simple

main = defaultMain

This isn’t terribly important. You rarely need to modify
or do anything at all with the Setup.hs file, and usually you
shouldn’t touch it at all. Occasionally, you may need to edit it
for certain tasks, so it is good to recognize that it’s there.

Next, as always, let’s get our .cabal file configured properly.
Some of this will be automatically generated by your stack new

project-name, but you’ll have to add to what it generates, being
careful about things like capitalization and indentation:

name: morse

version: 0.1.0.0

license-file: LICENSE

author: Chris Allen

maintainer: cma@bitemyapp.com

category: Text

build-type: Simple

cabal-version: >=1.10

library

exposed-modules: Morse

ghc-options: -Wall -fwarn-tabs

build-depends: base >=4.7 && <5

, containers
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, QuickCheck

hs-source-dirs: src

default-language: Haskell2010

executable morse

main-is: Main.hs

ghc-options: -Wall -fwarn-tabs

hs-source-dirs: src

build-depends: base >=4.7 && <5

, containers

, morse

, QuickCheck

default-language: Haskell2010

test-suite tests

ghc-options: -Wall -fno-warn-orphans

type: exitcode-stdio-1.0

main-is: tests.hs

hs-source-dirs: tests

build-depends: base

, containers

, morse

, QuickCheck

default-language: Haskell2010

Don’t forget to capitalize the QuickCheck dependency prop-
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erly! Now that is set up and ready for us, so the next step is
to make our src directory and the file called Morse.hs as our
“exposed module:”

-- src/Morse.hs

module Morse

( Morse

, charToMorse

, morseToChar

, stringToMorse

, letterToMorse

, morseToLetter

) where

import qualified Data.Map as M

type Morse = String

Whoa, there — what’s all that stuff after the module name?
That is a list of everything this module will export. We talked
a bit about this in the previous chapter, but didn’t make use of
it. In the hangman game, we had all our functions in one file,
so nothing needed to be exported.
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Nota bene You don’t have to specify exports in this manner.
By default, the entire module is exposed and can be imported
by any other module. If you want to export everything in a
module, then specifying exports is unnecessary. However, it
can help, when managing large projects, to specify what will
get used by another module (and, by exclusion, what will not)
as a way of documenting your intent. In this case, we have
exported here more than we imported into Main, as we realized
that we only needed the two specified functions for Main. We
could go back and remove the things we didn’t specifically
import from the above export list, but we haven’t now, to give
you an idea of the process we’re going through putting our
project together.

Turning words into code

We are also using a qualified import of Data.Map. We covered
this type of import somewhat in the previous chapter. We
qualify the import and name it 𝑀 so that we can use that 𝑀
as a prefix for the functions we’re using from that package.
That will help us keep track of where the functions came from
and also avoid same-name clashes with Prelude functions, but
without requiring us to tediously type Data.Map as a prefix to
each function name.

We’ll talk more about Map as a data structure later in the book.
For now, we can understand it as being a balanced binary tree,
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where each node is a pairing of a key and a value. The key is
an index for the value — a marker of how to find the value
in the tree. The key must be orderable (that is, must have an
Ord instance), much like our binary tree functions earlier, such
as insert, needed an Ord instance. Maps can be more efficient
than lists because you do not have to search linearly through
a bunch of data. Because the keys are ordered and the tree is
balanced, searching through the binary tree divides the search
space in half each time you go “left” or “right.” You compare
the key to the index of the current node to determine if you
need to go left (less), right (greater), or if you’ve arrived at the
node for your value (equal).

You can see below why we used a Map instead of a simple list.
We want to make a list of pairs, where each pair includes both
the English-language character and its Morse code represen-
tation. We define our transliteration table thus:

letterToMorse :: (M.Map Char Morse)

letterToMorse = M.fromList [

('a', ".-")

, ('b', "-...")

, ('c', "-.-.")

, ('d', "-..")

, ('e', ".")
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, ('f', "..-.")

, ('g', "--.")

, ('h', "....")

, ('i', "..")

, ('j', ".---")

, ('k', "-.-")

, ('l', ".-..")

, ('m', "--")

, ('n', "-.")

, ('o', "---")

, ('p', ".--.")

, ('q', "--.-")

, ('r', ".-.")

, ('s', "...")

, ('t', "-")

, ('u', "..-")

, ('v', "...-")

, ('w', ".--")

, ('x', "-..-")

, ('y', "-.--")

, ('z', "--..")

, ('1', ".----")

, ('2', "..---")
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, ('3', "...--")

, ('4', "....-")

, ('5', ".....")

, ('6', "-....")

, ('7', "--...")

, ('8', "---..")

, ('9', "----.")

, ('0', "-----")

]

Note that we used M.fromList — the 𝑀 prefix tells us this
comes from Data.Map. We’re using a Map to associate characters
with their Morse code representations. letterToMorse is the def-
inition of the Map we’ll use to look up the codes for individual
characters.

Next we write a few functions that allow us to convert a
Morse character to an English character and vice versa, and
also functions to do the same for strings:
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morseToLetter :: M.Map Morse Char

morseToLetter =

M.foldWithKey (flip M.insert) M.empty

letterToMorse

charToMorse :: Char -> Maybe Morse

charToMorse c =

M.lookup c letterToMorse

stringToMorse :: String -> Maybe [Morse]

stringToMorse s =

sequence $ fmap charToMorse s

morseToChar :: Morse -> Maybe Char

morseToChar m =

M.lookup m morseToLetter

Notice we used Maybe in three of those: not every Char that
could potentially occur in a String has a Morse representation.

The Main event

Next we want to set up a Main module that will handle our
Morse code conversions. Note that it’s going to import a bunch
of things, some of which we covered in the last chapter and
some we have not. Since we will not be going into the specifics
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of how this code works, we won’t discuss those imports here.
It is, however, important to note that one of our imports is our
Morse.hs module from above:

-- src/Main.hs

module Main where

import Control.Monad (forever, when)

import Data.List (intercalate)

import Data.Traversable (traverse)

import Morse (stringToMorse, morseToChar)

import System.Environment (getArgs)

import System.Exit (exitFailure,

exitSuccess)

import System.IO (hGetLine, hIsEOF, stdin)

As we said, we’re not going to explain this part in detail.
We encourage you to do your best reading and interpreting
it, but it’s quite dense, and this chapter isn’t about this code
— it’s about the tests. We’re cargo-culting a bit here, which
we don’t like to do, but we’re doing it so that we can focus on
the testing. Type this all into your Main module — first the
function to convert to Morse:
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convertToMorse :: IO ()

convertToMorse = forever $ do

weAreDone <- hIsEOF stdin

when weAreDone exitSuccess

-- otherwise, proceed.

line <- hGetLine stdin

convertLine line

where

convertLine line = do

let morse = stringToMorse line

case morse of

(Just str)

-> putStrLn

(intercalate " " str)

Nothing

-> do

putStrLn $ "ERROR: " ++ line

exitFailure

Now add the function to convert from Morse:
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convertFromMorse :: IO ()

convertFromMorse = forever $ do

weAreDone <- hIsEOF stdin

when weAreDone exitSuccess

-- otherwise, proceed.

line <- hGetLine stdin

convertLine line

where

convertLine line = do

let decoded :: Maybe String

decoded =

traverse morseToChar

(words line)

case decoded of

(Just s) -> putStrLn s

Nothing -> do

putStrLn $ "ERROR: " ++ line

exitFailure

And now our obligatory main:
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main :: IO ()

main = do

mode <- getArgs

case mode of

[arg] ->

case arg of

"from" -> convertFromMorse

"to" -> convertToMorse

_ -> argError

_ -> argError

where argError = do

putStrLn "Please specify the\

\ first argument\

\ as being 'from' or\

\ 'to' morse,\

\ such as: morse to"

exitFailure

Make sure it’s all working

One way we can make sure everything is working for us from
the command line is by using echo. If this is familiar to you
and you feel comfortable with this, go ahead and try this:

$ echo "hi" | stack exec morse to
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.... ..

$ echo ".... .." | stack exec morse from

hi

If you’d like to find out where Stack put the executable, you
can use stack exec which morse on Mac and Linux. You can also
use stack install to ask Stack to build (if needed) and copy the
binaries from your project into a common directory. On Mac
and Linux that will be .local/bin in your home directory. The
location was chosen partly to respect XDG4 guidelines.

Otherwise, load this module into your GHCi REPL and
give it a try to ensure everything compiles and seems to be in
working order. It’ll be helpful to fix any type or syntax errors
now, before we start trying to run the tests.

Time to test!

Now we need to write our test suite. We have those in their
own directory and file. We will again call the module Main

but note the file name (the name per se isn’t important, but
it must agree with the test file you have named in your Cabal
configuration for this project):

4https://wiki.archlinux.org/index.php/Xdg_user_directories

https://wiki.archlinux.org/index.php/Xdg_user_directories
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-- tests/tests.hs

module Main where

import qualified Data.Map as M

import Morse

import Test.QuickCheck

We have many fewer imports for this, which should all
already be familiar to you.

Now we set up our generators for ensuring that the random
values QuickCheck uses to test our program are sensible for our
Morse code program:

allowedChars :: [Char]

allowedChars = M.keys letterToMorse

allowedMorse :: [Morse]

allowedMorse = M.elems letterToMorse

charGen :: Gen Char

charGen = elements allowedChars

morseGen :: Gen Morse

morseGen = elements allowedMorse
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We saw elements briefly above. It takes a list of some type
— in these cases, our lists of allowed characters and Morse
characters — and chooses a Gen value from the values in that
list. Because Char includes thousands of characters that have
no legitimate equivalent in Morse code, we need to write our
own custom generators.

Now we write up the property we want to check. We want
to check that when we convert something to Morse code and
then back again, it comes out as the same string we started out
with:

prop_thereAndBackAgain :: Property

prop_thereAndBackAgain =

forAll charGen

(\c -> ((charToMorse c)

>>= morseToChar) == Just c)

main :: IO ()

main = quickCheck prop_thereAndBackAgain

This is how your setup should look when you have all this
done:

$ tree

.

├── LICENSE
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├── Setup.hs

├── morse.cabal

├── src

│ ├── Main.hs

│ └── Morse.hs

├── stack.yaml

└── tests

└── tests.hs

Testing the Morse code

Now that our conversions seem to be working, let’s run our
tests to make sure. The property we’re testing is that we get the
same string after we convert it to Morse and back again. Let’s
load up our tests by opening a REPL from our main project
directory:

$ stack ghci morse:tests

{... noise noise noise ...}

Ok, modules loaded: Main.

Prelude>

Sweet. Stack loaded everything for us and even built our
dependencies if needs be. Let’s see what happens:
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Prelude> main

+++ OK, passed 100 tests.

The test generates 100 random Morse code conversions
(a bunch of random strings) and makes sure they are always
equal once you have converted to and then from Morse code.
This gives you a pretty strong assurance that your program is
correct and will perform as expected for any input value.

14.6 Arbitrary instances

One of the more important parts of QuickCheck is learning to
write instances of the Arbitrary typeclass for your datatypes.
It’s a somewhat unfortunate but still necessary convenience
for your code to integrate cleanly with QuickCheck code. It’s
initially a bit confusing for beginners because it compacts a
few different concepts and solutions to problems into a single
typeclass.

Babby’s First Arbitrary

First, we’ll begin with a maximally simple Arbitrary instance
for the Trivial datatype:
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module Main where

import Test.QuickCheck

data Trivial =

Trivial

deriving (Eq, Show)

trivialGen :: Gen Trivial

trivialGen =

return Trivial

instance Arbitrary Trivial where

arbitrary = trivialGen

The return is necessary to return Trivial in the Gen monad:

main :: IO ()

main = do

sample trivialGen

Let’s take a sample:

Prelude> sample trivialGen

Trivial

Trivial

Trivial
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Trivial

Trivial

Trivial

Trivial

Trivial

Trivial

Trivial

Trivial

Although it’s impossible to see the point with Trivial by it-
self, Gen values are generators of random values that QuickCheck
uses to get test values from.

Identity Crisis

This one is a little different. It will produce random values
even if the Identity structure itself doesn’t and cannot vary.

data Identity a =

Identity a

deriving (Eq, Show)

identityGen :: Arbitrary a =>

Gen (Identity a)

identityGen = do

a <- arbitrary

return (Identity a)
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We’re using the Gen monad to pluck a single value of type
𝑎 out of the air, embed it in Identity, then return as part of
the Gen monad. We know this is weird, but if you do it ten or
twenty times you might start to like it.

We’ll reuse the original identityGen we wrote. We can make
it the default generator for the Identity type by making it the
arbitrary value in the Arbitrary instance:

instance Arbitrary a =>

Arbitrary (Identity a) where

arbitrary = identityGen

identityGenInt :: Gen (Identity Int)

identityGenInt = identityGen

We’re making a generator suitable for sampling by making
the type argument of Identity unambiguous for testing with
the sample function. Your output in the terminal could look
something like:

Prelude> sample identityGenInt

Identity 0

Identity (-1)

Identity 2

Identity 4

Identity (-3)



CHAPTER 14. TESTING 867

Identity 5

Identity 3

Identity (-1)

Identity 12

Identity 16

Identity 0

You should be able to change the concrete type of Identity’s
type argument and generate different types of sample values.

Arbitrary Products

Arbitrary instances for product types get a teensy bit more
interesting, but they’re really an extension of what we did for
Identity:

data Pair a b =

Pair a b

deriving (Eq, Show)

pairGen :: (Arbitrary a,

Arbitrary b) =>

Gen (Pair a b)

pairGen = do

a <- arbitrary

b <- arbitrary

return (Pair a b)
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We will reuse our pairGen function as the arbitrary value in
the instance:

instance (Arbitrary a,

Arbitrary b) =>

Arbitrary (Pair a b) where

arbitrary = pairGen

pairGenIntString :: Gen (Pair Int String)

pairGenIntString = pairGen

And now we can generate some sample values:

Pair 0 ""

Pair (-2) ""

Pair (-3) "26"

Pair (-5) "B\NUL\143:\254\SO"

Pair (-6) "\184*\239\DC4"

Pair 5 "\238\213=J\NAK!"

Pair 6 "Pv$y"

Pair (-10) "G|J^"

Pair 16 "R"

Pair (-7) "("

Pair 19 "i\ETX]\182\ENQ"

Ah, the beauty of random String values.
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Greater than the sum of its parts

Writing Arbitrary instances for sum types is a bit more inter-
esting still. First, make sure the following is included in your
imports:

import Test.QuickCheck.Gen (oneof)

Sum types represent disjunction, so with a sum type like
Sum, we need to represent the exclusive possibilities in our Gen.
One way to do that is to pull out as many arbitrary values
as you require for the cases of your sum type. We have two
data constructors in this sum type, so we’ll want two arbitrary

values. Then we’ll repack them into Gen values, resulting in a
value of type [Gen a] that can be passed to oneof:
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data Sum a b =

First a

| Second b

deriving (Eq, Show)

-- equal odds for each

sumGenEqual :: (Arbitrary a,

Arbitrary b) =>

Gen (Sum a b)

sumGenEqual = do

a <- arbitrary

b <- arbitrary

oneof [return $ First a,

return $ Second b]

The oneof function will create a Gen a from a list of Gen a by
giving each value an equal probability. From there, you’re
delegating to the Arbitrary instances of the types 𝑎 and 𝑏.

sumGenCharInt :: Gen (Sum Char Int)

sumGenCharInt = sumGenEqual

We specify which Arbitrary instances to use for 𝑎 and 𝑏 and
do a test run:

Prelude> sample sumGenCharInt
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First 'P'

First '\227'

First '\238'

First '.'

Second (-3)

First '\132'

Second (-12)

Second (-12)

First '\186'

Second (-11)

First '\v'

Where sum types get even more interesting is that you can
choose a different weighting of probabilities than an equal dis-
tribution. Consider this snippet of the Maybe Arbitrary instance
from the QuickCheck library:

instance Arbitrary a =>

Arbitrary (Maybe a) where

arbitrary =

frequency [(1, return Nothing),

(3, liftM Just arbitrary)]

It’s making an arbitrary Just value three times more likely
than a Nothing value because the former is more likely to be
interesting and useful, but you still want to try shaking things
out with a Nothing from time to time.
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Accordingly, we can assign a 10 times higher probability to
our First data constructor in a different Gen for Sum:

sumGenFirstPls :: (Arbitrary a,

Arbitrary b) =>

Gen (Sum a b)

sumGenFirstPls = do

a <- arbitrary

b <- arbitrary

frequency [(10, return $ First a),

(1, return $ Second b)]

sumGenCharIntFirst :: Gen (Sum Char Int)

sumGenCharIntFirst = sumGenFirstPls

With that modified version, you’ll find Second values are
much less common:

First '\208'

First '\242'

First '\159'

First 'v'

First '\159'

First '\232'

First '3'

First 'l'
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Second (-16)

First 'x'

First 'Y'

One of the key insights here is that the Arbitrary instance
for a datatype doesn’t have to be the only way to generate or
provide random values of your datatype for QuickCheck tests.
You can offer alternative Gens for your type with interesting or
useful behavior as well.

CoArbitrary

CoArbitrary is a counterpart to Arbitrary that enables the gener-
ation of functions fitting a particular type. Rather than talking
about random values you can get via Gen, it lets you provide
functions with a value of type 𝑎 as an argument in order to
vary a Gen:

arbitrary :: Arbitrary a =>

Gen a

coarbitrary :: CoArbitrary a =>

a -> Gen b -> Gen b

-- [1] [ 2 ] [ 3 ]

Here [1] is used to return a modification or variant of [2]
which is the result [3] at the end.



CHAPTER 14. TESTING 874

It turns out, as long as your datatype has a Generic instance
derived, you can get these instances for free. The following
should work fine:

{-# LANGUAGE DeriveGeneric #-}

module CoArbitrary where

import GHC.Generics

import Test.QuickCheck

data Bool' =

True'

| False'

deriving (Generic)

instance CoArbitrary Bool'

This’ll then let you do things like the following:
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import Test.QuickCheck

-- plus the above

trueGen :: Gen Int

trueGen = coarbitrary True' arbitrary

falseGen :: Gen Int

falseGen = coarbitrary False' arbitrary

Essentially this lets you randomly generate a function. It
might be a little hard to see why you’d care for now, but if
you ever find yourself wanting to randomly generate anything
with the (->) type inside it somewhere, it becomes salient in a
hurry.

14.7 Chapter Exercises

Now it’s time to write some tests of your own. You could write
tests for most of the exercises you’ve done in the book, but
whether you’d want to use hspec or QuickCheck depends on what
you’re trying to test. We’ve tried to simplify things a bit by
telling you which to use for these exercises, but, as always, we
encourage you to experiment on your own.
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Validating numbers into words

Remember the “numbers into words” exercise in Recursion?
You’ll be writing tests to validate the functions you wrote.
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module WordNumberTest where

import Test.Hspec

import WordNumber

(digitToWord, digits, wordNumber)

main :: IO ()

main = hspec $ do

describe "digitToWord" $ do

it "returns zero for 0" $ do

digitToWord 0 `shouldBe` "zero"

it "returns one for 1" $ do

print "???"

describe "digits" $ do

it "returns [1] for 1" $ do

digits 1 `shouldBe` [1]

it "returns [1, 0, 0] for 100" $ do

print "???"

describe "wordNumber" $ do

it "one-zero-zero given 100" $ do

wordNumber 100

`shouldBe` "one-zero-zero"

it "nine-zero-zero-one for 9001" $ do

print "???"
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Fill in the test cases that print question marks. If you think
of additional tests you could perform, add them.

Using QuickCheck

Test some simple arithmetic properties using QuickCheck.

1. -- for a function

half x = x / 2

-- this property should hold

halfIdentity = (*2) . half

2. import Data.List (sort)

-- for any list you apply sort to

-- this property should hold

listOrdered :: (Ord a) => [a] -> Bool

listOrdered xs =

snd $ foldr go (Nothing, True) xs

where go _ status@(_, False) = status

go y (Nothing, t) = (Just y, t)

go y (Just x, t) = (Just y, x >= y)

3. Now we’ll test the associative and commutative properties
of addition:
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plusAssociative x y z =

x + (y + z) == (x + y) + z

plusCommutative x y =

x + y == y + x

Keep in mind these properties won’t hold for types based
on IEEE-754 floating point numbers, such as Float or
Double.

4. Now do the same for multiplication.

5. We mentioned in one of the first chapters that there are
some laws involving the relationship of quot and rem and
div and mod. Write QuickCheck tests to prove them.

-- quot rem

(quot x y)*y + (rem x y) == x

(div x y)*y + (mod x y) == x

6. Is (^) associative? Is it commutative? Use QuickCheck to see
if the computer can contradict such an assertion.

7. Test that reversing a list twice is the same as the identity
of the list:

reverse . reverse == id

8. Write a property for the definition of ($).
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f $ a = f a

f . g = \x -> f (g x)

9. See if these two functions are equal:

foldr (:) == (++)

foldr (++) [] == concat

10. Hm. Is that so?

f n xs = length (take n xs) == n

11. Finally, this is a fun one. You may remember we had you
compose read and show one time to complete a “round
trip.” Well, now you can test that it works:

f x = (read (show x)) == x

Failure

Find out why this property fails.
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-- for a function

square x = x * x

-- why does this property not hold?

-- Examine the type of sqrt.

squareIdentity = square . sqrt

Hint: Read about floating point arithmetic and precision if
you’re unfamiliar with it.

Idempotence

Idempotence refers to a property of some functions in which
the result value does not change beyond the initial application.
If you apply the function once, it returns a result, and applying
the same function to that value won’t ever change it. You might
think of a list that you sort: once you sort it, the sorted list will
remain the same after applying the same sorting function to
it. It’s already sorted, so new applications of the sort function
won’t change it.

Use QuickCheck and the following helper functions to demon-
strate idempotence for the following:

twice f = f . f

fourTimes = twice . twice
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1. f x =

(capitalizeWord x

== twice capitalizeWord x)

&&

(capitalizeWord x

== fourTimes capitalizeWord x)

2. f' x =

(sort x

== twice sort x)

&&

(sort x

== fourTimes sort x)

Make a Gen random generator for the datatype

We demonstrated in the chapter how to make Gen generators
for different datatypes. We are so certain you enjoyed that, we
are going to ask you to do it for some new datatypes:

1. Equal probabilities for each.

data Fool =

Fulse

| Frue

deriving (Eq, Show)
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2. 2/3s chance of Fulse, 1/3 chance of Frue.

data Fool =

Fulse

| Frue

deriving (Eq, Show)

Hangman testing

Next, you should go back to the hangman project from the
previous chapter and write tests. The kinds of tests you can
write at this point will be limited due to the interactive nature
of the game. However, you can test the functions. Focus your
attention on testing the following:

fillInCharacter :: Puzzle -> Char -> Puzzle

fillInCharacter (Puzzle word

filledInSoFar s) c =

Puzzle word newFilledInSoFar (c : s)

where zipper guessed wordChar guessChar =

if wordChar == guessed

then Just wordChar

else guessChar

newFilledInSoFar =

let zd = (zipper c)

in zipWith zd word filledInSoFar
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and:

handleGuess :: Puzzle -> Char -> IO Puzzle

handleGuess puzzle guess = do

putStrLn $ "Your guess was: " ++ [guess]

case (charInWord puzzle guess

, alreadyGuessed puzzle guess) of

(_, True) -> do

putStrLn "You already guessed that\

\ character, pick\

\ something else!"

return puzzle

(True, _) -> do

putStrLn "This character was in the\

\ word, filling in the\

\ word accordingly"

return (fillInCharacter puzzle guess)

(False, _) -> do

putStrLn "This character wasn't in\

\ the word, try again."

return (fillInCharacter puzzle guess)

Refresh your memory on what those are supposed to do
and then test to make sure they do.
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Validating ciphers

As a final exercise, create QuickCheck properties that verify your
Caesar and Vigenère ciphers return the same data after encod-
ing and decoding a string.

14.8 Definitions

1. Unit testing is a method in which you test the smallest
parts of an application possible. These units are individu-
ally and independently scrutinized for desired behaviors.
Unit testing is better automated but it can also be done
manually via a human entering inputs and verifying out-
puts.

2. Property testing is a testing method where a subset of a
large input space is validated, usually against a property
or law some code should abide by. In Haskell, this is
usually done with QuickCheck which facilitates the random
generation of input and definition of properties to be veri-
fied. Common properties that are checked using property
testing are things like identity, associativity, isomorphism,
and idempotence.

3. When we say an operation or function is idempotent or
satisfies idempotence, we mean that applying it multiple
times doesn’t produce a different result from the first time.



CHAPTER 14. TESTING 886

One example is multiplying by one or zero. You always
get the same result as the first time you multipled by one
or zero.

14.9 Follow-up resources

1. Pedro Vasconcelos; An introduction to QuickCheck
testing;
https://www.fpcomplete.com/user/pbv/

an-introduction-to-quickcheck-testing

2. Koen Claessen and John Hughes; (2000)
QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs

3. Pedro Vasconcelos; Verifying a Simple Compiler Using
Property-based Random Testing;
http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR13/

dcc-2013-06.pdf

https://www.fpcomplete.com/user/pbv/an-introduction-to-quickcheck-testing
https://www.fpcomplete.com/user/pbv/an-introduction-to-quickcheck-testing
http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR13/dcc-2013-06.pdf
http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR13/dcc-2013-06.pdf


Chapter 15

Monoid, Semigroup

Simplicity does not
precede complexity, but
follows it.

Alan Perlis
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15.1 Monoids and semigroups

One of the finer points of the Haskell community has been
its propensity for recognizing abstract patterns in code which
have well-defined, lawful representations in mathematics. A
word frequently used to describe these abstractions is algebra,
by which we mean one or more operations and the set they
operate over. Over the next few chapters, we’re going to be
looking at some of these. Some you may have heard of, such
as functor and monad. Some, such as monoid and the humble
semigroup, may seem new to you. One of the things that
Haskell is really good at is these algebras, and it’s important to
master them before we can do some of the exciting stuff that’s
coming.

This chapter will include:

• Algebras!

• Laws!

• Monoids!

• Semigroups!
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15.2 What we talk about when we talk
about algebras

For some of us, talking about “an algebra” may sound some-
what foreign. So let’s take a second and talk about what we’re
talking about when we use this phrase, at least when we’re
talking about Haskell.

Algebra generally refers to one of the most important fields
of mathematics. In this usage, it means the study of mathe-
matical symbols and the rules governing their manipulation.
It is differentiated from arithmetic by its use of abstractions
such as variables. By the use of variables, we’re saying we don’t
care much what value will be put into that slot. We care about
the rules of how to manipulate this thing without reference to
its particular value.

And so, as we said above, an algebra refers to some opera-
tions and the set they operate over. Here again, we care less
about the particulars of the values or data we’re working with
and more about the general rules of their use.

In Haskell, these algebras can be implemented with type-
classes; the typeclasses define the set of operations. When we
talk about operations over a set, the set is the type the opera-
tions are for. The instance defines how each operation will
perform for a given type or set. One of those algebras we use
is monoid. If you’re a working programmer, you’ve probably
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had monoidal patterns in your code already, perhaps without
realizing it.

15.3 Monoid

A monoid is a binary associative operation with an identity.
This definition tells you a lot — if you’re accustomed to picking
apart mathematical definitions. Let us dissect this frog!

A monoid is a binary associative operation with an identity.

[1] [2] [3] [4] [5]

1. The thing we’re talking about — monoids. That’ll end up
being the name of our typeclass.

2. Binary, i.e., two. So, there will be two of something.

3. Associative — this is a property or law that must be satis-
fied. You’ve seen associativity with addition and multipli-
cation. We’ll explain it more in a moment.

4. Operation — so called because in mathematics, it’s usually
used as an infix operator. You can read this interchange-
ably as “function.” Note that given the mention of “binary”
earlier, we know that this is a function of two arguments.

5. Identity is one of those words in mathematics that pops
up a lot. In this context, we can take this to mean there’ll
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be some value which, when combined with any other
value, will always return that other value. This can be
seen most immediately with examples.

For lists, we have a binary operator, (++), that joins two
lists together. We can also use a function, mappend, from
the Monoid typeclass to do the same thing:

Prelude> mappend [1, 2, 3] [4, 5, 6]

[1,2,3,4,5,6]

For lists, the empty list, [], is the identity value:

mappend [1..5] [] = [1..5]

mappend [] [1..5] = [1..5]

We can rewrite this as a more general rule, using mempty

from the Monoid typeclass as a generic identity value (more
on this later):

mappend x mempty = x

mappend mempty x = x

In plain English, a monoid is a function that takes two argu-
ments and follows two laws: associativity and identity. Asso-
ciativity means the arguments can be regrouped (or reparen-
thesized, or reassociated) in different orders and give the same
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result, as in addition. Identity means there exists some value
such that when we pass it as input to our function, the opera-
tion is rendered moot and the other value is returned, such as
when we add zero or multiply by one. Monoid is the typeclass
that generalizes these laws across types.

15.4 How Monoid is defined in Haskell

Typeclasses give us a way to recognize, organize, and use com-
mon functionalities and patterns across types that differ in
some ways but also have things in common. So, we recognize
that, although there are many types of numbers, all of them
can be arguments in addition, and then we make an addition
function as part of the Num class that all numbers implement.

The Monoid typeclass recognizes and orders a different pat-
tern than Num but the goal is similar. The pattern of Monoid is
outlined above: types that have binary functions that let you
join things together in accordance with the laws of associa-
tivity, along with an identity value that will return the other
argument unmodified. This is the pattern of summation, mul-
tiplication, and list concatenation, among other things. The
typeclass abstracts and generalizes the pattern so that you write
code in terms of any type that can be monoidally combined.

The typeclass Monoid is defined:
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class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

mappend is how any two values that inhabit your type can be
joined together. mempty is the identity value for that mappend

operation. There are some laws that all Monoid instances must
abide, and we’ll get to those soon. Next, let’s look at some
examples of monoids in action!

15.5 Examples of using Monoid

The nice thing about monoids is that they are familiar; they’re
all over the place. The best way to understand them initially
is to look at examples of some common monoidal operations
and remember that this typeclass abstracts the pattern out,
giving you the ability to use the operations over a larger range
of types.

List

One common type with an instance of Monoid is List. Check
out how monoidal operations work with lists:

Prelude> mappend [1, 2, 3] [4, 5, 6]
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[1,2,3,4,5,6]

Prelude> mconcat [[1..3], [4..6]]

[1,2,3,4,5,6]

Prelude> mappend "Trout" " goes well with garlic"

"Trout goes well with garlic"

This should look familiar, because we’ve certainly seen this
before:

Prelude> (++) [1, 2, 3] [4, 5, 6]

[1,2,3,4,5,6]

Prelude> (++) "Trout" " goes well with garlic"

"Trout goes well with garlic"

Prelude> foldr (++) [] [[1..3], [4..6]]

[1,2,3,4,5,6]

Prelude> foldr mappend mempty [[1..3], [4..6]]

[1,2,3,4,5,6]

Our old friend (++)! And if we look at the definition of
Monoid for lists, we can see how this all lines up:

instance Monoid [a] where

mempty = []

mappend = (++)

For other types, the instances would be different, but the
ideas behind them remain the same.
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15.6 Why Integer doesn’t have a
Monoid

The type Integer does not have a Monoid instance. None of the
numeric types do. Yet it’s clear that numbers have monoidal
operations, so what’s up with that, Haskell?

While in mathematics the monoid of numbers is summa-
tion, there’s not a clear reason why it can’t be multiplication.
Both operations are monoidal (binary, associative, having an
identity value), but each type should only have one unique
instance for a given typeclass, not two (one instance for a sum,
one for a product).

This won’t work:

Prelude> let x = 1 :: Integer

Prelude> let y = 3 :: Integer

Prelude> mappend x y

<interactive>:6:1: error:

• No instance for (Monoid Integer)

arising from a use of ‘mappend’

• In the expression: mappend x y

In an equation for ‘it’:

it = mappend x y
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It isn’t clear if those should be added or multiplied as a
mappend operation. It says there’s no Monoid for those Integers
for that reason. You get the idea.

To resolve the conflict, we have the Sum and Product newtypes
to wrap numeric values and signal which Monoid instance we
want. These newtypes are built into the Data.Monoid module.
While there are two possible instances of Monoid for numeric
values, we avoid using scoping tricks and abide by the rule that
typeclass instances are unique to the types they are for:

Prelude> mappend (Sum 1) (Sum 5)

Sum {getSum = 6}

Prelude> mappend (Product 5) (Product 5)

Product {getProduct = 25}

Prelude> mappend (Sum 4.5) (Sum 3.4)

Sum {getSum = 7.9}

Note that we could use it with values that aren’t integral.
We can use these Monoid newtypes for all the types that have
instances of Num.
Integers form a monoid under summation and multiplication. We

can similarly say that lists form a monoid under concatenation.
It’s worth pointing out here that numbers aren’t the only

sets that have more than one possible monoid. Lists have
more than one possible monoid, although for now we’re only
working with concatenation (we’ll look at the other list monoid
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in another chapter). Several other types do as well. We usually
enforce the unique instance rule by using newtype to separate
the different monoidal behaviors.

Why newtype?

Use of a newtype can be hard to justify or explain to people that
don’t yet have good intuitions for how Haskell code gets com-
piled and the representations of data used by your computer
in the course of executing your programs. With that in mind,
we’ll do our best and offer two explanations intended for two
different audiences. We will return to the topic of newtype in
more detail later in the book.

First, there’s not much semantic difference (except for cir-
cumstances involving bottom, explained later) between the fol-
lowing datatypes:

data Server = Server String

newtype Server' = Server' String

The main differences are that using newtype constrains the
datatype to having a single unary data constructor and newtype

guarantees no additional runtime overhead in “wrapping” the
original type. That is, the runtime representation of newtype
and what it wraps are always identical — no additional “boxing
up” of the data as is necessary for typical products and sums.
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Forveteranprogrammerswhounderstandpointers newtype

is like a single-member C union that avoids creating an extra
pointer, but still gives you a new type constructor and data
constructor so you don’t mix up the many many many things
that share a single representation.

In summary, why you might use newtype

1. To signal intent: using newtype makes it clear that you only
intend for it to be a wrapper for the underlying type. The
newtype cannot eventually grow into a more complicated
sum or product type, while a normal datatype can.

2. To improve type safety: avoid mixing up many values of
the same representation, such as Text or Integer.

3. To add different typeclass instances to a type that is other-
wise unchanged representationally, such as with Sum and
Product.

More on Sum and Product

There’s more than one valid Monoid instance one can write for
numbers, so we use newtype wrappers to distinguish which we
want. If you import Data.Monoid you’ll see the Sum and Product

newtypes:
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Prelude> import Data.Monoid

Prelude> :info Sum

newtype Sum a = Sum {getSum :: a}

...some instances elided...

instance Num a => Monoid (Sum a)

Prelude> :info Product

newtype Product a =

Product {getProduct :: a}

...some instances elided...

instance Num a => Monoid (Product a)

The instances say that we can use Sum or Product values as a
Monoid as long as they contain numeric values. We can prove
this is the case for ourselves. We’re going to be using the infix
operator for mappend in these examples. It has the same type
and does the same thing but saves some characters and will
make these examples a bit cleaner:

Prelude Data.Monoid> :t (<>)

(<>) :: Monoid m => m -> m -> m

Prelude> Sum "Frank" <> Sum "Herbert"

No instance for (Num [Char]) ...
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The example didn’t work because the 𝑎 in Sum a was String

which is not an instance of Num.
Sum and Product do what you’d expect with a bit of syntactic

surprise:

Prelude Data.Monoid> (Sum 8) <> (Sum 9)

Sum {getSum = 17}

Prelude Data.Monoid> mappend mempty Sum 9

Sum {getSum = 9}

But mappend joins two things, so you can’t do this:

Prelude> mappend (Sum 8) (Sum 9) (Sum 10)

You’ll get a big error message including this line:

Possible cause: ‘Sum’ is applied to too many arguments

In the first argument of ‘mappend’, namely ‘(Sum 8)’

So, that’s easy enough to fix by nesting:

Prelude> mappend (Sum 1) (mappend (Sum 2) (Sum 3))

Sum {getSum = 6}

Or somewhat less tedious by infixing the mappend function:

Prelude> Sum 1 <> Sum 1 <> Sum 1

Sum {getSum = 3}
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Or you could also put your Sums in a list and use mconcat:

Prelude> mconcat [Sum 8, Sum 9, Sum 10]

Sum {getSum = 27}

Due to the special syntax of Sum and Product, we also have
built-in record field accessors we can use to unwrap the value:

Prelude> getSum $ mappend (Sum 1) (Sum 1)

2

Prelude> getProduct $ mappend (Product 5) (Product 5)

25

Prelude> getSum $ mconcat [(Sum 5), (Sum 6), (Sum 7)]

18

Product is similar to Sum but for multiplication.

15.7 Why bother?

Because monoids are common and they’re a nice abstraction
to work with when you have multiple monoidal things run-
ning around in a project. Knowing what a monoid is can help
you to recognize when you’ve encountered the pattern. Fur-
ther, having principled laws for it means you know you can
combine monoidal operations safely. When we say something
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is a monoid or can be described as monoidal, we mean you can
define at least one law-abiding Monoid instance for it.

A common use of monoids is to structure and describe com-
mon modes of processing data. Sometimes this is to describe
an API for incrementally processing a large dataset, sometimes
to describe guarantees needed to roll up aggregations (think
summation) in a parallel, concurrent, or distributed processing
framework.

One example of where things like the identity can be useful
is if you want to write a generic library for doing work in
parallel. You could choose to describe your work as being like
a tree, with each unit of work being a leaf. From there you
can partition the tree into as many chunks as are necessary to
saturate the number of processor cores or entire computers
you want to devote to the work. The problem is, if we have a
pair-wise operation and we need to combine an odd number
of leaves, how do we even out the count?

One straightforward way could be to simply provide mempty

(the identity value) to the odd leaves out so we get the same
result and pass it up to the next layer of aggregation!

A variant of monoid that provides more guarantees is the
Abelian or commutative monoid. Commutativity can be par-
ticularly helpful when doing concurrent or distributed pro-
cessing of data because it means the intermediate results being
computed in a different order won’t change the eventual an-
swer.
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Monoids are even strongly associated with the concept of
folding or catamorphism — something we do all the time in
Haskell. You’ll see this more explicitly in the Foldable chapter,
but here’s a taste:

Prelude> foldr mappend mempty ([2, 4, 6] :: [Product Int])

Product {getProduct = 48}

Prelude> foldr mappend mempty ([2, 4, 6] :: [Sum Int])

Sum {getSum = 12}

Prelude> foldr mappend mempty ["blah", "woot"]

"blahwoot"

You’ll see monoidal structure come up when we explain
Applicative and Monad as well.

15.8 Laws

We’ll get to those laws in a moment. First, heed our little cri de
coeur about why you should care about mathematical laws:

Laws circumscribe what constitutes a valid instance or con-
crete instance of the algebra or set of operations we’re working
with. We care about the laws a Monoid instance must adhere to
because we want our programs to be correct wherever possible.
Proofs are programs, and programs are proofs. We care about
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programs that compose well, that are easy to understand, and
which have predictable behavior. To that end, we should steal
prolifically from mathematics.

Algebras are defined by their laws and are useful principally
for their laws. Laws make up what algebras are.

Among other things, laws provide us guarantees that let
us build on solid foundations. Those guarantees give us pre-
dictable composition (or combination) of programs. Without
the ability to safely combine programs, everything must be
written from scratch, nothing could be reused. The physical
world has enjoyed the useful properties of stone stacked up
on top of stone since the Great Pyramid of Giza was built in
the pharaoh Sneferu’s reign in 2,600 BC. Similarly, if we want
to be able to stack up functions scalably, they need to obey
laws. Stones don’t evaporate into thin air or explode violently.
It’d be nice if our programs were similarly trustworthy.

There are more possible laws we can require for an algebra
than associativity or an identity, but these are simple examples
we are starting with for now, partly because Monoid is a good
place to start with algebras-as-typeclasses. We’ll see examples
of more later.

Monoid instances must abide by the following laws:
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-- left identity

mappend mempty x = x

-- right identity

mappend x mempty = x

-- associativity

mappend x (mappend y z) =

mappend (mappend x y) z

mconcat = foldr mappend mempty

Here is how the identity law looks in practice:

Prelude> import Data.Monoid

-- left identity

Prelude> mappend mempty (Sum 1)

Sum {getSum = 1}

-- right identity

Prelude> mappend (Sum 1) mempty

Sum {getSum = 1}

We can demonstrate associativity more easily if we first
introduce the infix operator for mappend, <>. Note the parenthe-
sization on the two examples:
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Prelude> :t (<>)

(<>) :: Monoid m => m -> m -> m

-- associativity

Prelude> (Sum 1) <> (Sum 2 <> Sum 3)

Sum {getSum = 6}

Prelude> (Sum 1 <> Sum 2) <> (Sum 3)

Sum {getSum = 6}

And mconcat should have the same result as foldr mappend

mempty:

Prelude> mconcat [Sum 1, Sum 2, Sum 3]

Sum {getSum = 6}

Prelude> foldr mappend mempty [Sum 1, Sum 2, Sum 3]

Sum {getSum = 6}

Now let’s see all of that again, but using the Monoid of lists:

-- mempty is []

-- mappend is (++)

-- left identity

Prelude> mappend mempty [1, 2, 3]

[1,2,3]
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-- right identity

Prelude> mappend [1, 2, 3] mempty

[1,2,3]

-- associativity

Prelude> [1] <> ([2] <> [3])

[1,2,3]

Prelude> ([1] <> [2]) <> [3]

[1,2,3]

-- mconcat ~ foldr mappend mempty

Prelude> mconcat [[1], [2], [3]]

[1,2,3]

Prelude> foldr mappend mempty [[1], [2], [3]]

[1,2,3]

Prelude> concat [[1], [2], [3]]

[1,2,3]

The important part here is that you have these guarantees
even when you don’t knowwhat Monoid you’ll be working with.
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15.9 Different instance, same
representation

Monoid is somewhat different from other typeclasses in Haskell,
in that many datatypes have more than one valid monoid. We
saw that for numbers, both addition and multiplication are sen-
sible monoids with different behaviors. When we have more
than one potential implementation for Monoid for a datatype,
it’s most convenient to use newtypes to tell them apart, as we
did with Sum and Product.

Addition is a classic appending operation, as is list concate-
nation. Referring to multiplication as an appending operation
may also seem intuitive enough, as it still follows the basic
pattern of combining two values of one type into one value.

But for other datatypes the meaning of append is less clear.
In these cases, the monoidal operation is less about combining
the values and more about finding a summary value for the set.
We mentioned above that monoids are important to folding
and catamorphisms more generally. Mappending is perhaps
best thought of not as away of combining values in theway that
addition or list concatenation does, but as a way to condense
any set of values to a summary value. We’ll start by looking at
the Monoid instances for Bool to see what we mean.

Boolean values have two possible monoids — a monoid of
conjunction and one of disjunction. As we do with numbers,
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we use newtypes to distinguish the two instances. All and Any

are the newtypes for Bool’s monoids:

Prelude> import Data.Monoid

Prelude> All True <> All True

All {getAll = True}

Prelude> All True <> All False

All {getAll = False}

Prelude> Any True <> Any False

Any {getAny = True}

Prelude> Any False <> Any False

Any {getAny = False}

All represents boolean conjunction: it returns a True if and
only if all values it is “appending” are True. Any is the monoid
of boolean disjunction: it returns a True if any value is True.
There is some sense in which it might feel strange to think of
this as a combining or mappending operation, unless we recall
that mappending is less about combining and more about
condensing or reducing.

The Maybe type has more than two possible Monoids. We’ll
look at each in turn, but the two that have an obvious relation-
ship are First and Last. They are like boolean disjunction, but
with explicit preference for the leftmost or rightmost success
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in a series of Maybe values. We have to choose because with
Bool, all you know is True or False — it doesn’t matter where
your True or False values occurred. With Maybe, however, you
need to make a decision as to which Just value you’ll return
if there are multiple successes. First and Last encode these
different possibilities.

First returns the first or leftmost non-Nothing value:

Prelude> First (Just 1) `mappend` First (Just 2)

First {getFirst = Just 1}

Last returns the last or rightmost non-Nothing value:

Prelude> Last (Just 1) `mappend` Last (Just 2)

Last {getLast = Just 2}

Both will succeed in returning something in spite of Nothing
values as long as there’s at least one Just:

Prelude> Last Nothing `mappend` Last (Just 2)

Last {getLast = Just 2}

Prelude> First Nothing `mappend` First (Just 2)

First {getFirst = Just 2}

Neither can, for obvious reasons, return anything if all val-
ues are Nothing:
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Prelude> First Nothing `mappend` First Nothing

First {getFirst = Nothing}

Prelude> Last Nothing `mappend` Last Nothing

Last {getLast = Nothing}

To maintain the unique pairing of type and typeclass in-
stance, newtypes are used for all of those, the same as we saw
with Sum and Product.

Let’s look next at the third variety of Maybe Monoid.

15.10 Reusing algebras by asking for
algebras

We alluded to there being more possible Monoids for Maybe than
just First and Last. Let’s write that other Monoid instance. We
will now be concerned not with choosing one value out of a
set of values but of combining the 𝑎 values contained within
the Maybe a type.

First, try to notice a pattern:
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instance Monoid b => Monoid (a -> b)

instance (Monoid a, Monoid b)

=> Monoid (a, b)

instance (Monoid a, Monoid b, Monoid c)

=> Monoid (a, b, c)

What these Monoids have in common is that they are giv-
ing you a new Monoid for a larger type by reusing the Monoid

instances of types that represent components of the larger
type.

This obligation to ask for a Monoid for an encapsulated type
(such as the 𝑎 in Maybe a) exists even when not all possible val-
ues of the larger type contain the value of the type argument.
For example, Nothing does not contain the 𝑎 we’re trying to
get a Monoid for, but Just a does, so not all possible Maybe values
contain the 𝑎 type argument. For a Maybe Monoid that will have
a mappend operation for the 𝑎 values, we need a Monoid for what-
ever type 𝑎 is. Monoids like First and Last wrap the Maybe a but
do not require a Monoid for the 𝑎 value itself because they don’t
mappend the 𝑎 values or provide a mempty of them.

If you do have a datatype that has a type argument that
does not appear anywhere in the terms (a phantom type), the
typechecker does not demand that you have a Monoid instance
for that argument. For example:
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data Booly a =

False'

| True'

deriving (Eq, Show)

-- conjunction

instance Monoid (Booly a) where

mappend False' _ = False'

mappend _ False' = False'

mappend True' True' = True'

We didn’t need a Monoid constraint for 𝑎 because we’re never
mappending 𝑎 values (we can’t; none exist) and we’re never
asking for a mempty of type 𝑎. This is the fundamental reason
we don’t need the constraint, but it can happen that we don’t
do this even when the type does occur in the datatype.

Exercise: Optional Monoid

Write the Monoid instance for our Maybe type renamed to Optional.
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data Optional a =

Nada

| Only a

deriving (Eq, Show)

instance Monoid a

=> Monoid (Optional a) where

mempty = undefined

mappend = undefined

Expected output:

Prelude> Only (Sum 1) `mappend` Only (Sum 1)

Only (Sum {getSum = 2})

Prelude> Only (Product 4) `mappend` Only (Product 2)

Only (Product {getProduct = 8})

Prelude> Only (Sum 1) `mappend` Nada

Only (Sum {getSum = 1})

Prelude> Only [1] `mappend` Nada

Only [1]

Prelude> Nada `mappend` Only (Sum 1)

Only (Sum {getSum = 1})
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Associativity

This will be mostly review, but we want to be specific about
associativity. Associativity says that you can associate, or group,
the arguments of your operation differently and the result will
be the same.

Let’s review examples of some operations that can be reas-
sociated:

Prelude> (1 + 9001) + 9001

18003

Prelude> 1 + (9001 + 9001)

18003

Prelude> (7 * 8) * 3

168

Prelude> 7 * (8 * 3)

168

And some that cannot have the parentheses reassociated
without changing the result:

Prelude> (1 - 10) - 100

-109

Prelude> 1 - (10 - 100)

91

This is not as strong a property as an operation that com-
mutes or is commutative. Commutative means you can reorder
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the arguments and still get the same result. Addition and mul-
tiplication are commutative, but (++) for the list type is only
associative.

Let’s demonstrate this by writing a mildly evil version of
addition that flips the order of its arguments:

Prelude> let evilPlus = flip (+)

Prelude> 76 + 67

143

Prelude> 76 `evilPlus` 67

143

We have some evidence, but not proof, that (+) commutes.
However, we can’t do the same with (++):

Prelude> let evilPlusPlus = flip (++)

Prelude> let oneList = [1..3]

Prelude> let otherList = [4..6]

Prelude> oneList ++ otherList

[1,2,3,4,5,6]

Prelude> oneList `evilPlusPlus` otherList

[4,5,6,1,2,3]

In this case, this serves as a proof by counterexample that
(++) does not commute. It doesn’t matter if it commutes for all
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other inputs; that it doesn’t commute for one of them means
the law of commutativity does not hold.

Commutativity is a useful property and can be helpful in
circumstances when you might need to be able to reorder
evaluation of your data for efficiency purposes without need-
ing to worry about the result changing. Distributed systems
use commutative monoids in designing and thinking about
constraints, which are monoids that guarantee their operation
commutes.

But, for our purposes, Monoid abides by the law of associa-
tivity but not the law of commutativity, even though some
monoidal operations (addition and multiplication) are com-
mutative.

Identity

An identity is a value with a special relationship with an oper-
ation: it turns the operation into the identity function. There
are no identities without operations. The concept is defined in
terms of its relationship with a given operation. If you’ve done
grade school arithmetic, you’ve already seen some identities:

Prelude> 1 + 0

1

Prelude> 521 + 0

521

Prelude> 1 * 1
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1

Prelude> 521 * 1

521

Zero is the identity value for addition, while 1 is the identity
value for multiplication. As we said, it doesn’t make sense to
talk about zero and one as identity values outside the context
of those operations. That is, zero is definitely not the identity
value for other operations. We can check this property with a
simple equality test as well:

Prelude> let myList = [1..424242]

-- 0 serves as identity for addition

Prelude> map (+0) myList == myList

True

-- but not for multiplication

Prelude> map (*0) myList == myList

False

-- 1 serves as identity for multiplication

Prelude> map (*1) myList == myList

True

-- but not for addition

Prelude> map (+1) myList == myList

False
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This is the other law for Monoid: the binary operation must
be associative and it must have a sensible identity value.

The problem of orphan instances

We’ve said both in this chapter and in the earlier chapter de-
voted to Typeclasses that typeclasses have unique pairings of
the class and the instance for a particular type.

We do sometimes end up with multiple instances for a
single type when orphan instances are written. But writing
orphan instances should be avoided at all costs. If you get an
orphan instance warning from GHC, fix it.

An orphan instance is when an instance is defined for a
datatype and typeclass, but not in the same module as either
the declaration of the typeclass or the datatype. If you don’t
own the typeclass or the datatype, newtype it!

If you want an orphan instance so that you can have multi-
ple instances for the same type, you still want to use newtype.
We saw this earlier with Sum and Product which let us have two
different Monoid instances for numbers without resorting to
orphans or messing up typeclass instance uniqueness.

Let’s see an example of an orphan instance and how to fix it.
First, make a project directory and change into that directory:

$ mkdir orphan-instance && cd orphan-instance
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Then we’re going to make a couple of files, one module in
each:

module Listy where

newtype Listy a =

Listy [a]

deriving (Eq, Show)

module ListyInstances where

import Data.Monoid

import Listy

instance Monoid (Listy a) where

mempty = Listy []

mappend (Listy l) (Listy l') =

Listy $ mappend l l'

So our directory will look like:

$ tree

.

├── Listy.hs

└── ListyInstances.hs
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Then to build ListyInstances such that it can see Listy, we
must use the -I flag to include the current directory and make
modules within it discoverable. The . after the I is how we
say “this directory” in Unix-alikes. If you succeed, you should
see something like the following:

$ ghc -I. --make ListyInstances.hs

[2 of 2] Compiling ListyInstances

Note that the only output will be an object file, the result of
compiling a module that can be reused as a library by Haskell
code, because we didn’t define a main suitable for producing an
executable. We’re only using this approach to build this so that
we can avoid the hassle of initializing (via stack new or similar)
a project. For anythingmore complicated or long-lived than
this, use a dependency and build management tool like Cabal
(if you’re using Stack, you’re also using Cabal).

Now to provide one example of why orphan instances are
problematic. If we copyour Monoid instance from ListyInstances

into Listy, then rebuild ListyInstances, we’ll get the following
error.

$ ghc -I. --make ListyInstances.hs

[1 of 2] Compiling Listy

[2 of 2] Compiling ListyInstances

Listy.hs:7:10:
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Duplicate instance declarations:

instance Monoid (Listy a)

-- Defined at Listy.hs:7:10

instance Monoid (Listy a)

-- Defined at ListyInstances.hs:5:10

These conflicting instance declarations could happen to
anybody who uses the previous version of our code. And
that’s a problem.

Orphan instances are still a problem even if duplicate in-
stances aren’t both imported into a module because it means
your typeclass methods will start behaving differently depend-
ing on what modules are imported, which breaks the funda-
mental assumptions and niceties of typeclasses.

There are a few solutions for addressing orphan instances:

1. You defined the type but not the typeclass? Put the in-
stance in the same module as the type so that the type
cannot be imported without its instances.

2. You defined the typeclass but not the type? Put the in-
stance in the same module as the typeclass definition
so that the typeclass cannot be imported without its in-
stances.

3. Neither the type nor the typeclass are yours? Define your
own newtype wrapping the original type and now you’ve
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got a type that “belongs” to you for which you can rightly
define typeclass instances. There are means of making
this less annoying which we’ll discuss later.

These restrictions must be maintained in order for us to
reap the full benefit of typeclasses along with the reasoning
properties that are associated with them. A type must have
a unique (singular) implementation of a typeclass in scope,
and avoiding orphan instances is how we prevent conflict-
ing instances. Be aware, however, that avoidance of orphan
instances is more strictly adhered to among library authors
rather than application developers, although it’s no less im-
portant in applications.

15.11 Madness

You may have seen mad libs before. The idea is to take a tem-
plate of phrases, fill them in with blindly selected categories
of words, and see if saying the final version is amusing.

Using a lightly edited example from the Wikipedia article
on Mad Libs:

"___________! he said ______ as he

exclamation adverb

jumped into his car ____ and drove

noun
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off with his _________ wife."

adjective

We can make this into a function, like the following:

import Data.Monoid

type Verb = String

type Adjective = String

type Adverb = String

type Noun = String

type Exclamation = String

madlibbin' :: Exclamation

-> Adverb

-> Noun

-> Adjective

-> String

madlibbin' e adv noun adj =

e <> "! he said " <>

adv <> " as he jumped into his car " <>

noun <> " and drove off with his " <>

adj <> " wife."

Now you’re going to refactor this code a bit! Rewrite it using
mconcat.
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madlibbinBetter' :: Exclamation

-> Adverb

-> Noun

-> Adjective

-> String

madlibbinBetter' e adv noun adj = undefined

15.12 Better living through QuickCheck

Proving laws can be tedious, especially if the code we’re check-
ing is in the middle of changing frequently. Accordingly, hav-
ing a cheap way to get a sense of whether or not the laws are
likely to be obeyed by an instance is pretty useful. QuickCheck
happens to be an excellent way to accomplish this.

Validating associativity with QuickCheck

You can check the associativity of some simple arithemetic
expressions by asserting equality between two versions with
different parenthesization and checking them in the REPL:
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-- we're saying these are the same because

-- (+) and (*) are associative

1 + (2 + 3) == (1 + 2) + 3

4 * (5 * 6) == (4 * 5) * 6

This doesn’t tell us that associativity holds for any inputs to
(+) and (*), though, and that is what we want to test. Our old
friend from the lambda calculus — abstraction! — suffices for
this:

\ a b c -> a + (b + c) == (a + b) + c

\ a b c -> a * (b * c) == (a * b) * c

But our arguments aren’t the only thing we can abstract.
What if we want to talk about the abstract property of associa-
tivity for some given function 𝑓?

\ f a b c ->

f a (f b c) == f (f a b) c

-- or infix

\ (<>) a b c ->

a <> (b <> c) == (a <> b) <> c
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Surprise! You can bind infix names for function arguments.

asc :: Eq a

=> (a -> a -> a)

-> a -> a -> a

-> Bool

asc (<>) a b c =

a <> (b <> c) == (a <> b) <> c

Now how do we turn this function into something we can
property test with QuickCheck? The quickest and easiest way
would probably look something like the following:

import Data.Monoid

import Test.QuickCheck

monoidAssoc :: (Eq m, Monoid m)

=> m -> m -> m -> Bool

monoidAssoc a b c =

(a <> (b <> c)) == ((a <> b) <> c)

We have to declare the types for the function in order to
run the tests, so that QuickCheck knows what types of data to
generate.

We can now use this to check associativity of functions:
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-- for brevity

Prelude> type S = String

Prelude> type B = Bool

Prelude> quickCheck (monoidAssoc :: S -> S -> S -> B)

+++ OK, passed 100 tests.

The quickCheck function uses the Arbitrary typeclass to pro-
vide the randomly generated inputs for testing the function.
Although it’s common to do so, we may not want to rely on an
Arbitrary instance existing for the type of our inputs, for one
of a few reasons. It may be that we need a generator for a type
that doesn’t belong to us, so we’d rather not make an orphan
instance. Or it could be a type that already has an Arbitrary

instance, but we want to run tests with a different random
distribution of values, or to make sure we check certain special
edge cases in addition to the random values.

You want to be careful to assert types so that QuickCheck

knows which Arbitrary instance to get random values for test-
ing from. You can use verboseCheck to see what values were
tested. If you try running the check verbosely and without
asserting a type for the arguments:

Prelude> verboseCheck monoidAssoc

Passed:

()

()
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()

(repeated 100 times)

This is GHCi’s type-defaulting biting you, as we saw back in
the Testing chapter. GHCi has slightly more aggressive type-
defaulting which can be handy in an interactive session when
you want to fire off some code and have your REPL pick a
winner for the typeclasses it doesn’t know how to dispatch.
Compiled in a source file, GHC would’ve complained about
an ambiguous type.

Testing left and right identity

Following on from what we did with associativity, we can also
use QuickCheck to test left and right identity:

monoidLeftIdentity :: (Eq m, Monoid m)

=> m

-> Bool

monoidLeftIdentity a = (mempty <> a) == a

monoidRightIdentity :: (Eq m, Monoid m)

=> m

-> Bool

monoidRightIdentity a = (a <> mempty) == a
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Then running these properties against a Monoid:

Prelude> quickCheck (monoidLeftIdentity :: String -> Bool)

+++ OK, passed 100 tests.

Prelude> quickCheck (monoidRightIdentity :: String -> Bool)

+++ OK, passed 100 tests.

Testing QuickCheck’s patience

Let us see an example of QuickCheck catching us out for having
an invalid Monoid. Here we’re going to demonstrate why a Bool

Monoid can’t have False as the identity, always returning the
value False, and still be a valid Monoid:

-- associative, left identity, and right

-- identity properties have been elided.

-- Add them to your copy of this.

import Control.Monad

import Data.Monoid

import Test.QuickCheck

data Bull =

Fools

| Twoo

deriving (Eq, Show)
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instance Arbitrary Bull where

arbitrary =

frequency [ (1, return Fools)

, (1, return Twoo) ]

instance Monoid Bull where

mempty = Fools

mappend _ _ = Fools

type BullMappend =

Bull -> Bull -> Bull -> Bool

main :: IO ()

main = do

let ma = monoidAssoc

mli = monoidLeftIdentity

mlr = monoidRightIdentity

quickCheck (ma :: BullMappend)

quickCheck (mli :: Bull -> Bool)

quickCheck (mlr :: Bull -> Bool)

If you load this up in GHCi and run main, you’ll get the
following output:

Prelude> main

+++ OK, passed 100 tests.
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*** Failed! Falsifiable (after 1 test):

Twoo

*** Failed! Falsifiable (after 1 test):

Twoo

So this not-actually-a-Monoid for Bool turns out to pass asso-
ciativity, but fail on the right and left identity checks. To see
why, let’s line up the laws against what our mempty and mappend

are:

-- how the instance is defined

mempty = Fools

mappend _ _ = Fools

-- identity laws

mappend mempty x = x

mappend x mempty = x

-- Does it obey the laws?

-- because of how mappend is defined

mappend mempty x = Fools

mappend x mempty = Fools

-- Fools is not x, so it

-- fails the identity laws.
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It’s fine if your identity value is Fools, but if your mappend

always returns the identity, then it’s not an identity. It’s not
behaving like a zero as you’re not even checking if either argu-
ment is Fools before returning Fools. It’s a black hole that spits
out one value, which is senseless. For an example of what is
meant by zero, consider multiplication which has an identity
and a zero:

-- Thus why the mempty for Sum is 0

0 + x == x

x + 0 == x

-- Thus why the mempty for Product is 1

1 * x == x

x * 1 == x

-- Thus why the mempty for

-- Product is *not* 0

0 * x == 0

x * 0 == 0

Using QuickCheck can be a great way to cheaply and easily
sanity check the validity of your instances against their laws.
You’ll see more of this.
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Exercise: Maybe Another Monoid

Write a Monoid instance for a Maybe type which doesn’t require
a Monoid for the contents. Reuse the Monoid law QuickCheck prop-
erties and use them to validate the instance.

Don’t forget to write an Arbitrary instance for First'. We
won’t always stub that out explicitly for you. We suggest
learning how to use the frequency function from QuickCheck

for First'’s instance.

newtype First' a =

First' { getFirst' :: Optional a }

deriving (Eq, Show)

instance Monoid (First' a) where

mempty = undefined

mappend = undefined

firstMappend :: First' a

-> First' a

-> First' a

firstMappend = mappend
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type FirstMappend =

First' String

-> First' String

-> First' String

-> Bool

type FstId =

First' String -> Bool

main :: IO ()

main = do

quickCheck (monoidAssoc :: FirstMappend)

quickCheck (monoidLeftIdentity :: FstId)

quickCheck (monoidRightIdentity :: FstId)

Our expected output demonstrates a different Monoid for
Optional/Maybe which is getting the first success and holding
onto it, where any exist. This could be seen, with a bit of
hand-waving, as being a disjunctive (“or”) Monoid instance.

Prelude> First' (Only 1) `mappend` First' Nada

First' {getFirst' = Only 1}

Prelude> First' Nada `mappend` First' Nada

First' {getFirst' = Nada}

Prelude> First' Nada `mappend` First' (Only 2)

First' {getFirst' = Only 2}



CHAPTER 15. MONOID, SEMIGROUP 936

Prelude> First' (Only 1) `mappend` First' (Only 2)

First' {getFirst' = Only 1}

15.13 Semigroup

Mathematicians play with algebras like that creepy kid you
knew in grade school who would pull legs off of insects. Some-
times, they glue legs onto insects too, but in the case where
we’re going from Monoid to Semigroup, we’re pulling a leg off.
In this case, the leg is our identity. To get from a monoid
to a semigroup, we simply no longer furnish nor require an
identity. The core operation remains binary and associative.

With this, our definition of Semigroup is:

class Semigroup a where

(<>) :: a -> a -> a

And we’re left with one law:

(a <> b) <> c = a <> (b <> c)

Semigroup still provides a binary associative operation, one
that typically joins two things together (as in concatenation or
summation), but doesn’t have an identity value. In that sense,
it’s a weaker algebra.
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Not yet part of base As of GHC 8, the Semigroup typeclass
is part of base but not part of Prelude. You need to import
Data.Semigroup to use its operations. Keep in mind that it de-
fines its own more general version of (<>) which only requires
a Semigroup constraint rather than a Monoid constraint.

You can import the NonEmpty datatype we are about to discuss
into your REPL by importing Data.List.NonEmpty.

NonEmpty, a useful datatype

One useful datatype that can’t have a Monoid instance but does
have a Semigroup instance is the NonEmpty list type. It is a list
datatype that can never be an empty list:

data NonEmpty a = a :| [a]

deriving (Eq, Ord, Show)

-- some instances from the

-- real module elided

Here :| is an infix data constructor that takes two (type)
arguments. It’s a product of a and [a]. It guarantees that we
always have at least one value of type 𝑎, which [a] does not
guarantee as any list might be empty.

Note that although :| is not alphanumeric, as most of the
other data constructors you’re used to seeing are, it is a name
for an infix data constructor. Data constructors with only
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nonalphanumeric symbols and that begin with a colon are
infix by default; those with alphanumeric names are prefix by
default:

-- Prefix, works.

data P =

Prefix Int String

-- Infix, works.

data Q =

Int :!!: String

Since that data constructor is symbolic rather than alphanu-
meric, it can’t be used as a prefix:

data R =

:!!: Int String

Using it as a prefix will cause a syntax error:

parse error on input ‘:!!:’

Failed, modules loaded: none.

On the other hand, an alphanumeric data constructor can’t
be used as an infix:

data S =

Int Prefix String
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It will cause another error:

Not in scope: type constructor or class ‘Prefix’

A data constructor of that name is in scope;

did you mean DataKinds?

Failed, modules loaded: none.

Let’s return to the main point, which is NonEmpty. Because
NonEmpty is a product of two arguments, we could’ve also written
it as:

newtype NonEmpty a =

NonEmpty (a, [a])

deriving (Eq, Ord, Show)

We can’t write a Monoid for NonEmpty because it has no identity
value by design! There is no empty list to serve as an identity
for any operation over a NonEmpty list, yet there is still a binary
associative operation: two NonEmpty lists can still be concate-
nated. A type with a canonical binary associative operation but
no identity value is a natural fit for Semigroup. Here is a brief
example of using NonEmpty from the semigroups library with the
semigroup mappend (as of GHC 8.0.1, Semigroup and NonEmpty are
both in base but not in Prelude):

-- you may need to install `semigroups`

Prelude> import Data.List.NonEmpty as N
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Prelude N> import Data.Semigroup as S

Prelude N S> 1 :| [2, 3]

1 :| [2,3]

Prelude N S> :t 1 :| [2, 3]

1 :| [2, 3] :: Num a => NonEmpty a

Prelude N S> :t (<>)

(<>) :: Semigroup a => a -> a -> a

Prelude N S> let xs = 1 :| [2, 3]

Prelude N S> let ys = 4 :| [5, 6]

Prelude N S> xs <> ys

1 :| [2,3,4,5,6]

Prelude N S> N.head xs

1

Prelude N S> N.length (xs <> ys)

6

Beyond this, you use NonEmpty as you would a list, but what
you’ve gained is being explicit that having zero values is not
valid for your use-case. The datatype helps you enforce this
constraint by not letting you construct a NonEmpty unless you
have at least one value.
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15.14 Strength can be weakness

When Haskellers talk about the strength of an algebra, they
usually mean the number of operations it provides which in
turn expands what you can do with any given instance of that
algebra without needing to know specifically what type you
are working with.

The reason we cannot and do not want to make all of our
algebras as big as possible is that there are datatypes which
are very useful representationally, but which do not have the
ability to satisfy everything in a larger algebra that could work
fine if you removed an operation or law. This becomes a seri-
ous problem if NonEmpty is the right datatype for something in
the domain you’re representing. If you’re an experienced pro-
grammer, think carefully. How many times have you meant
for a list to never be empty? To guarantee this and make the
types more informative, we use types like NonEmpty.

The problem is that NonEmpty has no identity value for the
combining operation (mappend) in Monoid. So, we keep the as-
sociativity but drop the identity value and its laws of left and
right identity. This is what introduces the need for and idea
of Semigroup from a datatype.

The most obvious way to see that a monoid is stronger than
a semigroup is to observe that it has a strict superset of the op-
erations and laws that Semigroup provides. Anything which is a
monoid is by definition also a semigroup. It is to be hoped that
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Semigroup will be made a superclass of Monoid in an upcoming
version of GHC.

class Semigroup a => Monoid a where

...

Earlier we reasoned about the inverse relationship between
operations permitted over a type and the number of types that
can satisfy. We can see this relationship between the number
of operations and laws an algebra demands and the number
of datatypes that can provide a law abiding instance of that
algebra.

In the following example, 𝑎 can be anything in the universe,
but there are no operations over it — we can only return the
same value.

id :: a -> a

• Number of types: Infinite — universally quantified so
it can be any type the expression applying the function
wants.

• Number of operations: one, if you can call it an operation,
referencing the value you were passed.

With inc 𝑎 now has all the operations from Num, which lets
us do more. But that also means it’s now a finite set of types
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that can satisfy the Num constraint rather than being strictly any
type in the universe:

inc :: Num a => a -> a

• Number of types: anything that implements Num. Zero to
many.

• Number of operations: 7 methods in Num

In the next example we know it’s an Integer, which gives us
many more operations than just a Num instance:

somethingInt :: Int -> Int

• Number of types: one — Int.

• Number of operations: considerably more than 7. In ad-
dition to Num, Int has instances of Bounded, Enum, Eq, Integral,
Ord, Read, Real, and Show. On top of that, you can write ar-
bitrary functions that pattern match on concrete types
and return arbitrary values in that same type as the re-
sult. Polymorphism isn’t only useful for reusing code;
it’s also useful for expressing intent through parametricity
so that people reading the code know what we meant to
accomplish.

When Monoid is too strong or more than we need, we can use
Semigroup. If you’re wondering what’s weaker than Semigroup,
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the usual next step is removing the associativity requirement,
giving you a magma. It’s not likely to come up in day to day
Haskell, but you can sound cool at programming conferences
for knowing what’s weaker than a semigroup so pocket that
one for the pub.

15.15 Chapter exercises

Semigroup exercises

Given a datatype, implement the Semigroup instance. Add
Semigroup constraints to type variables where needed. Use the
Semigroup class from the semigroups library (or from base if you
are on GHC 8) or write your own. When we use (<>), we mean
the infix mappend from the Semigroup typeclass.

Note We’re not always going to derive every instance you
may want or need in the datatypes we provide for exercises.
We expect you to know what you need and to take care of it
yourself by this point.

1. Validate all of your instances with QuickCheck. Since
Semigroup’s only law is associativity, that’s the only prop-
erty you need to reuse. Keep in mind that you’ll poten-
tially need to import the modules for Monoid and Semigroup

and to avoid naming conflicts for the (<>) depending on
your version of GHC.



CHAPTER 15. MONOID, SEMIGROUP 945

data Trivial = Trivial deriving (Eq, Show)

instance Semigroup Trivial where

_ <> _ = undefined

instance Arbitrary Trivial where

arbitrary = return Trivial

semigroupAssoc :: (Eq m, Semigroup m)

=> m -> m -> m -> Bool

semigroupAssoc a b c =

(a <> (b <> c)) == ((a <> b) <> c)

type TrivAssoc =

Trivial -> Trivial -> Trivial -> Bool

main :: IO ()

main =

quickCheck (semigroupAssoc :: TrivAssoc)

2. newtype Identity a = Identity a

3. data Two a b = Two a b

Hint: Ask for another Semigroup instance.
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4. data Three a b c = Three a b c

5. data Four a b c d = Four a b c d

6. newtype BoolConj =

BoolConj Bool

What it should do:

Prelude> (BoolConj True) <> (BoolConj True)

BoolConj True

Prelude> (BoolConj True) <> (BoolConj False)

BoolConj False

7. newtype BoolDisj =

BoolDisj Bool

What it should do:

Prelude> (BoolDisj True) <> (BoolDisj True)

BoolDisj True

Prelude> (BoolDisj True) <> (BoolDisj False)

BoolDisj True

8. data Or a b =

Fst a

| Snd b
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The Semigroup for Or should have the following behavior.
We can think of this as having a “sticky” Snd value where
it’ll hold onto the first Snd value when and if one is passed
as an argument. This is similar to the First' Monoid you
wrote earlier.

Prelude> Fst 1 <> Snd 2

Snd 2

Prelude> Fst 1 <> Fst 2

Fst 2

Prelude> Snd 1 <> Fst 2

Snd 1

Prelude> Snd 1 <> Snd 2

Snd 1

9. newtype Combine a b =

Combine { unCombine :: (a -> b) }

What it should do:

Prelude> let f = Combine $ \n -> Sum (n + 1)

Prelude> let g = Combine $ \n -> Sum (n - 1)

Prelude> unCombine (f <> g) $ 0

Sum {getSum = 0}

Prelude> unCombine (f <> g) $ 1

Sum {getSum = 2}
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Prelude> unCombine (f <> f) $ 1

Sum {getSum = 4}

Prelude> unCombine (g <> f) $ 1

Sum {getSum = 2}

Hint: This function will eventually be applied to a single
value of type 𝑎. But you’ll have multiple functions that can
produce a value of type 𝑏. How do we combine multiple
values so we have a single 𝑏? This one will probably be
tricky! Remember that the type of the value inside of
Combine is that of a function. The type of functions should
already have an Arbitrary instance that you can reuse for
testing this instance.

10. newtype Comp a =

Comp { unComp :: (a -> a) }

Hint: We can do something that seems a little more spe-
cific and natural to functions now that the input and out-
put types are the same.
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11. -- Look familiar?

data Validation a b =

Failure a | Success b

deriving (Eq, Show)

instance Semigroup a =>

Semigroup (Validation a b) where

(<>) = undefined

Given this code:

main = do

let failure :: String

-> Validation String Int

failure = Failure

success :: Int

-> Validation String Int

success = Success

print $ success 1 <> failure "blah"

print $ failure "woot" <> failure "blah"

print $ success 1 <> success 2

print $ failure "woot" <> success 2

You should get this output:
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Prelude> main

Success 1

Failure "wootblah"

Success 1

Success 2

Monoid exercises

Given a datatype, implement the Monoid instance. Add Monoid

constraints to type variables where needed. For the datatypes
you’ve already implemented Semigroup instances for, you need
to figure out what the identity value is.

1. Again, validate all of your instances with QuickCheck.
Example scaffold is provided for the Trivial type.
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data Trivial = Trivial deriving (Eq, Show)

instance Semigroup Trivial where

(<>) = undefined

instance Monoid Trivial where

mempty = undefined

mappend = (<>)

type TrivAssoc =

Trivial -> Trivial -> Trivial -> Bool

main :: IO ()

main = do

let sa = semigroupAssoc

mli = monoidLeftIdentity

mlr = monoidRightIdentity

quickCheck (sa :: TrivAssoc)

quickCheck (mli :: Trivial -> Bool)

quickCheck (mlr :: Trivial -> Bool)

2. newtype Identity a =

Identity a deriving Show

3. data Two a b = Two a b deriving Show
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4. newtype BoolConj =

BoolConj Bool

What it should do:

Prelude> (BoolConj True) `mappend` mempty

BoolConj True

Prelude> mempty `mappend` (BoolConj False)

BoolConj False

5. newtype BoolDisj =

BoolDisj Bool

What it should do:

Prelude> (BoolDisj True) `mappend` mempty

BoolDisj True

Prelude> mempty `mappend` (BoolDisj False)

BoolDisj False

6. newtype Combine a b =

Combine { unCombine :: (a -> b) }

What it should do:

Prelude> let f = Combine $ \n -> Sum (n + 1)

Prelude> unCombine (mappend f mempty) $ 1

Sum {getSum = 2}
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7. Hint: We can do something that seems a little more spe-
cific and natural to functions now that the input and out-
put types are the same.

newtype Comp a =

Comp (a -> a)

8. This next exercise will involve doing something that will
feel a bit unnatural still and you may find it difficult. If you
get it and you haven’t done much FP or Haskell before,
get yourself a nice beverage. We’re going to toss you
the instance declaration so you don’t churn on a missing
Monoid constraint you didn’t know you needed.

newtype Mem s a =

Mem {

runMem :: s -> (a,s)

}

instance Monoid a => Monoid (Mem s a) where

mempty = undefined

mappend = undefined

Given the following code:
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f' = Mem $ \s -> ("hi", s + 1)

main = do

let rmzero = runMem mempty 0

rmleft = runMem (f' <> mempty) 0

rmright = runMem (mempty <> f') 0

print $ rmleft

print $ rmright

print $ (rmzero :: (String, Int))

print $ rmleft == runMem f' 0

print $ rmright == runMem f' 0

A correct Monoid for Mem should, given the above code, get
the following output:

Prelude> main

("hi",1)

("hi",1)

("",0)

True

True

Make certain your instance has output like the above, this
is sanity-checking the Monoid identity laws for you! It’s not
a proof and it’s not even as good as property testing, but
it’ll catch the most common mistakes people make.
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It’s not a trick and you don’t need a Monoid for 𝑠. Yes, such
a Monoid can and does exist. Hint: chain the 𝑠 values from
one function to the other. You’ll want to check the identity
laws as a common first attempt will break them.

15.16 Definitions

1. A monoid is a set that is closed under an associative binary
operation and has an identity element. Closed is the posh
mathematical way of saying its type is:

mappend :: m -> m -> m

Such that your arguments and output will always inhabit
the same type (set).

2. A semigroup is a set that is closed under an associative
binary operation — and nothing else.

3. Laws are rules about how an algebra or structure should
behave. These are needed in part to make abstraction over
the commonalities of different instantiations of the same
sort of algebra possible and practical. This is critical to
having abstractions which aren’t unpleasantly surprising.

4. An algebra is variously:
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a) School algebra, such as that taught in primary and
secondary school. This usually entails the balancing
of polynomial equations and learning how functions
and graphs work.

b) The study of number systems and operations within
them. This will typically entail a particular area such
as groups or rings. This is what mathematicians com-
monly mean by “algebra.” This is sometimes disam-
biguated by being referred to as abstract algebra.

c) A third and final way algebra is used is to refer to a
vector space over a field with a multiplication.

When Haskellers refer to algebras, they’re usually talking
about a somewhat informal notion of operations over
a type and its laws, such as with semigroups, monoids,
groups, semirings, and rings.

15.17 Follow-up resources

1. Algebraic structure; Simple English Wikipedia

2. Haskell Monoids and Their Uses; Dan Piponi
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Functor

Lifting is the ”cheat
mode” of type tetris.

Michael Neale
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16.1 Functor

In the last chapter on Monoid, we saw what it means to talk about
an algebra and turn that into a typeclass. This chapter and
the two that follow, on Applicative and Monad, will be similar.
Each of these algebras is more powerful than the last, but the
general concept here will remain the same: we abstract out
a common pattern, make certain it follows some laws, give it
an awesome name, and wonder how we ever lived without it.
Monad sort of steals the Haskell spotlight, but you can do more
with Functor and Applicative than many people realize. Also,
understanding Functor and Applicative is important to a deep
understanding of Monad.

This chapter is all about Functor, and Functor is all about a
pattern of mapping over structure. We saw fmap way back in
the chapter on lists and noted that it worked just the same as
map, but we also said back then that the difference is that you
can use fmap with structures that aren’t lists. Now we will begin
to see what that means.

The great logician Rudolf Carnap appears to have been the
first person to use the word functor in the 1930s. He invented
the word to describe grammatical function words and logical
operations over sentences or phrases. Functors are combina-
tors: they take a sentence or phrase as input and produce a
sentence or phrase as an output, with some logical operation
applied to the whole. For example, negation is a functor in
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this sense because when negation is applied to a sentence, 𝐴,
it produces the negated version, ¬𝐴, as an output. It lifts the
concept of negation over the entire sentence or phrase struc-
ture without changing the internal structure. (Yes, in English
the negation word often appears inside the sentence, not on
the outside, but he was a logician and unconcerned with how
normal humans produced such pedestrian things as spoken
sentences. In logic, the negation operator is typically written
as a prefix, as above.)

This chapter will include:

• the return of the higher-kinded types;

• fmaps galore, and not only on lists;

• no more digressions about dusty logicians;

• words about typeclasses and constructor classes;

• puns based on George Clinton music, probably.

16.2 What’s a functor?

A functor is a way to apply a function over or around some
structure that we don’t want to alter. That is, we want to apply
the function to the value that is “inside” some structure and
leave the structure alone. That’s why it is most common to
introduce functor by way of fmapping over lists, as we did
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back in the lists chapter. The function gets applied to each
value inside the list, and the list structure remains. A good way
to relate “not altering the structure” to lists is that the length
of the list after mapping a function over it will always be the
same. No elements are removed or added, only transformed.
The typeclass Functor generalizes this pattern so that we can
use that basic idea with many types of structure, not just lists.

Functor is implemented in Haskell with a typeclass, just like
Monoid. Other means of implementing it are possible, but this
is the most convenient way to do so. The definition of the
Functor typeclass looks like this:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Now let’s dissect this a bit:

class Functor f where

[1] [2] [3] [4]

fmap :: (a -> b) -> f a -> f b

[5] [6] [7] [8]

1. class is the keyword to begin the definition of a typeclass.

2. Functor is the name of the typeclass we are defining.
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3. Typeclasses in Haskell usually refer to a type. The letters
themselves, as with type variables in type signatures, do
not mean anything special. 𝑓 is a conventional letter to
choose when referring to types that have functorial struc-
ture. The 𝑓 must be the same 𝑓 throughout the typeclass
definition.

4. The where keyword ends the declaration of the typeclass
name and associated types. After the where the operations
provided by the typeclass are listed.

5. We begin the declaration of an operation named fmap.

6. The argument a -> b is any Haskell function of that type
(remembering that it could be an (a -> a) function for
this purpose).

7. The argument f a is a Functor 𝑓 that takes a type argument
𝑎. That is, the 𝑓 is a type that has an instance of the Functor

typeclass.

8. The return value is f b. It is the same 𝑓 from f a, while
the type argument 𝑏 possibly but not necessarily refers to a
different type.

Before we delve into the details of how this typeclass works,
let’s see fmap in action so you get a feel for what’s going on first.
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16.3 There’s a whole lot of fmap goin’
round

We have seen fmap before but we haven’t used it much except
for with lists. With lists, it seems to do the same thing as map:

Prelude> map (\x -> x > 3) [1..6]

[False,False,False,True,True,True]

Prelude> fmap (\x -> x > 3) [1..6]

[False,False,False,True,True,True]

List is, of course, one type that implements the typeclass
Functor, but it seems unremarkable when it just does the same
thing as map. However, List isn’t the only type that implements
Functor, and fmap can apply a function over or around any of
those functorial structures, while map cannot:

Prelude> map (+1) (Just 1)

Couldn't match expected type ‘[b]’

with actual type ‘Maybe a0’

Relevant bindings include

it :: [b] (bound at 16:1)

In the second argument of ‘map’,

namely ‘(Just 1)’
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In the expression: map (+ 1) (Just 1)

Prelude> fmap (+1) (Just 1)

Just 2

Intriguing! What else?

--with a tuple!

Prelude> fmap (10/) (4, 5)

(4,2.0)

--with Either!

Prelude> let rca = Right "Chris Allen"

Prelude> fmap (++ ", Esq.") rca

Right "Chris Allen, Esq."

We can see how the type of fmap specializes to different
types here:
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type E e = Either e

type C e = Constant e

type I = Identity

-- Functor f =>

fmap :: (a -> b) -> f a -> f b

:: (a -> b) -> [ ] a -> [ ] b

:: (a -> b) -> Maybe a -> Maybe b

:: (a -> b) -> E e a -> E e b

:: (a -> b) -> (e,) a -> (e,) b

:: (a -> b) -> I a -> I b

:: (a -> b) -> C e a -> C e b

If you are using GHC 8 or newer, you can also see this for
yourself in your REPL by doing this:

Prelude> :set -XTypeApplications

Prelude> :type fmap @Maybe

fmap @Maybe ::

(a -> b) -> Maybe a -> Maybe b

Prelude> :type fmap @(Either _)

fmap @(Either _) ::

(a -> b) -> Either t a -> Either t b

You may have noticed in the tuple and Either examples that
the first arguments (labeled 𝑒 in the above chart) are ignored
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by fmap. We’ll talk about why that is in just a bit. Let’s first turn
our attention to what makes a functor. Later we’ll come back
to longer examples and expand on this considerably.

16.4 Let’s talk about 𝑓 , baby

As we said above, the 𝑓 in the typeclass definition for Functor

must be the same 𝑓 throughout the entire definition, and it
must refer to a type that implements the typeclass. This sec-
tion details the practical ramifications of those facts.

The first thing we know is that our 𝑓 here must have the kind
* -> *. We talked about higher-kinded types in previous chap-
ters, and we recall that a type constant or a fully applied type
has the kind *. A type with kind * -> * is awaiting application
to a type constant of kind *.

We know that the 𝑓 in our Functor definition must be kind *

-> * for a couple of reasons, which we will first describe and
then demonstrate:

1. Each argument (and result) in the type signature for a
function must be a fully applied (and inhabitable, modulo
Void, etc.) type. Each argument must have the kind *.

2. The type 𝑓 was applied to a single argument in two dif-
ferent places: f a and f b. Since f a and f b must each
have the kind *, 𝑓 by itself must be kind * -> *.
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It’s easier to see what these mean in practice by demonstrat-
ing with lots of code, so let’s tear the roof off this sucker.

Shining star come into view

Every argument to the type constructor of -> must be of kind
*. We can verify this simply by querying kind of the function
type constructor for ourselves:

Prelude> :k (->)

(->) :: * -> * -> *

Each argument and result of every function must be a type
constant, not a type constructor. Given that knowledge, we
can know something about Functor from the type of fmap:

class Functor f where

fmap :: (a -> b) -> f a -> f b

--has kind: * -> * -> *

The type signature of fmap tells us that the 𝑓 introduced
by the class definition for Functor must accept a single type
argument and thus be of kind * -> *. We can determine this
even without knowing anything about the typeclass, which
we’ll demonstrate with some meaningless typeclasses:
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class Sumthin a where

s :: a -> a

class Else where

e :: b -> f (g a b c)

class Biffy where

slayer :: e a b

-> (a -> c)

-> (b -> d)

-> e c d

Let’s deconstruct the previous couple of examples:

class Sumthin a where

s :: a -> a

-- [1] [1]

1. The argument and result type are both 𝑎. There’s nothing
else, so 𝑎 has kind *.

class Else where

e :: b -> f (g a b c)

-- [1] [2] [3]

1. This 𝑏, like 𝑎 in the previous example, stands alone as the
first argument to (->), so it is kind *.
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2. Here 𝑓 is the outermost type constructor for the second
argument (the result type) of (->). It takes a single argu-
ment, the type g a b c wrapped in parentheses. Thus, 𝑓
has kind * -> *.

3. And 𝑔 is applied to three arguments 𝑎, 𝑏, and 𝑐. That means
it is kind * -> * -> * -> *, where:

-- using :: to denote kind signature

g :: * -> * -> * -> *

-- a, b, and c are each kind *

g :: * -> * -> * -> *

g a b c (g a b c)

class Biffy where

slayer :: e a b

-- [1]

-> (a -> c)

-- [2] [3]

-> (b -> d)

-> e c d

1. First, 𝑒 is an argument to (->) so the application of its
arguments must result in kind *. Given that, and knowing



CHAPTER 16. FUNCTOR 969

there are two arguments, 𝑎 and 𝑏, we can determine 𝑒 is
kind * -> * -> *.

2. This 𝑎 is an argument to a function that takes no argu-
ments itself, so it’s kind *

3. The story for 𝑐 is identical to 𝑎, just in another spot of the
same function.

The kind checker is going to fail on the next couple of
examples:

class Impish v where

impossibleKind :: v -> v a

class AlsoImp v where

nope :: v a -> v

Remember that the name of the variable before the where

in a typeclass definition binds the occurrences of that name
throughout the definition. GHC will notice that our 𝑣 some-
times has a type argument and sometimes not, and it will call
our bluff if we attempt to feed it this nonsense:

‘v’ is applied to too many type arguments

In the type ‘v -> v a’

In the class declaration for ‘Impish’
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Expecting one more argument to ‘v’

Expected a type, but ‘v’ has kind ‘k0 -> *’

In the type ‘v a -> v’

In the class declaration for ‘AlsoImp’

Just as GHC has type inference, it also has kind inference.
And just as it does with types, it can not only infer the kinds
but also validate that they’re consistent and make sense.

Exercises: Be Kind

Given a type signature, determine the kinds of each type vari-
able:

1. What’s the kind of 𝑎?

a -> a

2. What are the kinds of 𝑏 and 𝑇 ? (The 𝑇 is capitalized on
purpose!)

a -> b a -> T (b a)

3. What’s the kind of 𝑐?

c a b -> c b a
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A shining star for you to see

So, what if our type isn’t higher kinded? Let’s try it with a type
constant and see what happens:

-- functors1.hs

data FixMePls =

FixMe

| Pls

deriving (Eq, Show)

instance Functor FixMePls where

fmap =

error

"it doesn't matter, it won't compile"

Notice there are no type arguments anywhere — everything
is one shining (kind) star! And if we load this file from GHCi,
we’ll get the following error:

Prelude> :l functors1.hs

[1 of 1] Compiling Main

( functors1.hs, interpreted )

functors1.hs:8:18:

The first argument of ‘Functor’
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should have kind ‘* -> *’,

but ‘FixMePls’ has kind ‘*’

In the instance declaration for

‘Functor FixMePls’

Failed, modules loaded: none.

In fact, asking for a Functor for FixMePls doesn’t really make
sense. To see why this doesn’t make sense, consider the types
involved:

-- Functor is:

fmap :: Functor f => (a -> b) -> f a -> f b

-- If we replace f with FixMePls

(a -> b) -> FixMePls a -> FixMePls b

-- But FixMePls doesn't take

-- type arguments, so this is

-- really more like:

(FixMePls -> FixMePls)

-> FixMePls

-> FixMePls

There’s no type constructor 𝑓 in there! The maximally
polymorphic version of this is:

(a -> b) -> a -> b
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So in fact, not having a type argument means this is:

($) :: (a -> b) -> a -> b

Without a type argument, this is mere function application.

Functor is function application

We just saw how trying to make a Functor instance for a type
constant means you have function application. But, in fact,
fmap is a specific sort of function application. Let’s look at the
types:

fmap :: Functor f => (a -> b) -> f a -> f b

There is also an infix operator for fmap. If you’re using an
older version of GHC, you may need to import Data.Functor
in order to use it in the REPL. Of course, it has the same type
as the prefix fmap:

-- <$> is the infix alias for fmap:

(<$>) :: Functor f

=> (a -> b)

-> f a

-> f b

Notice something?
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(<$>) :: Functor f

=> (a -> b) -> f a -> f b

($) :: (a -> b) -> a -> b

Functor is a typeclass for function application “over”, or
“through”, some structure f that we want to ignore and leave
untouched. We’ll explain “leave untouched” in more detail
later when we talk about the Functor laws.

A shining star for you to see what your 𝑓 can
truly be

Let’s resume our exploration of why we need a higher-kinded
𝑓 .

If we add a type argument to the datatype from above, we
make FixMePls into a type constructor, and this will work:
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-- functors2.hs

data FixMePls a =

FixMe

| Pls a

deriving (Eq, Show)

instance Functor FixMePls where

fmap =

error

"it doesn't matter, it won't compile"

Now it’ll compile!

Prelude> :l code/functors2.hs

[1 of 1] Compiling Main

Ok, modules loaded: Main.

But wait, we don’t need the error anymore! Let’s fix that
Functor instance:
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-- functors3.hs

data FixMePls a =

FixMe

| Pls a

deriving (Eq, Show)

instance Functor FixMePls where

fmap _ FixMe = FixMe

fmap f (Pls a) = Pls (f a)

Let’s see how our instance lines up with the type of fmap:

fmap :: Functor f

=> (a -> b) -> f a -> f b

fmap f (Pls a) = Pls (f a)

-- (a -> b) f a f b

While 𝑓 is used in the type of fmap to represent the Functor,
by convention, it is also conventionally used in function def-
initions to name an argument that is itself a function. Don’t let
the names fool you into thinking the 𝑓 in our FixMePls instance
is the same 𝑓 as in the Functor typeclass definition.

Now our code is happy-making!

Prelude> :l code/functors3.hs
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[1 of 1] Compiling Main

Ok, modules loaded: Main.

Prelude> fmap (+1) (Pls 1)

Pls 2

Notice the function gets applied over and inside of the
structure. This is how Haskell coders lift big heavy functions
over abstract structure!

Okay, let’s make another mistake for the sake of being ex-
plicit. What if we change the type of our Functor instance from
FixMePls to FixMePls a?

-- functors4.hs

data FixMePls a =

FixMe

| Pls a

deriving (Eq, Show)

instance Functor (FixMePls a) where

fmap _ FixMe = FixMe

fmap f (Pls a) = Pls (f a)

Notice we didn’t change the type; it still only takes one
argument. But now that argument is part of the 𝑓 structure. If
we load this ill-conceived code:
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Prelude> :l functors4.hs

[1 of 1] Compiling Main

functors4.hs:8:19:

The first argument of ‘Functor’

should have kind ‘* -> *’,

but ‘FixMePls a’ has kind ‘*’

In the instance declaration for

‘Functor (FixMePls a)’

Failed, modules loaded: none.

We get the same error as earlier, because applying the type
constructor gave us something of kind * from the original kind
of * -> *.

Typeclasses and constructor classes

You may have initially paused on the type constructor 𝑓 in
the definition of Functor having kind * -> * — this is quite
natural! In fact, earlier versions of Haskell didn’t have a facility
for expressing typeclasses in terms of higher-kinded types
at all. This was developed by Mark P. Jones1 while he was
working on an implementation of Haskell called Gofer. This
work generalized typeclasses from being usable only with
types of kind * (also called type constants) to being usable with
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higher-kinded types, called type constructors, as well.
In Haskell, the two use cases have been merged such that

we don’t call out constructor classes as being separate from
typeclasses, but we think it’s useful to highlight that something
significant has happened here. Now we have a means of talking
about the contents of types independently from the type that
structures those contents. That’s why we can have something
like fmap that allows us to alter the contents of a value without
altering the structure (a list, or a Just) around the value.

16.5 Functor Laws

Instances of the Functor typeclass should abide by two basic
laws. Understanding these laws is critical for understanding
Functor and writing typeclass instances that are composable
and easy to reason about.

Identity

The first law is the law of identity:

fmap id == id

If we fmap the identity function, it should have the same
result as passing our value to identity. We shouldn’t be chang-

1 A system of constructor classes: overloading and implicit higher-order polymor-
phism
http://www.cs.tufts.edu/~nr/cs257/archive/mark-jones/fpca93.pdf

http://www.cs.tufts.edu/~nr/cs257/archive/mark-jones/fpca93.pdf
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ing any of the outer structure 𝑓 that we’re mapping over by
mapping id. That’s why it’s the same as id. If we didn’t return
a new value in the a -> b function mapped over the structure,
then nothing should’ve changed:

Prelude> fmap id "Hi Julie"

"Hi Julie"

Prelude> id "Hi Julie"

"Hi Julie"

Try it out on a few different structures and check for your-
self.

Composition

The second law for Functor is the law of composition:

fmap (f . g) == fmap f . fmap g

This concerns the composability of fmap. If we compose
two functions, 𝑓 and 𝑔, and fmap that over some structure, we
should get the same result as if we fmapped them and then
composed them:

Prelude> fmap ((+1) . (*2)) [1..5]

[3,5,7,9,11]

Prelude> fmap (+1) . fmap (*2) $ [1..5]

[3,5,7,9,11]
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If an implementation of fmap doesn’t do that, it’s a broken
functor.

Structure preservation

Both of these laws touch on the essential rule that functors
must be structure preserving.

All we’re allowed to know in the type about our instance of
Functor implemented by 𝑓 is that it implements Functor:

fmap :: Functor f => (a -> b) -> f a -> f b

The 𝑓 is constrained by the typeclass Functor, but that is all
we know about its type from this definition. As we’ve seen with
typeclass-constrained polymorphism, this still allows it to be
any type that has an instance of Functor. The core operation
that this typeclass provides for these types is fmap. Because the
𝑓 persists through the type of fmap, whatever the type is, we
know it must be a type that can take an argument, as in f a and
f b and that it will be the “structure” we’re lifting the function
over when we apply it to the value inside.

16.6 The Good, the Bad, and the Ugly

We’ll get a better picture of what it means for Functor instances
to be law-abiding or law-breaking by walking through some
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examples. We start by definining a type constructor with one
argument:

data WhoCares a =

ItDoesnt

| Matter a

| WhatThisIsCalled

deriving (Eq, Show)

This datatype only has one data constructor containing a
value we could fmap over, and that is Matter. The others are
nullary so there is no value to work with inside the structure;
there is only structure.

Here we see a law-abiding instance:

instance Functor WhoCares where

fmap _ ItDoesnt = ItDoesnt

fmap _ WhatThisIsCalled =

WhatThisIsCalled

fmap f (Matter a) = Matter (f a)

Our instance must follow the identity law or else it’s not a
valid functor. That law dictates that fmap id (Matter _) must
not touch Matter — that is, it must be identical to id (Matter _).
Functor is a way of lifting over structure (mapping) in such a
manner that you don’t have to care about the structure because
you’re not allowed to touch the structure anyway.
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Let us next consider a law-breaking instance:

instance Functor WhoCares where

fmap _ ItDoesnt = WhatThisIsCalled

fmap f WhatThisIsCalled = ItDoesnt

fmap f (Matter a) = Matter (f a)

Nowwe contemplatewhat itmeans to leave the structure un-
touched. In this instance, we’ve made our structure — not the
values wrapped or contained within the structure — change
by making ItDoesnt and WhatThisIsCalled do a little dosey-do.
It becomes rapidly apparent why this isn’t kosher at all.

Prelude> fmap id ItDoesnt

WhatThisIsCalled

Prelude> fmap id WhatThisIsCalled

ItDoesnt

Prelude> fmap id ItDoesnt == id ItDoesnt

False

Prelude> :{

*Main| fmap id WhatThisIsCalled ==

*Main| id WhatThisIsCalled

*Main| :}

False

This certainly does not abide by the identity law. It is not a
valid Functor instance.
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The law won But what if you do want a function that can
change the value and the structure?

We’ve got wonderful news for you: that exists! It’s a plain
old function. Write one. Write many! The point of Functor is
to reify and be able to talk about cases where we want to reuse
functions in the presence of more structure and be transpar-
ently oblivious to that additional structure. We already saw that
Functor is in some sense a special sort of function application,
but since it is special, we want to preserve the things about
it that make it different and more powerful than ordinary
function application. So, we stick to the laws.

Later in this chapter, we will talk about a sort of opposite,
where you can transform the structure but leave the type ar-
gument alone. This has a special name too, but there isn’t a
widely agreed upon typeclass.

Composition should just work

All right, now that we’ve seen how we can make a Functor in-
stance violate the identity law, let’s take a look at how we abide
by — and break! — the composition law. You may recall from
above that the law looks like this:

fmap (f . g) == fmap f . fmap g

Technically this follows from fmap id == id, but it’s worth
calling out so that we can talk about composition. This law
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says composing two functions lifted separately should pro-
duce the same result as if we composed the functions ahead
of time and then lifted the composed function all together.
Maintaining this property is about preserving composability
of our code and preventing our software from doing unpleas-
antly surprising things. We will now consider another invalid
Functor instance to see why this is bad news:

data CountingBad a =

Heisenberg Int a

deriving (Eq, Show)

-- super NOT okay

instance Functor CountingBad where

fmap f (Heisenberg n a) =

-- (a -> b) f a =

Heisenberg (n+1) (f a)

-- f b

Well, what did we do here? CountingBad has one type argu-
ment, but Heisenberg has two arguments. If you look at how
that lines up with the type of fmap, you get a hint of why this
isn’t going to work out well. What part of our fmap type does
the 𝑛 representing the Int argument to Heisenberg belong to?

We can load this horribleness up in the REPL and see that
composing two fmaps here does not produce the same results,
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so the composition law doesn’t hold:

Prelude> let u = "Uncle"

Prelude> let oneWhoKnocks = Heisenberg 0 u

Prelude> fmap (++" Jesse") oneWhoKnocks

Heisenberg 1 "Uncle Jesse"

Prelude> let f = ((++" Jesse").(++" lol"))

Prelude> fmap f oneWhoKnocks

Heisenberg 1 "Uncle lol Jesse"

So far it seems OK, but what if we compose the two con-
catenation functions separately?

Prelude> let j = (++ " Jesse")

Prelude> let l = (++ " lol")

Prelude> fmap j . fmap l $ oneWhoKnocks

Heisenberg 2 "Uncle lol Jesse"

Or to make it look more like the law:

Prelude> let f = (++" Jesse")

Prelude> let g = (++" lol")

Prelude> fmap (f . g) oneWhoKnocks

Heisenberg 1 "Uncle lol Jesse"

Prelude> fmap f . fmap g $ oneWhoKnocks

Heisenberg 2 "Uncle lol Jesse"

We can clearly see that
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fmap (f . g) == fmap f . fmap g

does not hold. So how do we fix it?

data CountingGood a =

Heisenberg Int a

deriving (Eq, Show)

-- Totes cool.

instance Functor CountingGood where

fmap f (Heisenberg n a) =

Heisenberg (n) (f a)

Stop messing with the Int in Heisenberg. Think of anything
that isn’t the final type argument of our 𝑓 in Functor as being
part of the structure that the functions being lifted should be
oblivious to.

16.7 Commonly used functors

Now that we have a sense of what Functor does for us and
how it’s meant to work, it’s time to start working through
some longer examples. This section is nearly all code and
examples with minimal prose explanation. Interacting with
these examples will help you develop an intuition for what’s
going on with a minimum of fuss.

We begin with a utility function:
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Prelude> :t const

const :: a -> b -> a

Prelude> let replaceWithP = const 'p'

Prelude> replaceWithP 10000

'p'

Prelude> replaceWithP "woohoo"

'p'

Prelude> replaceWithP (Just 10)

'p'

We’ll use it with fmap now for various datatypes that have
instances:

-- data Maybe a = Nothing | Just a

Prelude> fmap replaceWithP (Just 10)

Just 'p'

Prelude> fmap replaceWithP Nothing

Nothing

-- data [] a = [] | a : [a]

Prelude> fmap replaceWithP [1, 2, 3, 4, 5]

"ppppp"

Prelude> fmap replaceWithP "Ave"

"ppp"
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Prelude> fmap (+1) []

[]

Prelude> fmap replaceWithP []

""

-- data (,) a b = (,) a b

Prelude> fmap replaceWithP (10, 20)

(10,'p')

Prelude> fmap replaceWithP (10, "woo")

(10,'p')

Again, we’ll talk about why it skips the first value in the
tuple in a bit. It has to do with the kindedness of tuples and
the kindedness of the 𝑓 in Functor.

Now the instance for functions:

Prelude> negate 10

-10

Prelude> let tossEmOne = fmap (+1) negate

Prelude> tossEmOne 10

-9

Prelude> tossEmOne (-10)

11

The functor of functions won’t be discussed in great detail
until we get to the chapter on Reader, but it should look sort
of familiar:
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Prelude> let tossEmOne' = (+1) . negate

Prelude> tossEmOne' 10

-9

Prelude> tossEmOne' (-10)

11

Now you’re starting to get into the groove; let’s see what
else we can do with our fancy new moves.

The functors are stacked and that’s a fact

We can combine datatypes, as we’ve seen, usually by nesting
them. We’ll be using the tilde character as a shorthand for “is
roughly equivalent to” throughout these examples:

-- lms ~ List (Maybe (String))

Prelude> let n = Nothing

Prelude> let w = Just "woohoo"

Prelude> let ave = Just "Ave"

Prelude> let lms = [ave, n, w]

Prelude> let replaceWithP = const 'p'

Prelude> replaceWithP lms

'p'

Prelude> fmap replaceWithP lms

"ppp"
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Nothing unexpected there, but we notice that lms has more
than one Functor type. Maybe and List (which includes String)
both have Functor instances. So, are we obligated to fmap only
to the outermost datatype? No way, mate:

Prelude> (fmap . fmap) replaceWithP lms

[Just 'p',Nothing,Just 'p']

Prelude> let tripFmap = fmap . fmap . fmap

Prelude> tripFmap replaceWithP lms

[Just "ppp",Nothing,Just "pppppp"]

Let’s review in detail:

-- lms ~ List (Maybe String)

Prelude> let ave = Just "Ave"

Prelude> let n = Nothing

Prelude> let w = Just "woohoo"

Prelude> let lms = [ave, n, w]

Prelude> replaceWithP lms

'p'

Prelude> :t replaceWithP lms

replaceWithP lms :: Char

-- In:



CHAPTER 16. FUNCTOR 992

replaceWithP lms

-- replaceWithP's input type is:

List (Maybe String)

-- The output type is Char

-- So applying

replaceWithP

-- to

lms

-- accomplishes

List (Maybe String) -> Char

The output type of replaceWithP is always the same.
If we do this:

Prelude> fmap replaceWithP lms

"ppp"

-- fmap is going to leave the list

-- structure intact around our result:

Prelude> :t fmap replaceWithP lms

fmap replaceWithP lms :: [Char]
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Here’s the X-ray view:

-- In:

fmap replaceWithP lms

-- replaceWithP's input type is:

Maybe String

-- The output type is Char

-- So applying

fmap replaceWithP

-- to

lms

-- accomplishes:

List (Maybe String) -> List Char

-- List Char ~ String

What if we lift twice?

Keep on stacking them up:

Prelude> (fmap . fmap) replaceWithP lms

[Just 'p',Nothing,Just 'p']
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Prelude> :t (fmap . fmap) replaceWithP lms

(fmap . fmap) replaceWithP lms

:: [Maybe Char]

And the X-ray view:

-- In:

(fmap . fmap) replaceWithP lms

-- replaceWithP's input type is:

-- String aka List Char or [Char]

-- The output type is Char

-- So applying

(fmap . fmap) replaceWithP

-- to

lms

-- accomplishes

List (Maybe String) -> List (Maybe Char)

Wait, how does that even typecheck? It may not seem obvi-
ous at first how (fmap . fmap) could typecheck. We’re going to
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ask you to work through the types. You might prefer to write
it out with pen and paper, as Julie does, or type it all out in a
text editor, as Chris does. We’ll help you out by providing the
type signatures. Since the two fmap functions being composed
could have different types, we’ll make the type variables for
each function unique. Start by substituting the type of each
fmap for each of the function types in the (.) signature:

(.) :: (b -> c) -> (a -> b) -> a -> c

-- fmap fmap

fmap :: Functor f => (m -> n) -> f m -> f n

fmap :: Functor g => (x -> y) -> g x -> g y

It might also be helpful to query the type of (fmap . fmap)

to get an idea of what your end type should look like (modulo
different type variables).

Lift me baby one more time

We have another layer we can lift over if we wish:

Prelude> let tripFmap = fmap . fmap . fmap

Prelude> tripFmap replaceWithP lms

[Just "ppp",Nothing,Just "pppppp"]

Prelude> :t tripFmap replaceWithP lms

(fmap . fmap . fmap) replaceWithP lms
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:: [Maybe [Char]]

And the X-ray view:

-- In

(fmap . fmap . fmap) replaceWithP lms

-- replaceWithP's input type is:

-- Char

-- because we lifted over

-- the [] of [Char]

-- The output type is Char

-- So applying

(fmap . fmap . fmap) replaceWithP

-- to

lms

-- accomplishes

List (Maybe String) -> List (Maybe String)

So, we see there’s a pattern.



CHAPTER 16. FUNCTOR 997

The real type of thing going down

We saw the pattern above, but for clarity we’ll summarize here
before moving on:

Prelude> fmap replaceWithP lms

"ppp"

Prelude> (fmap . fmap) replaceWithP lms

[Just 'p',Nothing,Just 'p']

Prelude> let tripFmap = fmap . fmap . fmap

Prelude> tripFmap replaceWithP lms

[Just "ppp",Nothing,Just "pppppp"]

Let’s summarize the types, too, to validate our understand-
ing:
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-- replacing the type synonym String

-- with the underlying type [Char]

-- intentionally

replaceWithP' :: [Maybe [Char]] -> Char

replaceWithP' = replaceWithP

[Maybe [Char]] -> [Char]

[Maybe [Char]] -> [Maybe Char]

[Maybe [Char]] -> [Maybe [Char]]

Pause for a second and make sure you’re understanding
everything we’ve done so far. If not, play with it until it starts
to feel comfortable.

Get on up and get down

We’ll work through the same idea, but with more funky struc-
ture to lift over:

-- lmls ~ List (Maybe (List String))

Prelude> let ha = Just ["Ha", "Ha"]

Prelude> let lmls = [ha, Nothing, Just []]

Prelude> (fmap . fmap) replaceWithP lmls

[Just 'p',Nothing,Just 'p']
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Prelude> let tripFmap = fmap . fmap . fmap

Prelude> tripFmap replaceWithP lmls

[Just "pp",Nothing,Just ""]

Prelude> (tripFmap.fmap) replaceWithP lmls

[Just ["pp","pp"],Nothing,Just []]

See if you can trace the changing result types as we did
above.

One more round for the P-Funkshun

For those who like their funk uncut, here’s another look at the
changing types that result from lifting over multiple layers of
functorial structure, with a slightly higher resolution. We start
this time from a source file:
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module ReplaceExperiment where

replaceWithP :: b -> Char

replaceWithP = const 'p'

lms :: [Maybe [Char]]

lms = [Just "Ave", Nothing, Just "woohoo"]

-- Just making the argument more specific

replaceWithP' :: [Maybe [Char]] -> Char

replaceWithP' = replaceWithP

What happens if we lift it?

-- Prelude> :t fmap replaceWithP

-- fmap replaceWithP :: Functor f

-- => f a -> f Char

liftedReplace :: Functor f => f a -> f Char

liftedReplace = fmap replaceWithP

But we can assert a more specific type for liftedReplace!

liftedReplace' :: [Maybe [Char]] -> [Char]

liftedReplace' = liftedReplace
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The [] around Char is the 𝑓 of f Char, or the structure we
lifted over. The 𝑓 of f a is the outermost [] in [Maybe [Char]].
So, 𝑓 is instantiated to [] when we make the type more specific,
whether by applying it to a value of type [Maybe [Char]] or by
means of explicitly writing liftedReplace'.

Stay on the scene like an fmap machine

What if we lift it twice?

-- Prelude> :t (fmap . fmap) replaceWithP

-- (fmap . fmap) replaceWithP

-- :: (Functor f1, Functor f)

-- => f (f1 a) -> f (f1 Char)

twiceLifted :: (Functor f1, Functor f) =>

f (f1 a) -> f (f1 Char)

twiceLifted = (fmap . fmap) replaceWithP

-- Making it more specific

twiceLifted' :: [Maybe [Char]]

-> [Maybe Char]

twiceLifted' = twiceLifted

-- f ~ []

-- f1 ~ Maybe

Thrice?
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-- Prelude> let rWP = replaceWithP

-- Prelude> :t (fmap . fmap . fmap) rWP

-- (fmap . fmap . fmap) replaceWithP

-- :: (Functor f2, Functor f1, Functor f)

-- => f (f1 (f2 a)) -> f (f1 (f2 Char))

thriceLifted ::

(Functor f2, Functor f1, Functor f)

=> f (f1 (f2 a)) -> f (f1 (f2 Char))

thriceLifted =

(fmap . fmap . fmap) replaceWithP

-- More specific or "concrete"

thriceLifted' :: [Maybe [Char]]

-> [Maybe [Char]]

thriceLifted' = thriceLifted

-- f ~ []

-- f1 ~ Maybe

-- f2 ~ []

Now we can print the results from our expressions and
compare them:
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main :: IO ()

main = do

putStr "replaceWithP' lms: "

print (replaceWithP' lms)

putStr "liftedReplace lms: "

print (liftedReplace lms)

putStr "liftedReplace' lms: "

print (liftedReplace' lms)

putStr "twiceLifted lms: "

print (twiceLifted lms)

putStr "twiceLifted' lms: "

print (twiceLifted' lms)

putStr "thriceLifted lms: "

print (thriceLifted lms)

putStr "thriceLifted' lms: "

print (thriceLifted' lms)

Be sure to type all this into a file, load it in GHCi, run main

to see what output results. Then, modify the types and code-
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based ideas and guesses of what should and shouldn’t work.
Forming hypotheses, creating experiments based on them
or modifying existing experiments, and validating them is a
critical part of becoming comfortable with abstractions like
Functor!

Exercises: Heavy Lifting

Add fmap, parentheses, and function composition to the expres-
sion as needed for the expression to typecheck and produce
the expected result. It may not always need to go in the same
place, so don’t get complacent.

1. a = (+1) $ read "[1]" :: [Int]

Expected result

Prelude> a

[2]

2. b = (++ "lol") (Just ["Hi,", "Hello"])

Prelude> b

Just ["Hi,lol","Hellolol"]

3. c = (*2) (\x -> x - 2)
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Prelude> c 1

-2

4. d =

((return '1' ++) . show)

(\x -> [x, 1..3])

Prelude> d 0

"1[0,1,2,3]"

5. e :: IO Integer

e = let ioi = readIO "1" :: IO Integer

changed = read ("123"++) show ioi

in (*3) changed

Prelude> e

3693

16.8 Transforming the unapplied type
argument

We’ve seen that 𝑓 must be a higher-kinded type and that Functor
instances must abide by two laws, and we’ve played around
with some basic fmapping. We know that the goal of fmapping
is to leave the outer structure untouched while transforming
the type arguments inside.
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Way back in the beginning, we noticed that when we fmap

over a tuple, it only transforms the second argument (the 𝑏).
We saw a similar thing when we fmapped over an Either value,
and we said we’d come back to this topic. Then we saw another
hint of it above in the Heisenberg example. Now the time has
come to talk about what happens to the other type arguments
(if any) when we can only tranform the innermost.

We’ll start with a couple of canonical types:

data Two a b =

Two a b

deriving (Eq, Show)

data Or a b =

First a

| Second b

deriving (Eq, Show)

You may recognize these as (,) and Either recapitulated, the
generic product and sum types, from which any combination
of and and or may be made. But these are both kind * -> *

-> *, which isn’t compatible with Functor, so how do we write
Functor instances for them?

These wouldn’t work because Two and Or have the wrong
kind:
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instance Functor Two where

fmap = undefined

instance Functor Or where

fmap = undefined

We know that we can partially apply functions, and we’ve
seen previously that we can do this:

Prelude> :k Either

Either :: * -> * -> *

Prelude> :k Either Integer

Either Integer :: * -> *

Prelude> :k Either Integer String

Either Integer String :: *

That has the effect of applying out some of the arguments,
reducing the kindedness of the type. Previously, we’ve demon-
strated this by applying the type constructor to concrete types;
however, you can also apply it to a type variable that represents
a type constant to produce the same effect.

So to fix the kind incompatibility for our Two and Or types,
we apply one of the arguments of each type constructor, giving
us kind * -> *:
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-- we use 'a' for clarity, so you

-- can see more readily which type

-- was applied out but the letter

-- doesn't matter.

instance Functor (Two a) where

fmap = undefined

instance Functor (Or a) where

fmap = undefined

These will pass the typechecker already, but we still need
to write the implementations of fmap for both, so let’s proceed.
First we’ll turn our attention to Two:

instance Functor (Two a) where

fmap f (Two a b) = Two $ (f a) (f b)

This won’t fly, because the 𝑎 is part of the functorial struc-
ture (the 𝑓). We’re not supposed to touch anything in the 𝑓
referenced in the type of fmap, so we can’t apply the function
(named 𝑓 in our fmap definition) to the 𝑎 because the 𝑎 is now
untouchable.
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fmap :: Functor f => (a -> b) -> f a -> f b

-- here, f is (Two a) because

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor (Two a) where

-- remember, names don't mean

-- anything beyond their relationships

-- to each other.

:: (a -> b) -> (Two z) a -> (Two z) b

So to fix our Functor instance, we have to leave the left value
(it’s part of the structure of 𝑓) in Two alone, and have our func-
tion only apply to the innermost value, in this case named
𝑏:

instance Functor (Two a) where

fmap f (Two a b) = Two a (f b)

Then with Or, we’re dealing with the independent possibility
of two different values and types, but the same basic constraint
applies:
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instance Functor (Or a) where

fmap _ (First a) = First a

fmap f (Second b) = Second (f b)

We’ve applied out the first argument, so now it’s part of the
𝑓 . The function we’re mapping around that structure can only
transform the innermost argument.

16.9 QuickChecking Functor instances

We know the Functor laws are the following:

fmap id = id

fmap (p . q) = (fmap p) . (fmap q)

We can turn those into the following QuickCheck properties:
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functorIdentity :: (Functor f, Eq (f a)) =>

f a

-> Bool

functorIdentity f =

fmap id f == f

functorCompose :: (Eq (f c), Functor f) =>

(a -> b)

-> (b -> c)

-> f a

-> Bool

functorCompose f g x =

(fmap g (fmap f x)) == (fmap (g . f) x)

As long as we provided concrete instances, we can now run
these to test them.

Prelude> :{

*Main| let f :: [Int] -> Bool

*Main| f x = functorIdentity x

*Main| :}

Prelude> quickCheck f

+++ OK, passed 100 tests.

Prelude> let c = functorCompose (+1) (*2)

Prelude> let li x = c (x :: [Int])
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Prelude> quickCheck li

+++ OK, passed 100 tests.

Groovy.

Making QuickCheck generate functions too

QuickCheck happens to offer the ability to generate functions.
There’s a typeclass called CoArbitrary that covers the function
argument type, whereas the (related) Arbitrary typeclass is used
for the function result type. If you’re curious about this, take
a look at the Function module in the QuickCheck library to see
how functions are generated from a datatype that represents
patterns in function construction.
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{-# LANGUAGE ViewPatterns #-}

import Test.QuickCheck

import Test.QuickCheck.Function

functorCompose' :: (Eq (f c), Functor f) =>

f a

-> Fun a b

-> Fun b c

-> Bool

functorCompose' x (Fun _ f) (Fun _ g) =

(fmap (g . f) x) == (fmap g . fmap f $ x)

There are a couple things going on here. One is that we
needed to import a new module from QuickCheck. Another
is that we’re pattern matching on the Fun value that we’re
asking QuickCheck to generate. The underlying Fun type is es-
sentially a product of the weird function type and an ordi-
nary Haskell function generated from the weirdo. The weirdo
QuickCheck-specific concrete function is a function represented
by a datatype which can be inspected and recursed. We only
want the second part, the ordinary Haskell function, so we’re
pattern-matching that one out.

Prelude> type IntToInt = Fun Int Int

Prelude> :{



CHAPTER 16. FUNCTOR 1014

*Main| type IntFC =

*Main| [Int]

*Main| -> IntToInt

*Main| -> IntToInt

*Main| -> Bool

*Main| :}

Prelude> let fc' = functorCompose'

Prelude> quickCheck (fc' :: IntFC)

+++ OK, passed 100 tests.

Note ofwarning, you can’t print those Fun values, so verboseCheck

will curse Socrates and spin in a circle if you try it.

16.10 Exercises: Instances of Func

Implement Functor instances for the following datatypes. Use
the QuickCheck properties we showed you to validate them.

1. newtype Identity a = Identity a

2. data Pair a = Pair a a

3. data Two a b = Two a b

4. data Three a b c = Three a b c

5. data Three' a b = Three' a b b
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6. data Four a b c d = Four a b c d

7. data Four' a b = Four' a a a b

8. Can you implement one for this type? Why? Why not?

data Trivial = Trivial

Doing these exercises is critical to understanding how Functor

works, do not skip past them!

16.11 Ignoring possibilities

We’ve already touched on the Maybe and Either functors. Now
we’ll examine in a bit more detail what those do for us. As
the title of this section suggests, the Functor instances for these
datatypes are handy for times you intend to ignore the left
cases, which are typically your error or failure cases. Because
fmap doesn’t touch those cases, you can map your function
right to the values that you intend to work with and ignore
those failure cases.

Maybe

Let’s start with some ordinary pattern matching on Maybe:
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incIfJust :: Num a => Maybe a -> Maybe a

incIfJust (Just n) = Just $ n + 1

incIfJust Nothing = Nothing

showIfJust :: Show a

=> Maybe a

-> Maybe String

showIfJust (Just s) = Just $ show s

showIfJust Nothing = Nothing

Well, that’s boring, and there’s some redundant structure.
For one thing, they have the Nothing case in common:

someFunc Nothing = Nothing

Then they’re applying some function to the value if it’s a
Just:

someFunc (Just x) = Just $ someOtherFunc x

What happens if we use fmap?
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incMaybe :: Num a => Maybe a -> Maybe a

incMaybe m = fmap (+1) m

showMaybe :: Show a

=> Maybe a

-> Maybe String

showMaybe s = fmap show s

That appears to have cleaned things up a bit. Does it still
work?

Prelude> incMaybe (Just 1)

Just 2

Prelude> incMaybe Nothing

Nothing

Prelude> showMaybe (Just 9001)

Just "9001"

Prelude> showMaybe Nothing

Nothing

Yeah, fmap has no reason to concern itself with the Nothing

— there’s no value there for it to operate on, so this all seems
to be working properly.

But we can abstract this a bit more. For one thing, we can
eta-reduce these functions. That is, we can rewrite them with-
out naming the arguments:
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incMaybe'' :: Num a => Maybe a -> Maybe a

incMaybe'' = fmap (+1)

showMaybe'' :: Show a

=> Maybe a

-> Maybe String

showMaybe'' = fmap show

And they don’t even really have to be specific to Maybe! fmap
works for all datatypes with a Functor instance! We can query
the type of the expressions in GHCi and see for ourselves the
more generic type:

Prelude> :t fmap (+1)

fmap (+1)

:: (Functor f, Num b) => f b -> f b

Prelude> :t fmap show

fmap show

:: (Functor f, Show a) => f a -> f String

With that, we can rewrite them as much more generic func-
tions:
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-- ``lifted'' because they've been

-- lifted over some structure f

liftedInc :: (Functor f, Num b)

=> f b -> f b

liftedInc = fmap (+1)

liftedShow :: (Functor f, Show a)

=> f a -> f String

liftedShow = fmap show

And they have the same behavior as always:

Prelude> liftedInc (Just 1)

Just 2

Prelude> liftedInc Nothing

Nothing

Prelude> liftedShow (Just 1)

Just "1"

Prelude> liftedShow Nothing

Nothing

Making them more polymorphic in the type of the functo-
rial structure means they’re more reusable now:

Prelude> liftedInc [1..5]
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[2,3,4,5,6]

Prelude> liftedShow [1..5]

["1","2","3","4","5"]

Exercise: Possibly

Write a Functor instance for a datatype identical to Maybe. We’ll
use our own datatype because Maybe already has a Functor in-
stance and we cannot make a duplicate one.

data Possibly a =

LolNope

| Yeppers a

deriving (Eq, Show)

instance Functor Possibly where

fmap = undefined

If it helps, you’re basically writing the following function:

applyIfJust :: (a -> b)

-> Maybe a

-> Maybe b



CHAPTER 16. FUNCTOR 1021

Either

The Maybe type solves some problems for Haskellers, but it
doesn’t solve all of them. As we saw in a previous chapter,
sometimes we want to preserve the reason why a computation
failed rather than only the information that it failed. And for
that, we use Either.

By this point, you know that Either has a Functor instance
in base for grateful programmers to use. So let’s put it to use.
We’ll stick to the same pattern we used for demonstrating
Maybe, for the sake of clarity:

incIfRight :: Num a

=> Either e a

-> Either e a

incIfRight (Right n) = Right $ n + 1

incIfRight (Left e) = Left e

showIfRight :: Show a

=> Either e a

-> Either e String

showIfRight (Right s) = Right $ show s

showIfRight (Left e) = Left e

Once again we can simplify these using fmap so we don’t
have to address the case of leaving the error value alone:
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incEither :: Num a

=> Either e a

-> Either e a

incEither m = fmap (+1) m

showEither :: Show a

=> Either e a

-> Either e String

showEither s = fmap show s

And again we can eta-contract to drop the obvious argu-
ment:

incEither' :: Num a

=> Either e a

-> Either e a

incEither' = fmap (+1)

showEither' :: Show a

=> Either e a

-> Either e String

showEither' = fmap show

And once againwe are confronted with functions that really
didn’t need to be specific to Either at all:
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-- f ~ Either e

liftedInc :: (Functor f, Num b)

=> f b -> f b

liftedInc = fmap (+1)

liftedShow :: (Functor f, Show a)

=> f a -> f String

liftedShow = fmap show

Take a few moments to play around with this and note how
it works.

Short Exercise

1. Write a Functor instance for a datatype identical to Either.
We’ll use our own datatype because Either has a Functor

instance.

data Sum a b =

First a

| Second b

deriving (Eq, Show)

instance Functor (Sum a) where

fmap = undefined
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Your hint for this one is that you’re writing the following
function.

applyIfSecond :: (a -> b)

-> (Sum e) a

-> (Sum e) b

2. Why is a Functor instance that applies the function only to
First, Either’s Left, impossible? We covered this earlier.

16.12 A somewhat surprising functor

There’s a datatype named Const or Constant — you’ll see both
names depending on which library you use. Constant has a
valid Functor, but the behavior of the Functor instance may
surprise you a bit. First, let’s look at the const function, and
then we’ll look at the datatype:

Prelude> :t const

const :: a -> b -> a

Prelude> let a = const 1

Prelude> a 1

1

Prelude> a 2

1

Prelude> a 3

1



CHAPTER 16. FUNCTOR 1025

Prelude> a "blah"

1

Prelude> a id

1

With a similar concept inmind, there is the Constantdatatype.
Constant looks like this:

newtype Constant a b =

Constant { getConstant :: a }

deriving (Eq, Show)

One thing we notice about this type is that the type param-
eter 𝑏 is a phantom type. It has no corresponding witness at
the value/term level. This is a concept and tactic we’ll explore
more later, but for now we can see how it echoes the function
const:

Prelude> Constant 2

Constant {getConstant = 2}

Despite 𝑏 being a phantom type, though, Constant is kind *

-> * -> *, and that is not a valid Functor. So how do we get one?
Well, there’s only one thing we can do with a type constructor,
just as with functions: apply it. So we do have a Functor for
Constant a, but not Constant alone. It has to be Constant a and
not Constant a b because Constant a b would be kind *.

Let’s look at the implementation of Functor for Constant:
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instance Functor (Constant m) where

fmap _ (Constant v) = Constant v

Looks like identity right? Let’s use this in the REPL and run
it through the Functor laws:

Prelude> const 2 (getConstant (Constant 3))

2

Prelude> fmap (const 2) (Constant 3)

Constant {getConstant = 3}

Prelude> let gc = getConstant

Prelude> let c = Constant 3

Prelude> gc $ fmap (const 2) c

3

Prelude> gc $ fmap (const "blah") c

3

When you fmap the const function over the Constant type,
the first argument to const is never used because the partially
applied const is itself never used. The first type argument to
Constant’s type constructor is in the part of the structure that
Functor skips over. The second argument to the Constant type
constructor is the phantom type variable 𝑏 which has no value
or term-level witness in the datatype. Since there are no values
of the type the Functor is supposed to be mapping, we have
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nothing we’re allowed to apply the function to, so we never
use the const expressions.

But does this adhere to the Functor laws?

-- Testing identity

Prelude> getConstant (id (Constant 3))

3

Prelude> getConstant (fmap id (Constant 3))

3

-- Composition of the const function

Prelude> ((const 3) . (const 5)) 10

3

Prelude> ((const 5) . (const 3)) 10

5

-- Composition

Prelude> let fc = fmap (const 3)

Prelude> let fc' = fmap (const 5)

Prelude> let separate = fc . fc'

Prelude> let c = const 3

Prelude> let c' = const 5

Prelude> let fused = fmap (c . c')

Prelude> let cw = Constant "WOOHOO"

Prelude> getConstant $ separate $ cw

"WOOHOO"
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Prelude> let cdr = Constant "Dogs rule"

Prelude> getConstant $ fused $ cdr

"Dogs rule"

(Constant a) is * -> * which you need for the Functor, but
now you’re mapping over that 𝑏, and not the 𝑎.

This is a mere cursory check, not a proof that this is a valid
Functor. Most assurances of correctness that programmers use
exist on a gradient and aren’t proper proofs. Despite seeming
a bit pointless, Constant is a lawful Functor.

16.13 More structure, more functors

At times the structure of our types may require that we also
have a Functor instance for an intermediate type layer. We’ll
demonstrate this using this datatype:

data Wrap f a =

Wrap (f a)

deriving (Eq, Show)

Notice that our 𝑎 here is an argument to the 𝑓 . So how are
we going to write a Functor instance for this?

instance Functor (Wrap f) where

fmap f (Wrap fa) = Wrap (f fa)
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This won’t work because there’s this 𝑓 that we’re not hop-
ping over, and 𝑎 (the value fmap should be applying the function
to) is an argument to that 𝑓 — the function can’t apply to that
𝑓 that is wrapping 𝑎.

instance Functor (Wrap f) where

fmap f (Wrap fa) = Wrap (fmap f fa)

Here we don’t know what type 𝑓 is and it could be anything,
but it needs to be a type that has a Functor instance so that we
can fmap over it. So we add a constraint:

instance Functor f

=> Functor (Wrap f) where

fmap f (Wrap fa) = Wrap (fmap f fa)

And if we load up the final instance, we can use this wrapper
type:

Prelude> fmap (+1) (Wrap (Just 1))

Wrap (Just 2)

Prelude> fmap (+1) (Wrap [1, 2, 3])

Wrap [2,3,4]

It should work for any Functor. If we pass it something that
isn’t?
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Prelude> let n = 1 :: Integer

Prelude> fmap (+1) (Wrap n)

Couldn't match expected type ‘f b’

with actual type ‘Integer’

Relevant bindings include

it :: Wrap f b (bound at <interactive>:8:1)

In the first argument of ‘Wrap’, namely ‘n’

In the second argument of ‘fmap’,

namely ‘(Wrap n)’

The number by itself doesn’t offer the additional structure
needs for Wrap to work as a Functor. It’s expecting to be able to
fmap over some 𝑓 independent of an 𝑎 and this isn’t the case
with any type constant such as Integer.

16.14 IO Functor

We’ve seen the IO type in the modules and testing chapters
already, but we weren’t doing much with it save to print text
or ask for string input from the user. The IO type will get
a full chapter of its own later in the book. It is an abstract
datatype; there are no data constructors that you’re permitted
to pattern match on, so the typeclasses IO provides are the
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only way you can work with values of type IO a. One of the
simplest provided is Functor.

-- getLine :: IO String

-- read :: Read a => String -> a

getInt :: IO Int

getInt = fmap read getLine

Int has a Read instance, and fmap lifts read over the IO type. A
way you can read getLine here is that it’s not a String, but rather
a way to obtain a string. IO doesn’t guarantee that effects will
be performed, but it does mean that they could be performed.
Here the side effect is needing to block and wait for user input
via the standard input stream the OS provides:

Prelude> getInt

10

10

We type 10 and hit enter. GHCi prints IO values unless the
type is IO (), in which case it hides the Unit value because it’s
meaningless:

Prelude> fmap (const ()) getInt

10



CHAPTER 16. FUNCTOR 1032

The “10” in the GHCi session above is from typing 10 and
hitting enter. GHCi isn’t printing any result after that because
we’re replacing the Int value we read from a String. That
information is getting dropped on the floor because we applied
const () to the contents of the IO Int. If we ignore the presence
of IO, it’s as if we did this:

Prelude> let getInt = 10 :: Int

Prelude> const () getInt

()

GHCi as a matter of convenience and design, will not print
any value of type IO () on the assumption that the IO action
you evaluated was evaluated for effects and because the unit
value cannot communicate anything. We can use the return

function (seen earlier, explained later) to lift a unit value in IO

and reproduce this behavior of GHCi’s:

Prelude> return 1 :: IO Int

1

Prelude> ()

()

Prelude> return () :: IO ()

Prelude>

What if we want to do something more useful? We can fmap

any function we want over IO:
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Prelude> fmap (+1) getInt

10

11

Prelude> fmap (++ " and me too!") getLine

hello

"hello and me too!"

Wecan also use do syntax to do whatwe’re doingwith Functor

here:

meTooIsm :: IO String

meTooIsm = do

input <- getLine

return (input ++ "and me too!")

bumpIt :: IO Int

bumpIt = do

intVal <- getInt

return (intVal + 1)

But if fmap f suffices for what you’re doing, that’s usually
shorter and clearer. It’s perfectly all right and quite common
to start with a more verbose form of some expression and
then clean it up after you’ve got something that works.
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16.15 What if we want to do something
different?

We talked about Functor as a means of lifting functions over
structure so that we may transform only the contents, leaving
the structure alone. What if we wanted to transform only the
structure and leave the type argument to that structure or type
constructor alone? With this, we’ve arrived at natural transfor-
mations. We can attempt to put together a type to express what
we want:

nat :: (f -> g) -> f a -> g a

This type is impossible because we can’t have higher-kinded
types as argument types to the function type. What’s the
problem, though? It looks like the type signature for fmap,
doesn’t it? Yet 𝑓 and 𝑔 in f -> g are higher-kinded types. They
must be, because they are the same 𝑓 and 𝑔 that, later in the
type signature, are taking arguments. But in those places they
are applied to their arguments and so have kind *.

So we make a modest change to fix it.

{-# LANGUAGE RankNTypes #-}

type Nat f g = forall a . f a -> g a
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So in a sense, we’re doing the opposite of what a Functor does.
We’re transforming the structure, preserving the values as they
were. We won’t explain it fully here, but the quantification of
𝑎 in the right-hand side of the declaration allows us to obligate
all functions of this type to be oblivious to the contents of
the structures 𝑓 and 𝑔 in much the same way that the identity
function cannot do anything but return the argument it was
given.

Syntactically, it lets us avoid talking about 𝑎 in the type of
Nat — which is what we want, we shouldn’t have any specific
information about the contents of 𝑓 and 𝑔 because we’re sup-
posed to be only performing a structural transformation, not
a fold.

If you try to elide the 𝑎 from the type arguments without
quantifying it separately, you’ll get an error:

Prelude> type Nat f g = f a -> g a

Not in scope: type variable ‘a’

Wecan add the quantifier, but if we forget to turn on RankNTypes

(or Rank2Types), it won’t work:

Prelude> :{

*Main| type Nat f g =

*Main| forall a . f a -> g a

*Main| :}
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Illegal symbol '.' in type

Perhaps you intended to use RankNTypes or a

similar language extension to enable

explicit-forall syntax:

forall <tvs>. <type>

If we turn on RankNTypes, it works fine:

Prelude> :set -XRank2Types

Prelude> :{

*Main| type Nat f g =

*Main| forall a . f a -> g a

*Main| :}

Prelude>

To see an example of what the quantification prevents, con-
sider the following:
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type Nat f g = forall a . f a -> g a

-- This'll work

maybeToList :: Nat Maybe []

maybeToList Nothing = []

maybeToList (Just a) = [a]

-- This will not work, not allowed.

degenerateMtl :: Nat Maybe []

degenerateMtl Nothing = []

degenerateMtl (Just a) = [a+1]

What if we use a version of Nat that mentions 𝑎 in the type?
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module BadNat where

type Nat f g a = f a -> g a

-- This'll work

maybeToList :: Nat Maybe [] a

maybeToList Nothing = []

maybeToList (Just a) = [a]

-- But this will too if we tell it

-- 'a' is Num a => a

degenerateMtl :: Num a => Nat Maybe [] a

degenerateMtl Nothing = []

degenerateMtl (Just a) = [a+1]

That last example should not work and is not a good way to
think about natural transformation. Part of software is being
precise and when we talk about natural transformations we’re
saying as much about what we don’t want as we are about what
we do want. In this case, the invariant we want to preserve is
that the function cannot do anything mischievous with the
values. If you want to transform the values, write a plain old
fold!

We’re going to return to the topic of natural transformations
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in the next chapter, so cool your jets for now.

16.16 Functors are unique to a datatype

In Haskell, Functor instances will be unique for a given datatype.
We saw that this isn’t true for Monoid; however, we use new-
types to preserve the unique pairing of an instance to a type.
But Functor instances will be unique for a datatype, in part
because of parametricity, in part because arguments to type
constructors are applied in order of definition. In a hypothet-
ical not-Haskell language, the following might be possible:

data Tuple a b =

Tuple a b

deriving (Eq, Show)

-- this is impossible in Haskell

instance Functor (Tuple ? b) where

fmap f (Tuple a b) = Tuple (f a) b

There are essentially two ways to address this. One is to flip
the arguments to the type constructor; the other is to make a
new datatype using a Flip newtype:
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{-# LANGUAGE FlexibleInstances #-}

module FlipFunctor where

data Tuple a b =

Tuple a b

deriving (Eq, Show)

newtype Flip f a b =

Flip (f b a)

deriving (Eq, Show)

-- this works, goofy as it looks.

instance Functor (Flip Tuple a) where

fmap f (Flip (Tuple a b)) =

Flip $ Tuple (f a) b

Prelude> fmap (+1) (Flip (Tuple 1 "blah"))

Flip (Tuple 2 "blah")

However, Flip Tuple a b is a distinct type from Tuple a b

even if it’s only there to provide for different Functor instance
behavior.
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16.17 Chapter exercises

Determine if a valid Functor can be written for the datatype
provided.

1. data Bool =

False | True

2. data BoolAndSomethingElse a =

False' a | True' a

3. data BoolAndMaybeSomethingElse a =

Falsish | Truish a

4. Use the kinds to guide you on this one, don’t get too hung
up on the details.

newtype Mu f = InF { outF :: f (Mu f) }

5. Again, follow the kinds and ignore the unfamiliar parts

import GHC.Arr

data D =

D (Array Word Word) Int Int

Rearrange the arguments to the type constructor of the
datatype so the Functor instance works.
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1. data Sum a b =

First a

| Second b

instance Functor (Sum e) where

fmap f (First a) = First (f a)

fmap f (Second b) = Second b

2. data Company a b c =

DeepBlue a c

| Something b

instance Functor (Company e e') where

fmap f (Something b) = Something (f b)

fmap _ (DeepBlue a c) = DeepBlue a c

3. data More a b =

L a b a

| R b a b

deriving (Eq, Show)

instance Functor (More x) where

fmap f (L a b a') = L (f a) b (f a')

fmap f (R b a b') = R b (f a) b'
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Keeping in mind that it should result in a Functor that does
the following:

Prelude> fmap (+1) (L 1 2 3)

L 2 2 4

Prelude> fmap (+1) (R 1 2 3)

R 1 3 3

Write Functor instances for the following datatypes.

1. data Quant a b =

Finance

| Desk a

| Bloor b

2. No, it’s not interesting by itself.

data K a b =

K a
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3. {-# LANGUAGE FlexibleInstances #-}

newtype Flip f a b =

Flip (f b a)

deriving (Eq, Show)

newtype K a b =

K a

-- should remind you of an

-- instance you've written before

instance Functor (Flip K a) where

fmap = undefined

4. data EvilGoateeConst a b =

GoatyConst b

-- You thought you'd escaped the goats

-- by now didn't you? Nope.

No, it doesn’t do anything interesting. No magic here or
in the previous exercise. If it works, you succeeded.

5. Do you need something extra to make the instance work?
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data LiftItOut f a =

LiftItOut (f a)

6. data Parappa f g a =

DaWrappa (f a) (g a)

7. Don’t ask for more typeclass instances than you need. You
can let GHC tell you what to do.

data IgnoreOne f g a b =

IgnoringSomething (f a) (g b)

8. data Notorious g o a t =

Notorious (g o) (g a) (g t)

9. You’ll need to use recursion.

data List a =

Nil

| Cons a (List a)

10. A tree of goats forms a Goat-Lord, fearsome poly-creature.



CHAPTER 16. FUNCTOR 1046

data GoatLord a =

NoGoat

| OneGoat a

| MoreGoats (GoatLord a)

(GoatLord a)

(GoatLord a)

-- A VERITABLE HYDRA OF GOATS

11. You’ll use an extra functor for this one, although your so-
lution might do it monomorphically without using fmap.
Keep in mind that you will probably not be able to vali-
date this one in the usual manner. Do your best to make
it work.2

data TalkToMe a =

Halt

| Print String a

| Read (String -> a)

16.18 Definitions

1. Higher-kinded polymorphism is polymorphism which has
a type variable abstracting over types of a higher kind.
Functor is an example of higher-kinded polymorphism
because the kind of the 𝑓 parameter to Functor is * -> *.

2 Thanks to Andraz Bajt for inspiring this exercise.



CHAPTER 16. FUNCTOR 1047

Another example of higher-kinded polymorphism would
be a datatype having a parameter to the type constructor
which is of a higher kind, such as the following:

data Weird f a = Weird (f a)

Where the kinds of the types involved are:

a :: *

f :: * -> *

Weird :: (* -> *) -> * -> *

Here both Weird and 𝑓 are higher kinded, with Weird being
an example of higher-kinded polymorphism.

2. Functor is a mapping between categories. In Haskell, this
manifests as a typeclass that generalizes the concept of map:
it takes a function (a -> b) and lifts it into a different type.
This conventionally implies some notion of a function
which can be applied to a value with more structure than
the unlifted function was originally designed for. The
additional structure is represented by the use of a higher-
kinded type 𝑓 , introduced by the definition of the Functor

typeclass.
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f :: a -> b

-- ``more structure''

fmap f :: f a -> f b

-- f is applied to a single argument,

-- and so is kind * -> *

One should be careful not to confuse this intuition for
it necessarily being exclusively about containers or data
structures. There’s a Functor of functions and many exotic
types will have a lawful Functor instance.

3. Let’s talk about lifting. Because most of the rest of the
book deals with applicatives and monads of various fla-
vors, we’re going to be lifting a lot, but what do we mean?
When Carnap first described functors in the context of
linguistics, he didn’t really talk about it as lifting anything,
and mathematicians have followed in his footsteps, fo-
cusing on mapping and the production of outputs from
certain types of inputs. Very mathematical of them, and
yet Haskellers use the lifting metaphor often (as we do, in
this book).

There are a couple of ways people commonly think about
it. One is that we can lift a function into a context. Another
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is that we lift a function over some layer of structure to
apply it. The effect is the same:

Prelude> fmap (+1) $ Just 1

Just 2

Prelude> fmap (+1) [1, 2, 3]

[2,3,4]

In the first case, we lift that function into a Maybe context
in order to apply it; in the second case, into a list con-
text. It can be helpful to think of it in terms of lifting the
function into the context, because it’s the context we’ve
lifted the function into that determines how the function
will get applied (to one value or, recursively, to many, for
example). The context is the datatype, the definition of
the datatype, and the Functor instance we have for that
datatype. It’s also the contexts that determine what hap-
pens when we try to apply a function to an 𝑎 that isn’t
there:

Prelude> fmap (+1) []

[]

Prelude> fmap (+1) Nothing

Nothing

But we often speak more casually about lifting over, as in
fmap lifts a function over a data constructor. This works,
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too, if you think of the data constructor as a layer of struc-
ture. The function hops over that layer and applies to
what’s inside, if anything.

More precisely, lifting means applying a type constructor
to a type, as in taking an 𝑎 type variable and applying an
𝑓 type constructor to it to get an f a. Keeping this def-
inition in mind will be helpful. Remember to follow the
types rather than getting too caught up in the web of a
metaphor.

4. George Clinton is one of the most important innovators of
funk music. Clinton headed up the bands Parliament and
Funkadelic, whose collective style of music is known as
P-Funk; the two bands have fused into a single apotheosis
of booty-shaking rhythm. The Parliament album Mother-
ship Connection is one of the most famous and influential
albums in rock history. Not a Functor, but you can pretend
the album is mapping your consciousness from the real
world into the category of funkiness if that helps.

16.19 Follow-up resources

1. Haskell Wikibook; The Functor class.
https://en.wikibooks.org/wiki/Haskell/The_Functor_class

https://en.wikibooks.org/wiki/Haskell/The_Functor_class
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2. Mark P. Jones; A system of constructor classes: overload-
ing and implicit higher-order polymorphism.

3. Gabriel Gonzalez; The functor design pattern.
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Applicative

…the images I most
connect to, historically
speaking, are in black and
white. I see more in black
and white – I like the
abstraction of it.

Mary Ellen Mark
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17.1 Applicative

In the previous chapters, we’ve seen two common algebras
that are used as typeclasses. Monoid gives us a means of mashing
two values of the same type together. Functor, on the other
hand, is for function application over some structure we don’t
want to have to think about. Monoid’s core operation, mappend,
smashes the structures together — when you mappend two lists,
they become one list, so the structures themselves have been
joined. However, the core operation of Functor, fmap, applies a
function to a value that is within some structure while leaving
that structure unaltered.

We come now to Applicative. Applicatives are monoidal
functors. No, no, stay with us. The Applicative typeclass allows
for function application lifted over structure (like Functor). But
with Applicative the function we’re applying is also embed-
ded in some structure. Because the function and the value
it’s being applied to both have structure, we have to smash
those structures together. So, Applicative involves monoids
and functors. And that’s a pretty powerful thing.

In this chapter, we will:

• define and explore the Applicative typeclass and its core
operations;

• demonstrate why applicatives are monoidal functors;
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• make the usual chitchat about laws and instances;

• do a lot of lifting;

• give you some Validation.

17.2 Defining Applicative

The first thing you’re going to notice about this typeclass dec-
laration is that the 𝑓 that represents the structure, similar to
Functor, is itself constrained by the Functor typeclass:

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

So, every type that can have an Applicative instance must
also have a Functor instance.

The pure function does a simple and very boring thing:
it lifts something into functorial (applicative) structure. You
can think of this as being a bare minimum bit of structure or
structural identity. Identity forwhat, you’ll see later when we go
over the laws. The more interesting operation of this typeclass
is <*>. This is an infix function called ‘apply’ or sometimes
‘ap,’ or sometimes ‘tie fighter’ when we’re feeling particularly
zippy.

If we compare the types of <*> and fmap, we see the similar-
ity:
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-- fmap

(<$>) :: Functor f

=> (a -> b) -> f a -> f b

(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

The difference is the 𝑓 representing functorial structure
that is on the outside of our function in the second definition.
We’ll see good examples of what that means in practice in a
moment.

Along with these core functions, the Control.Applicative li-
brary provides some other convenient functions: liftA, liftA2,
and liftA3:
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liftA :: Applicative f =>

(a -> b)

-> f a

-> f b

liftA2 :: Applicative f =>

(a -> b -> c)

-> f a

-> f b

-> f c

liftA3 :: Applicative f =>

(a -> b -> c -> d)

-> f a

-> f b

-> f c

-> f d

If you’re looking at the type of liftA and thinking, but that’s
fmap, you are correct. It is basically the same as fmap only with
an Applicative typeclass constraint instead of a Functor one.
Since all applicatives are also functors, though, this is a distinc-
tion without much significance.

Similarly you can see that liftA2 and liftA3 are fmap but with
functions involving more arguments. It can be a little difficult
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to wrap one’s head around how those will work in practice, so
we’ll want to look next at some examples to start developing a
sense of what applicatives can do for us.

17.3 Functor vs. Applicative

We’ve already said that applicatives are monoidal functors,
so what we’ve already learned about Monoid and Functor is rele-
vant to our understanding of Applicative. We’ve already seen
some examples of what this means in practice, but we want to
develop a stronger intuition for the relationship.

Let’s review the difference between fmap and <*>:

fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

The difference is we now have an 𝑓 in front of our function
(a -> b). The increase in power it introduces is profound. For
one thing, any Applicative also has a Functor and not merely
by definition — you can define a Functor in terms of a pro-
vided Applicative instance. Proving it is outside the scope of
the current book, but this follows from the laws of Functor

and Applicative (we’ll get to the applicative laws later in this
chapter):

fmap f x = pure f <*> x
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How might we demonstrate this? You’ll need to import
Control.Applicative if you’re using GHC 7.8 or older to test this
example:

Prelude> fmap (+1) [1, 2, 3]

[2,3,4]

Prelude> pure (+1) <*> [1..3]

[2,3,4]

Keeping in mind that pure has type Applicative f => a -> f

a, we can think of it as a means of embedding a value of any
type in the structure we’re working with:

Prelude> pure 1 :: [Int]

[1]

Prelude> pure 1 :: Maybe Int

Just 1

Prelude> pure 1 :: Either a Int

Right 1

Prelude> pure 1 :: ([a], Int)

([],1)

The left type is handled differently from the right in the
final two examples for the same reason as here:

Prelude> fmap (+1) (4, 5)

(4,6)
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The left type is part of the structure, and the structure is
not transformed by the function application.

17.4 Applicative functors are monoidal
functors

First let us notice something:

($) :: (a -> b) -> a -> b

(<$>) :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

We already know $ to be something of a do-nothing infix
function which exists to give the right-hand side more prece-
dence and thus avoid parentheses. For our present purposes
it acts as a nice proxy for ordinary function application in its
type.

When we get to <$>, the alias for fmap, we notice the first
change is that we’re now lifting our (a -> b) over the 𝑓 wrapped
around our value and applying the function to that value.

Then as we arrive at ap or <*>, the Applicative apply method,
our function is now also embedded in the functorial structure.
Now we get to the monoidal in “monoidal functor”:
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:: f (a -> b) -> f a -> f b

-- The two arguments to our function are:

f (a -> b)

-- and

f a

If we imagine that we can apply (a -> b) to 𝑎 and get 𝑏,
ignoring the functorial structure, we still have a problem as we
need to return f b. When we were dealing with fmap, we had
only one bit of structure, so it was left unchanged. Now we
have two bits of structure of type 𝑓 that we need to deal with
somehow before returning a value of type f b. We can’t simply
leave them unchanged; we must unite them somehow. Now,
they will be definitely the same type, because the 𝑓 must be
the same type throughout. In fact, if we separate the structure
parts from the function parts, maybe we’ll see what we need:

:: f (a -> b) -> f a -> f b

f f f

(a -> b) a b

Didn’t we have something earlier that can take two values
of one type and return one value of the same type? Provided
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the 𝑓 is a type with a Monoid instance, then we have a good way
to make them play nice together:

mappend :: Monoid a => a -> a -> a

So, with Applicative, we have a Monoid for our structure and
function application for our values!

mappend :: f f f

$ :: (a -> b) a b

(<*>) :: f (a -> b) -> f a -> f b

-- plus Functor fmap to be able to map

-- over the f to begin with.

So in a sense, we’re bolting a Monoid onto a Functor to be able
to deal with functions embedded in additional structure. In
another sense, we’re enriching function application with the
very structure we were previously mapping over with Functor.
Let’s consider a few familiar examples to examine what this
means:
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-- List

[(*2), (*3)] <*> [4, 5]

=

[2 * 4, 2 * 5, 3 * 4, 3 * 5]

-- reduced

[8,10,12,15]

So what was (a -> b) enriched with in f (a -> b) -> f a ->

f b? In this case, “list-ness”. Although the actual application
of each (a -> b) to a value of type 𝑎 is quite ordinary, we now
have a list of functions rather than a single function as would
be the case if it was the list Functor.

But lists aren’t the only structure we can enrich our func-
tions with — not even close! The structure bit can also be Maybe:
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Just (*2) <*> Just 2

=

Just 4

Just (*2) <*> Nothing

=

Nothing

Nothing <*> Just 2

=

Nothing

Nothing <*> Nothing

=

Nothing

With Maybe, the ordinary functor is mapping over the pos-
sibility of a value’s nonexistence. With the Applicative, now
the function also might not be provided. We’ll see a couple
of nice, long examples of how this might happen — how you
could end up not even providing a function to apply — in a
bit, not just with Maybe, but with Either and a new type called
Validation as well.
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Show me the monoids

Recall that the Functor instance for the two-tuple ignores the
first value inside the tuple:

Prelude> fmap (+1) ("blah", 0)

("blah",1)

But the Applicative for the two-tuple demonstrates themonoid
in Applicative nicely for us. In fact, if you call :info on (,) in
your REPL you’ll notice something:

Prelude> :info (,)

data (,) a b = (,) a b

-- Defined in ‘GHC.Tuple’

...

instance Monoid a

=> Applicative ((,) a)

-- Defined in ‘GHC.Base’

...

instance (Monoid a, Monoid b)

=> Monoid (a, b)

For the Applicative instance of two-tuple, we don’t need a
Monoid for the 𝑏 because we’re using function application to
produce the 𝑏. However, for the first value in the tuple, we
still need the Monoid because we have two values and need to
somehow turn that into one value of the same type:
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Prelude> ("Woo", (+1)) <*> (" Hoo!", 0)

("Woo Hoo!", 1)

Notice that for the 𝑎 value, we didn’t apply any function,
but they have combined themselves as if by magic; that’s due
to the Monoid instance for the 𝑎 values. The function in the 𝑏
position of the left tuple has been applied to the value in the 𝑏
position of the right tuple to produce a result. That function
application is why we don’t need a Monoid instance on the 𝑏.

Let’s look at more such examples. Pay careful attention to
how the 𝑎 values in the tuples are combined:

Prelude> import Data.Monoid

Prelude> (Sum 2, (+1)) <*> (Sum 0, 0)

(Sum {getSum = 2},1)

Prelude> (Product 3, (+9))<*>(Product 2, 8)

(Product {getProduct = 6},17)

Prelude> (All True, (+1))<*>(All False, 0)

(All {getAll = False},1)

It doesn’t really matter what Monoid, but we need some way
of combining or choosing our values.

Tuple Monoid and Applicative side by side

Squint if you can’t see it.
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instance (Monoid a, Monoid b)

=> Monoid (a,b) where

mempty = (mempty, mempty)

(a, b) `mappend` (a',b') =

(a `mappend` a', b `mappend` b')

instance Monoid a

=> Applicative ((,) a) where

pure x = (mempty, x)

(u, f) <*> (v, x) =

(u `mappend` v, f x)

Maybe Monoid and Applicative

While applicatives are monoidal functors, be careful about
making assumptions based on this. For one thing, Monoid and
Applicative instances aren’t required or guaranteed to have the
same monoid of structure, and the functorial part may change
the way it behaves. Nevertheless, you might be able to see the
implicit monoid in how the Applicative pattern matches on
the Just and Nothing cases and compare that with this Monoid:
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instance Monoid a => Monoid (Maybe a) where

mempty = Nothing

mappend m Nothing = m

mappend Nothing m = m

mappend (Just a) (Just a') =

Just (mappend a a')

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

_ <*> Nothing = Nothing

Just f <*> Just a = Just (f a)

Later we’ll see some examples of how different Monoid in-
stances can give different results for applicatives. For now,
recognize that the monoidal bit may not be what you recog-
nize as the canonical mappend of that type, because some types
can have multiple monoids.

17.5 Applicative in use

Bynow it should come as no surprise thatmanyof the datatypes
we’ve been working with in the past two chapters also have
Applicative instances. Since we are already so familiar with list
and Maybe, those examples will be a good place to start. Later
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in the chapter, we will be introducing some new types, so just
hang onto your hats.

List Applicative

We’ll start with the list Applicative because it’s a clear way to
get a sense of the pattern. Let’s start by specializing the types:

-- f ~ []

(<*>) :: f (a -> b) -> f a -> f b

(<*>) :: [ ] (a -> b) -> [ ] a -> [ ] b

-- more syntactically typical

(<*>) :: [(a -> b)] -> [a] -> [b]

pure :: a -> f a

pure :: a -> [ ] a

Or, again, if you have GHC 8 or newer, you can do this:

Prelude> :set -XTypeApplications

Prelude> :type (<*>) @[]

(<*>) @[] :: [a -> b] -> [a] -> [b]

Prelude> :type pure @[]

pure @[] :: a -> [a]
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What’s the List applicative do?

Previously with list Functor, we were mapping a single function
over a plurality of values:

Prelude> fmap (2^) [1, 2, 3]

[2,4,8]

Prelude> fmap (^2) [1, 2, 3]

[1,4,9]

With the list Applicative, we are mapping a plurality of func-
tions over a plurality of values:

Prelude> [(+1), (*2)] <*> [2, 4]

[3,5,4,8]

We can see how this makes sense given that:

(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

f ~ []

listApply :: [(a -> b)] -> [a] -> [b]

listFmap :: (a -> b) -> [a] -> [b]
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The 𝑓 structure that is wrapped around our function in the
listApply function is itself a list. Therefore, our a -> b from
Functor has become a list of a -> b.

Now what happened with that expression we tested? Some-
thing like this:

[(+1), (*2)] <*> [2, 4] == [3,5,4,8]

[ 3 , 5 , 4 , 8 ]

-- [1] [2] [3] [4]

1. The first item in the list, 3, is the result of (+1) being applied
to 2.

2. 5 is the result of applying (+1) to 4.

3. 4 is the result of applying (*2) to 2.

4. 8 is the result of applying (*2) to 4.

More visually:

[(+1), (*2)] <*> [2, 4]

[ (+1) 2 , (+1) 4 , (*2) 2 , (*2) 4 ]

It maps each function value from the first list over the sec-
ond list, applies the operations, and returns one list. The fact
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that it doesn’t return two lists or a nested list or some other
configuration in which both structures are preserved is the
monoidal part; the reason we don’t have a list of functions
concatenated with a list of values is the function application
part.

We can see this relationship more readily if we use the
tuple constructor with the list Applicative. We’ll use the infix
operator for fmap to map the tuple constructor over the first list.
This embeds an unapplied function (the tuple data constructor
in this case) into some structure (a list, in this case), and returns
a list of partially applied functions. The (infix) applicative will
then apply one list of operations to the second list, monoidally
appending the two lists:

Prelude> (,) <$> [1, 2] <*> [3, 4]

[(1,3),(1,4),(2,3),(2,4)]

You might think of it this way:

Prelude> (,) <$> [1, 2] <*> [3, 4]

-- fmap the (,) over the first list

[(1, ), (2, )] <*> [3, 4]

-- then we apply the first list

-- to the second

[(1,3),(1,4),(2,3),(2,4)]
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The liftA2 function gives us another way to write this, too:

Prelude> liftA2 (,) [1, 2] [3, 4]

[(1,3),(1,4),(2,3),(2,4)]

Let’s look at a few more examples of the same pattern:

Prelude> (+) <$> [1, 2] <*> [3, 5]

[4,6,5,7]

Prelude> liftA2 (+) [1, 2] [3, 5]

[4,6,5,7]

Prelude> max <$> [1, 2] <*> [1, 4]

[1,4,2,4]

Prelude> liftA2 max [1, 2] [1, 4]

[1,4,2,4]

If you’re familiar with Cartesian products1, this probably
looks a lot like one, but with functions.

We’re going to run through some more examples, to give
you a little more context for when these functions can become
useful. The following exampleswill use a function called lookup

that we’ll briefly demonstrate:

Prelude> :t lookup

lookup :: Eq a => a -> [(a, b)] -> Maybe b

1 The Cartesian product is the product of two sets that results in all the ordered pairs
(tuples) of the elements of those sets.
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Prelude> let l = lookup 3 [(3, "hello")]

Prelude> l

Just "hello"

Prelude> fmap length $ l

Just 5

Prelude> let c (x:xs) = toUpper x:xs

Prelude> fmap c $ l

Just "Hello"

So, lookup searches inside a list of tuples for a value that
matches the input and returns the paired value wrapped inside
a Maybe context.

It’s worth pointing out here that if you’re working with
Map data structures instead of lists of tuples, you can import
Data.Map and use a Map version of lookup along with fromList to
accomplish the same thing with that data structure:

Prelude> let m = fromList [(3, "hello")]

Prelude> fmap c $ Data.Map.lookup 3 m

Just "Hello"

That may seem trivial at the moment, but Map is a frequently
used data structure, so it’s worth mentioning.

Now thatwe have valueswrapped in a Maybe context, perhaps
we’d like to apply some functions to them. This is where we
want applicative operations. Although it’s more likely that
we’d have functions fetching data from somewhere else rather
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than having it all listed in our code file, we’ll go ahead and
define some values in a source file for convenience:

import Control.Applicative

f x =

lookup x [ (3, "hello")

, (4, "julie")

, (5, "kbai")]

g y =

lookup y [ (7, "sup?")

, (8, "chris")

, (9, "aloha")]

h z =

lookup z [(2, 3), (5, 6), (7, 8)]

m x =

lookup x [(4, 10), (8, 13), (1, 9001)]

Now we want to look things up and add them together. We’ll
start with some operations over these data:

Prelude> f 3

Just "hello"

Prelude> g 8

Just "chris"
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Prelude> (++) <$> f 3 <*> g 7

Just "hellosup?"

Prelude> (+) <$> h 5 <*> m 1

Just 9007

Prelude> (+) <$> h 5 <*> m 6

Nothing

So we first fmap those functions over the value inside the first
Maybe context, if it’s a Just value, making it a partially applied
function wrapped in a Maybe context. Then we use the tie-
fighter to apply that to the second value, again wrapped in a
Maybe. If either value is a Nothing, we get Nothing.

We can again do the same thing with liftA2:

Prelude> liftA2 (++) (g 9) (f 4)

Just "alohajulie"

Prelude> liftA2 (^) (h 5) (m 4)

Just 60466176

Prelude> liftA2 (*) (h 5) (m 4)

Just 60

Prelude> liftA2 (*) (h 1) (m 1)

Nothing

Your applicative context can also sometimes be IO:

(++) <$> getLine <*> getLine

(,) <$> getLine <*> getLine
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Try it. Now try using fmap to get the length of the resulting
string of the first example.

Exercises: Lookups

In the following exercises you will need to use the following
terms to make the expressions typecheck:

1. pure

2. (<$>)

-- or fmap

3. (<*>)

Make the following expressions typecheck.

1. added :: Maybe Integer

added =

(+3) (lookup 3 $ zip [1, 2, 3] [4, 5, 6])

2. y :: Maybe Integer

y = lookup 3 $ zip [1, 2, 3] [4, 5, 6]

z :: Maybe Integer

z = lookup 2 $ zip [1, 2, 3] [4, 5, 6]

tupled :: Maybe (Integer, Integer)

tupled = (,) y z
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3. import Data.List (elemIndex)

x :: Maybe Int

x = elemIndex 3 [1, 2, 3, 4, 5]

y :: Maybe Int

y = elemIndex 4 [1, 2, 3, 4, 5]

max' :: Int -> Int -> Int

max' = max

maxed :: Maybe Int

maxed = max' x y

4. xs = [1, 2, 3]

ys = [4, 5, 6]

x :: Maybe Integer

x = lookup 3 $ zip xs ys

y :: Maybe Integer

y = lookup 2 $ zip xs ys

summed :: Maybe Integer

summed = sum $ (,) x y
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Identity

The Identity type here is a way to introduce structure without
changing the semantics of what you’re doing. We’ll see it used
with these typeclasses that involve function application around
and over structure, but this type itself isn’t very interesting, as
it has no semantic flavor.

Specializing the types

Here is what the type will look like when our structure is
Identity:

-- f ~ Identity

-- Applicative f =>

type Id = Identity

(<*>) :: f (a -> b) -> f a -> f b

(<*>) :: Id (a -> b) -> Id a -> Id b

pure :: a -> f a

pure :: a -> Id a

Why would we use Identity just to introduce some struc-
ture? What is the meaning of all this?

Prelude> let xs = [1, 2, 3]
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Prelude> let xs' = [9, 9, 9]

Prelude> const <$> xs <*> xs'

[1,1,1,2,2,2,3,3,3]

Prelude> let mkId = Identity

Prelude> const <$> mkId xs <*> mkId xs'

Identity [1,2,3]

Having this extra bit of structure around our values lifts the
const function, from mapping over the lists to mapping over
the Identity. We have to go over an 𝑓 structure to apply the
function to the values inside. If our 𝑓 is the list, const applies to
the values inside the list, as we saw above. If the 𝑓 is Identity,
then const treats the lists inside the Identity structure as single
values, not structure containing values.

Exercise: Identity Instance

Write an Applicative instance for Identity.
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newtype Identity a = Identity a

deriving (Eq, Ord, Show)

instance Functor Identity where

fmap = undefined

instance Applicative Identity where

pure = undefined

(<*>) = undefined

Constant

This is not so different from the Identity type, except this
not only provides structure it also acts like the const function.
It sort of throws away a function application. If this seems
confusing, it’s because it is. However, it is also something that,
like Identity has real use cases, and you will see it in other
people’s code. It can be difficult to get used to using it yourself,
but we keep trying.

This datatype is like the const function in that it takes two
arguments but one of them gets discarded. In the case of the
datatype, we have to map our function over the argument
that gets discarded. So there is no value to map over, and the
function application doesn’t happen.
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Specializing the types

All right, so here’s what the types will look like:

-- f ~ Constant e

type C = Constant

(<*>) :: f (a -> b) -> f a -> f b

(<*>) :: C e (a -> b) -> C e a -> C e b

pure :: a -> f a

pure :: a -> C e a

And here are some examples of how it works. These are,
yes, a bit contrived, but showing you real code with this in it
would probably make it much harder for you to see what’s
going on:

Prelude> let f = Constant (Sum 1)

Prelude> let g = Constant (Sum 2)

Prelude> f <*> g

Constant {getConstant = Sum {getSum = 3}

Prelude> Constant undefined <*> g

Constant (Sum {getSum =

*** Exception: Prelude.undefined

Prelude> pure 1

1
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Prelude> pure 1 :: Constant String Int

Constant {getConstant = ""}

It can’t do anything because it can only hold onto the one
value. The function doesn’t exist, and the 𝑏 is a ghost. So you
use this when whatever you want to do involves throwing away
a function application. We know it seems somewhat crazy, but
we promise there are really times real coders do this in real
code. Pinky swear.

Exercise: Constant Instance

Write an Applicative instance for Constant.

newtype Constant a b =

Constant { getConstant :: a }

deriving (Eq, Ord, Show)

instance Functor (Constant a) where

fmap = undefined

instance Monoid a

=> Applicative (Constant a) where

pure = undefined

(<*>) = undefined
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Maybe Applicative

With Maybe, we’re doing something a bit different from above.
We saw previously how to use fmap with Maybe, but here our
function is also embedded in a Maybe structure. Therefore,
when 𝑓 is Maybe, we’re saying the function itself might not exist,
because we’re allowing the possibility of the function to be
applied being a Nothing case.

Specializing the types

Here’s what the type looks like when we’re using Maybe as our
𝑓 structure:

-- f ~ Maybe

type M = Maybe

(<*>) :: f (a -> b) -> f a -> f b

(<*>) :: M (a -> b) -> M a -> M b

pure :: a -> f a

pure :: a -> M a

Are you ready to validate some persons? Yes. Yes, you are.
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Using the Maybe Applicative

Consider the following example where we validate our inputs
to create a value of type Maybe Person, where the Maybe is because
our inputs might be invalid:

validateLength :: Int

-> String

-> Maybe String

validateLength maxLen s =

if (length s) > maxLen

then Nothing

else Just s

newtype Name =

Name String deriving (Eq, Show)

newtype Address =

Address String deriving (Eq, Show)

mkName :: String -> Maybe Name

mkName s =

fmap Name $ validateLength 25 s

mkAddress :: String -> Maybe Address

mkAddress a =

fmap Address $ validateLength 100 a
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Now we’ll make a smart constructor for a Person:

data Person =

Person Name Address

deriving (Eq, Show)

mkPerson :: String

-> String

-> Maybe Person

mkPerson n a =

case mkName n of

Nothing -> Nothing

Just n' ->

case mkAddress a of

Nothing -> Nothing

Just a' ->

Just $ Person n' a'

The problem here is while we’ve successfully leveraged fmap

from Functor in the simpler cases of mkName and mkAddress, we
can’t really make that work here with mkPerson. Let’s investigate
why:

Prelude> :t fmap Person (mkName "Babe")

fmap Person (mkName "Babe")

:: Maybe (Address -> Person)
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This has worked so far for the first argument to the Person

constructor that we’re validating, but we’ve hit a roadblock.
Can you see the problem?

Prelude> :{

*Main| fmap (fmap Person (mkName "Babe"))

*Main| (mkAddress "old macdonald's")

*Main| :}

Couldn't match expected type ‘Address -> b’

with actual type

‘Maybe (Address -> Person)’

Possible cause: ‘fmap’ is applied to too

many arguments

In the first argument of ‘fmap’, namely

‘(fmap Person (mkName "Babe"))’

In the expression:

fmap (fmap Person (mkName "Babe")) v

The problem is that our (a -> b) is now hiding inside Maybe.
Let’s look at the type of fmap again:

fmap :: Functor f => (a -> b) -> f a -> f b

Maybe is definitely a Functor, but that’s not really going to
help us here. We need to be able to map a function embedded
in our 𝑓 . Applicative gives us what we need here!
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(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

Now let’s see if we can wield this new toy:

Prelude> let s = "old macdonald's"

Prelude> let addy = mkAddress s

Prelude> let b = mkName "Babe"

Prelude> let person = fmap Person b

Prelude> person <*> addy

Just (Person (Name "Babe")

(Address "old macdonald's"))

Nice, right? A little ugly though. Using the infix alias for
fmap called <$> cleans it up a bit, at least to Haskellers’ eyes:

Prelude> Person <$> mkName "Babe" <*> addy

Just (Person (Name "Babe")

(Address "old macdonald's"))

We still use fmap (via <$>) here for the first lifting over Maybe;
after that our (a -> b) is hiding in the 𝑓 where 𝑓 = Maybe, so we
have to start using Applicative to keep mapping over that.

We can now use a much shorter definition of mkPerson!
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mkPerson :: String

-> String

-> Maybe Person

mkPerson n a =

Person <$> mkName n <*> mkAddress a

As an additional bonus, this is now far less annoying to
extend if we added new fields as well.

Breaking down that example

We’re going to give the Functor and Applicative instances for
Maybe the same treatment we gave folds. This will be a bit long.
It is possible that some of this will seem like too much detail;
read it to whatever depth you feel you need to. It will sit here,
patiently waiting to see if you ever need to come back and
read it more closely.

Maybe Functor and the Name constructor
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instance Functor Maybe where

fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

_ <*> Nothing = Nothing

Just f <*> Just a = Just (f a)

The Applicative instance is not exactly the same as the in-
stance in base, but that’s for simplification. For your purposes,
it produces the same results.

First the function and datatype definitions for our functor
write-up for how we’re using the validateLength function with
Name and Address:
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validateLength :: Int

-> String

-> Maybe String

validateLength maxLen s =

if (length s) > maxLen

then Nothing

else Just s

newtype Name =

Name String deriving (Eq, Show)

newtype Address =

Address String deriving (Eq, Show)

mkName :: String -> Maybe Name

mkName s = fmap Name $ validateLength 25 s

mkAddress :: String -> Maybe Address

mkAddress a =

fmap Address $ validateLength 100 a

Now we’re going to start filling in the definitions and ex-
panding them equationally like we did in the chapter on folds.

First we apply mkName to the value "babe" so that 𝑠 is bound
to that string:
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mkName s =

fmap Name $ validateLength 25 s

mkName "babe" =

fmap Name $ validateLength 25 "babe"

Now we need to figure out what validateLength is about since
that has to be evaluated before we know what fmap is mapping
over. Here we’re applying it to 25 and ”babe”, evaluating the
length of the string ”babe”, and then determining which branch
in the if-then-else wins:

validateLength :: Int

-> String

-> Maybe String

validateLength 25 "babe" =

if (length "babe") > 25

then Nothing

else Just "babe"

if 4 > 25

then Nothing

else Just "babe"

-- 4 isn't greater than 25, so:

validateLength 25 "babe" =

Just "babe"
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Now we’re going to replace validateLength applied to 25 and
”babe” with what it evaluated to, then figure out what the fmap

Name over Just "babe" business is about:

mkName "babe" =

fmap Name $ Just "babe"

fmap Name $ Just "babe"

Keeping in mind the type of fmap from Functor, we see the
data constructor Name is the function (a -> b) we’re mapping
over some functorial 𝑓 . In this case, 𝑓 is Maybe. The 𝑎 in 𝑓 𝑎 is
String:

(a -> b) -> f a -> f b

:t Name :: (String -> Name)

:t Just "babe" :: Maybe String

type M = Maybe

(a -> b) -> f a -> f b

(String -> Name) -> M String -> M Name

Since we know we’re dealing with the Functor instance for
Maybe, we can inline that function’s definition too!
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fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

-- We have (Just "babe") so

-- skipping Nothing case

-- fmap _ Nothing = Nothing

fmap f (Just a) =

Just (f a)

fmap Name (Just "babe") =

Just (Name "babe")

mkName "babe" = fmap Name $ Just "babe"

mkName "babe" = Just (Name "babe")

-- f b

Maybe Applicative and Person

data Person =

Person Name Address

deriving (Eq, Show)

First we’ll be using the Functor to map the Person data con-
structor over the Maybe Name value. Unlike Name and Address,
Person takes two arguments rather than one.
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Person

<$> Just (Name "babe")

<*> Just (Address "farm")

fmap Person (Just (Name "babe"))

:t Person :: Name -> Address -> Person

:t Just (Name "babe") :: Maybe Name

(a -> b) -> f a -> f b

(Name -> Address -> Person)

a -> b

-> Maybe Name -> Maybe (Address -> Person)

f a f b
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fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

fmap Person (Just (Name "babe"))

f :: Person

a :: Name "babe"

-- We skip this pattern match

-- because we have Just

-- fmap _ Nothing = Nothing

fmap f (Just a) =

Just (f a)

fmap Person (Just (Name "babe")) =

Just (Person (Name "babe"))

The problem is Person (Name "babe") is awaiting another ar-
gument, the address, so it’s a partially applied function. That’s
our (a -> b) in the type of Applicative’s (<*>). The 𝑓 wrapping
our (a -> b) is the Maybe which results from us possibly not hav-
ing had an 𝑎 to map over to begin with, resulting in a Nothing

value:
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-- Person is awaiting another argument

:t Just (Person (Name "babe"))

:: Maybe (Address -> Person)

:t Just (Address "farm") :: Maybe Address

-- We want to apply the partially

-- applied (Person "babe") inside the

-- 'Just' to the "farm" inside the Just.

Just (Person (Name "babe"))

<*> Just (Address "farm")

So, since the function we want to map is inside the same
structure as the value we want to apply it to, we need the
Applicative (<*>). In the following, we remind you of what the
type looks like and how the type specializes to this application:

f (a -> b) -> f a -> f b

type M = Maybe

type Addy = Address

M (Addy -> Person) -> M Addy -> M Person

f ( a -> b ) -> f a -> f b
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We know we’re using the Maybe Applicative, so we can go
ahead and inline the definition. Reminder that this version of
the Applicative instance is simplified from the one in GHC, so
please don’t email us to tell us our instance is wrong:

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

_ <*> Nothing = Nothing

Just f <*> Just a = Just (f a)

We know we can ignore the Nothing cases because our func-
tion is Just, our value is Just...and our cause is just! Just…kid-
ding.

If we fill in our partially applied Person constructor for 𝑓 ,
and our Address value for 𝑎, it’s not too hard to see how the
final result fits.
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-- Neither function nor value are Nothing,

-- so we skip these two cases

-- Nothing <*> _ = Nothing

-- _ <*> Nothing = Nothing

Just f <*> Just a = Just (f a)

Just (Person (Name "babe"))

<*> Just (Address "farm") =

Just (Person (Name "babe")

(Address "farm"))

Before we moooove on

data Cow = Cow {

name :: String

, age :: Int

, weight :: Int

} deriving (Eq, Show)

noEmpty :: String -> Maybe String

noEmpty "" = Nothing

noEmpty str = Just str

noNegative :: Int -> Maybe Int

noNegative n | n >= 0 = Just n

| otherwise = Nothing
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-- Validating to get rid of empty

-- strings, negative numbers

cowFromString :: String

-> Int

-> Int

-> Maybe Cow

cowFromString name' age' weight' =

case noEmpty name' of

Nothing -> Nothing

Just nammy ->

case noNegative age' of

Nothing -> Nothing

Just agey ->

case noNegative weight' of

Nothing -> Nothing

Just weighty ->

Just (Cow nammy agey weighty)

cowFromString is…bad. You can probably tell. But by the use
of Applicative, it can be improved!
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-- you'll need to import this if

-- you have GHC <7.10

import Control.Applicative

cowFromString' :: String

-> Int

-> Int

-> Maybe Cow

cowFromString' name' age' weight' =

Cow <$> noEmpty name'

<*> noNegative age'

<*> noNegative weight'

Or if we want other Haskellers to think we’re really cool
and hip:

cowFromString'' :: String

-> Int

-> Int

-> Maybe Cow

cowFromString'' name' age' weight' =

liftA3 Cow (noEmpty name')

(noNegative age')

(noNegative weight')
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So, we’re taking advantage of the Maybe Applicative here.
What does that look like? First we’ll use the infix syntax for
fmap, <$>, and apply <*>:

Prelude> let cow1 = Cow <$> noEmpty "Bess"

Prelude> :t cow1

cow1 :: Maybe (Int -> Int -> Cow)

Prelude> let cow2 = cow1 <*> noNegative 1

Prelude> :t cow2

cow2 :: Maybe (Int -> Cow)

Prelude> let cow3 = cow2 <*> noNegative 2

Prelude> :t cow3

cow3 :: Maybe Cow

Then with liftA3:

Prelude> let cow1 = liftA3 Cow

Prelude> :t cow1

cow1 :: Applicative f

=> f String -> f Int -> f Int -> f Cow
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Prelude> let cow2 = cow1 (noEmpty "blah")

Prelude> :t cow2

cow2 :: Maybe Int -> Maybe Int -> Maybe Cow

Prelude> let cow3 = cow2 (noNegative 1)

Prelude> :t cow3

cow3 :: Maybe Int -> Maybe Cow

Prelude> let cow4 = cow3 (noNegative 2)

Prelude> :t cow4

cow4 :: Maybe Cow

So, from a simplified point of view, Applicative is really just
a way of saying:
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-- we fmap'd my function over some

-- functorial ``f'' or it already

-- was in ``f'' somehow

-- f ~ Maybe

cow1 :: Maybe (Int -> Int -> Cow)

cow1 = fmap Cow (noEmpty "Bess")

-- and we hit a situation where want to map

-- f (a -> b)

-- not just (a -> b)

(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

-- over some f a

-- to get an f b

cow2 :: Maybe (Int -> Cow)

cow2 = cow1 <*> noNegative 1

As a result, you may be able to imagine yourself saying, “I
want to do something kinda like an fmap, but my function is
embedded in the functorial structure too, not only the value I
want to apply my function to.” This is a basic motivation for
Applicative.

With the Applicative instance for Maybe, what we’re doing is
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enriching functorial application with the additional proviso
that, “I may not have a function at all.”

We can see this in the following specialization of the apply
function (<*>):

(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

f ~ Maybe

type M = Maybe

maybeApply :: M (a -> b) -> M a -> M b

maybeFmap :: (a -> b) -> M a -> M b

-- maybeFmap is just fmap's type

-- specialized to Maybe

You can test these specializations (more concrete versions)
of the types:
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maybeApply :: Maybe (a -> b)

-> Maybe a

-> Maybe b

maybeApply = (<*>)

maybeMap :: (a -> b)

-> Maybe a

-> Maybe b

maybeMap = fmap

If you make any mistakes, the compiler will let you know:

maybeMapBad :: (a -> b)

-> Maybe a

-> f b

maybeMapBad = fmap

Couldn't match type ‘f1’ with ‘Maybe’

‘f1’ is a rigid type variable bound by

an expression type signature:

(a1 -> b1) -> Maybe a1 -> f1 b1

Exercise: Fixer Upper

Given the function and values provided, use (<$>) from Functor,
(<*>) and pure from the Applicative typeclass to fill in missing
bits of the broken code to make it work.
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1. const <$> Just "Hello" <*> "World"

2. (,,,) Just 90

<*> Just 10 Just "Tierness" [1, 2, 3]

17.6 Applicative laws

After examining the law, test each of the expressions in the
REPL.

1. Identity

Here is the definition of the identity law:

pure id <*> v = v

To see examples of this law, evaluate these expressions.



CHAPTER 17. APPLICATIVE 1107

pure id <*> [1..5]

pure id <*> Just "Hello Applicative"

pure id <*> Nothing

pure id <*> Left "Error'ish"

pure id <*> Right 8001

-- ((->) a) has an instance

pure id <*> (+1) $ 2

As you may recall, Functor has a similar identity law, and
comparing them directly might help you see what’s hap-
pening:

id [1..5]

fmap id [1..5]

pure id <*> [1..5]

The identity law states that all three of those should be
equal. You can test them for equality in your REPL or you
could write a simple test to get the answer. So, what’s pure
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doing for us? It’s embedding our id function into some
structure so that we can use apply instead of fmap.

2. Composition

Here is the definition of the composition law for applica-
tives:

pure (.) <*> u <*> v <*> w =

u <*> (v <*> w)

You may find the syntax a bit unusual and difficult to
read here. This is similar to the law of composition for
Functor. It is the law stating that the result of composing
our functions first and then applying them and the re-
sult of applying the functions first then composing them
should be the same. We’re using the composition opera-
tor as a prefix instead of the more usual infix, and using
pure in order to embed that operator into the appropriate
structure so that it can work with apply.
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pure (.)

<*> [(+1)]

<*> [(*2)]

<*> [1, 2, 3]

[(+1)] <*> ([(*2)] <*> [1, 2, 3])

pure (.)

<*> Just (+1)

<*> Just (*2)

<*> Just 1

Just (+1)

<*> (Just (*2) <*> Just 1)

This law is meant to ensure that there are no surprises
resulting from composing your function applications.

3. Homomorphism

A homomorphism is a structure-preserving map between
two algebraic structures. The effect of applying a func-
tion that is embedded in some structure to a value that is
embedded in some structure should be the same as ap-
plying a function to a value without affecting any outside
structure:
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pure f <*> pure x = pure (f x)

That’s the statement of the law. Here’s how it looks in
practice:

pure (+1) <*> pure 1

pure ((+1) 1)

Those two lines of code should give you the same result.
In fact, the result you see for those should be indistin-
guishable from the result of:

(+1) 1

Because the structure that pure is providing there isn’t
meaningful. So you can think of this law as having to do
with the monoidal part of the applicative deal: the result
should be the result of the function application without
doing anything other than combining the structure bits.
Just as we saw how fmap is really just a special type of
function application that ignores a context or surround-
ing structure, applicative is also function application that
preserves structure. However, with applicative, since the
function being applied also has structure, the structures
have to be monoidal and come together in some fashion.
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pure (+1) <*> pure 1 :: Maybe Int

pure ((+1) 1) :: Maybe Int

Those two results should again be the same, but this time
the structure is being provided by Maybe, so will the result
of:

(+1) 1

be equal this time around?

Here are a couple more examples to try out:

pure (+1) <*> pure 1 :: [Int]

pure (+1) <*> pure 1 :: Either a Int

The general idea of the homomorphism law is that apply-
ing the function doesn’t change the structure around the
values.

4. Interchange

We begin again by looking at the definition of the inter-
change law:

u <*> pure y = pure ($ y) <*> u
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It might help to break that down a bit. To the left of <*>
must always be a function embedded in some structure.
In the above definition, 𝑢 represents a function embedded
in some structure:

Just (+2) <*> pure 2

-- u <*> pure y

-- equals

Just 4

The right side of the definition might be a bit less obvious.
By sectioning the $ function application operator with
the 𝑦, we create an environment in which the 𝑦 is there,
awaiting a function to apply to it. Let’s try lining up the
types again and see if that clears this up:

pure ($ 2) <*> Just (+ 2)

-- Remember, ($ 2) can become more concrete

($ 2) :: Num a => (a -> b) -> b

Just (+ 2) :: Num a => Maybe (a -> a)

If you’re a bit confused by ($ 2), keep in mind that this
is sectioning the dollar-sign operator and applying the
second argument only, not the first. As a result, the type
changes in the following manner:
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-- These are the same

($ 2)

\f -> f $ 2

($) :: (a -> b) -> a -> b

($ 2) :: (a -> b) -> b

Then concreting the types of Applicative’s methods:

mPure :: a -> Maybe a

mPure = pure

embed :: Num a => Maybe ((a -> b) -> b)

embed = mPure ($ 2)

mApply :: Maybe ((a -> b) -> b)

-> Maybe (a -> b)

-> Maybe b

mApply = (<*>)

myResult = pure ($ 2) `mApply` Just (+2)

-- myResult == Just 4

Then translating the types side by side, with different
letters for some of the type variables to avoid confusion
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when comparing the original type with the more concrete
form:

(<*>) :: Applicative f

=> f (x -> y)

-> f x

-> f y

mApply :: Maybe ((a -> b) -> b)

-> Maybe (a -> b)

-> Maybe b

f ~ Maybe

x ~ (a -> b)

y ~ b

(x -> y) ~ (a -> b) -> b

According to the interchange law, this should be true:

(Just (+2) <*> pure 2)

== (pure ($ 2) <*> Just (+2))

And you can see why that should be true, because despite
the weird syntax, the two functions are doing the same
job. Here are some more examples for you to try out:
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[(+1), (*2)] <*> pure 1

pure ($ 1) <*> [(+1), (*2)]

Just (+3) <*> pure 1

pure ($ 1) <*> Just (+3)

Every Applicative instance you write should obey those four
laws. This keeps your code composable and free of unpleasant
surprises.

17.7 You knew this was coming

Property testing the Applicative laws! You should have got the
gist of how to write properties based on laws, so we’re going to
use a library this time. Conal Elliott has a nice library called
checkers on Hackage and Github which provides some nice
properties and utilities for QuickCheck.

After installing checkers, we can reuse the existing proper-
ties for validating Monoids and Functors to revisit what we did
previously.
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module BadMonoid where

import Data.Monoid

import Test.QuickCheck

import Test.QuickCheck.Checkers

import Test.QuickCheck.Classes

data Bull =

Fools

| Twoo

deriving (Eq, Show)

instance Arbitrary Bull where

arbitrary =

frequency [ (1, return Fools)

, (1, return Twoo) ]

instance Monoid Bull where

mempty = Fools

mappend _ _ = Fools

instance EqProp Bull where (=-=) = eq

main :: IO ()

main = quickBatch (monoid Twoo)
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There are some differences here worth noting. One is that
we don’t have to define the Monoid laws as QuickCheck properties
ourselves; they are already bundled into a TestBatch called
monoid. Another is that we need to define EqProp for our custom
datatype. This is straightforward because checkers exports a
function called eq which reuses the pre-existing Eq instance
for the datatype. Finally, we’re passing a value of our type
to monoid so it knows which Arbitrary instance to use to get
random values — note it doesn’t use this value for anything.

Then we can run main to kick it off and see how it goes:

Prelude> main

monoid:

left identity:

*** Failed! Falsifiable (after 1 test):

Twoo

right identity:

*** Failed! Falsifiable (after 2 tests):

Twoo

associativity: +++ OK, passed 500 tests.

As we expect, it was able to falsify left and right identity for
Bull. Now let’s test a pre-existing Applicative instance, such
as list or Maybe. The type for the TestBatch which validates
Applicative instances is a bit gnarly, so please bear with us:
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applicative

:: ( Show a, Show (m a), Show (m (a -> b))

, Show (m (b -> c)), Applicative m

, CoArbitrary a, EqProp (m a)

, EqProp (m b), EqProp (m c)

, Arbitrary a, Arbitrary b

, Arbitrary (m a)

, Arbitrary (m (a -> b))

, Arbitrary (m (b -> c)))

=> m (a, b, c) -> TestBatch

First, a trick for managing functions like this. We know it’s
going to want Arbitrary instances for the Applicative structure,
functions (from 𝑎 to 𝑏, 𝑏 to 𝑐) embedded in that structure, and
that it wants EqProp instances. That’s all well and good, but we
can ignore that.

m (a, b, c) -> TestBatch

We just care about m (a, b, c) -> TestBatch. We could pass
an actual value giving us our Applicative structure and three
values which could be of different type, but don’t have to
be. We could also pass a bottom with a type assigned to let it
know what to randomly generate for validating the Applicative

instance.

Prelude> let xs = [("b", "w", 1)]
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Prelude> quickBatch $ applicative xs

applicative:

identity: +++ OK, passed 500 tests.

composition: +++ OK, passed 500 tests.

homomorphism: +++ OK, passed 500 tests.

interchange: +++ OK, passed 500 tests.

functor: +++ OK, passed 500 tests.

Note that it defaulted the 1 :: Num a => a in order to not
have an ambiguous type. We would’ve had to specify that
outside of GHCi. In the following example we’ll use a bottom
to fire the typeclass dispatch:

Prelude> type SSI = (String, String, Int)

Prelude> :{

*Main| let trigger :: [SSI]

*Main| trigger = undefined

*Main| :}

Prelude> quickBatch (applicative trigger)

applicative:

identity: +++ OK, passed 500 tests.

composition: +++ OK, passed 500 tests.

homomorphism: +++ OK, passed 500 tests.

interchange: +++ OK, passed 500 tests.

functor: +++ OK, passed 500 tests.
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Again, it’s not evaluating the value you pass it. That value
is just to let it know what types to use.

17.8 ZipList Monoid

The default monoid of lists in the GHC Prelude is concatena-
tion, but there is another way to monoidally combine lists.
Whereas the default list mappend ends up doing the following:

[1, 2, 3] <> [4, 5, 6]

-- changes to

[1, 2, 3] ++ [4, 5, 6]

[1, 2, 3, 4, 5, 6]

The ZipList monoid combines the values of the two lists
as parallel sequences using a monoid provided by the values
themselves to get the job done:



CHAPTER 17. APPLICATIVE 1121

[1, 2, 3] <> [4, 5, 6]

-- changes to

[

1 <> 4

, 2 <> 5

, 3 <> 6

]

This should remind you of functions like zip and zipWith.
To make the above example work, you can assert a type like

Sum Integer for the Num values to get a Monoid.

Prelude> import Data.Monoid

Prelude> 1 <> 2

No instance for (Num a0) arising

from a use of ‘it’

The type variable ‘a0’ is ambiguous

Note: there are several potential

instances:

... some blather that mentions Num ...

Prelude> 1 <> (2 :: Sum Integer)

Sum {getSum = 3}
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Prelude doesn’t provide this Monoid for us, so we must define
it ourselves.

module Apl1 where

import Control.Applicative

import Data.Monoid

import Test.QuickCheck

import Test.QuickCheck.Checkers

import Test.QuickCheck.Classes

Some unfortunate orphan instances follow. Try to avoid
these in code you’re going to keep or release.
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-- this isn't going to work properly

instance Monoid a

=> Monoid (ZipList a) where

mempty = ZipList []

mappend = liftA2 mappend

instance Arbitrary a

=> Arbitrary (ZipList a) where

arbitrary = ZipList <$> arbitrary

instance Arbitrary a

=> Arbitrary (Sum a) where

arbitrary = Sum <$> arbitrary

instance Eq a

=> EqProp (ZipList a) where

(=-=) = eq

If we fire this up in the REPL, and test for its validity as a
Monoid, it’ll fail.

Prelude> let zl = ZipList [1 :: Sum Int]

Prelude> quickBatch $ monoid zl

monoid:

left identity:
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*** Failed! Falsifiable (after 3 tests):

ZipList [ Sum {getSum = -1} ]

right identity:

*** Failed! Falsifiable (after 4 tests):

ZipList [ Sum {getSum = -1}

, Sum {getSum = 3}

, Sum {getSum = 2} ]

associativity: +++ OK, passed 500 tests.

The problem is that the empty ZipList is the zero and not
the identity!

Zero vs. Identity

-- Zero

n * 0 == 0

-- Identity

n * 1 == n

So how do we get an identity for ZipList?

Sum 1 `mappend` ??? -> Sum 1

instance Monoid a

=> Monoid (ZipList a) where

mempty = pure mempty

mappend = liftA2 mappend
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You’ll find out what the pure does here when you write the
Applicative for ZipList yourself.

List Applicative Exercise

Implement the list Applicative. Writing a minimally complete
Applicative instance calls for writing the definitions of both
pure and <*>. We’re going to provide a hint as well. Use the
checkers library to validate your Applicative instance.

data List a =

Nil

| Cons a (List a)

deriving (Eq, Show)

Remember what you wrote for the list Functor:

instance Functor List where

fmap = undefined

Writing the list Applicative is similar.

instance Applicative List where

pure = undefined

(<*>) = undefined

Expected result:
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Prelude> let f = Cons (+1) (Cons (*2) Nil)

Prelude> let v = Cons 1 (Cons 2 Nil)

Prelude> f <*> v

Cons 2 (Cons 3 (Cons 2 (Cons 4 Nil)))

In case you get stuck, use the following functions and hints.

append :: List a -> List a -> List a

append Nil ys = ys

append (Cons x xs) ys =

Cons x $ xs `append` ys

fold :: (a -> b -> b) -> b -> List a -> b

fold _ b Nil = b

fold f b (Cons h t) = f h (fold f b t)

concat' :: List (List a) -> List a

concat' = fold append Nil

-- write this one in terms

-- of concat' and fmap

flatMap :: (a -> List b)

-> List a

-> List b

flatMap f as = undefined
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Use the above and try using flatMap and fmap without explic-
itly pattern matching on cons cells. You’ll still need to handle
the Nil cases.

flatMap is less strange than it would initially seem. It’s basi-
cally “fmap, then smush.”

Prelude> fmap (\x -> [x, 9]) [1, 2, 3]

[[1,9],[2,9],[3,9]]

Prelude> let toMyList = foldr Cons Nil

Prelude> let xs = toMyList [1, 2, 3]

Prelude> let c = Cons

Prelude> let f x = x `c` (9 `c` Nil)

Prelude> flatMap f xs

Cons 1 (Cons 9 (Cons 2

(Cons 9 (Cons 3 (Cons 9 Nil)))))

Applicative instances, unlike Functors, are not guaranteed to
have a unique implementation for a given datatype.

ZipList Applicative Exercise

Implement the ZipList Applicative. Use the checkers library to
validate your Applicative instance. We’re going to provide the
EqProp instance and explain the weirdness in a moment.
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data List a =

Nil

| Cons a (List a)

deriving (Eq, Show)

take' :: Int -> List a -> List a

take' = undefined

instance Functor List where

fmap = undefined

instance Applicative List where

pure = undefined

(<*>) = undefined

newtype ZipList' a =

ZipList' (List a)

deriving (Eq, Show)

instance Eq a => EqProp (ZipList' a) where

xs =-= ys = xs' `eq` ys'

where xs' = let (ZipList' l) = xs

in take' 3000 l

ys' = let (ZipList' l) = ys

in take' 3000 l
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instance Functor ZipList' where

fmap f (ZipList' xs) =

ZipList' $ fmap f xs

instance Applicative ZipList' where

pure = undefined

(<*>) = undefined

The idea is to align a list of functions with a list of values
and apply the first function to the first value and so on. The
instance should work with infinite lists. Some examples:

Prelude> let zl' = ZipList'

Prelude> let z = zl' [(+9), (*2), (+8)]

Prelude> let z' = zl' [1..3]

Prelude> z <*> z'

ZipList' [10,4,11]

Prelude> let z' = zl' (repeat 1)

Prelude> z <*> z'

ZipList' [10,2,9]

Note that the second z' was an infinite list. Check Prelude

for functions that can give you what you need. One starts
with the letter z, the other with the letter r. You’re looking
for inspiration from these functions, not to be able to directly
reuse themas you’re using a custom List type, not the provided
Prelude list type.
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E xplaining and justifying the weird EqProp The good news is
it’s EqProp that has the weird “check only the first 3,000 values”
semantics instead of making the Eq instance weird. The bad
news is this is a byproduct of testing for equality between infi-
nite lists…that is, you can’t. If you use a typical EqProp instance,
the test for homomorphism in your Applicative instance will
chase the infinite lists forever. Since QuickCheck is already an
exercise in “good enough” validity checking, we could choose
to feel justified in this. If you don’t believe us try running the
following in your REPL:

repeat 1 == repeat 1

Either and Validation Applicative

Yep, here we go again with the types:

Specializing the types

-- f ~ Either e

type E = Either

(<*>) :: f (a -> b) -> f a -> f b

(<*>) :: E e (a -> b) -> E e a -> E e b

pure :: a -> f a

pure :: a -> E e a
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Either versus Validation

Often the interesting part of an Applicative is the monoid. One
byproduct of this is that just as you can have more than one
valid Monoid for a given datatype, unlike Functor, Applicative
can have more than one valid and lawful instance for a given
datatype.

The following is a brief demonstration of Either:

Prelude> pure 1 :: Either e Int

Right 1

Prelude> Right (+1) <*> Right 1

Right 2

Prelude> Right (+1) <*> Left ":("

Left ":("

Prelude> Left ":(" <*> Right 1

Left ":("

Prelude> Left ":(" <*> Left "sadface.png"

Left ":("

We’ve covered the benefits of Either already andwe’ve shown
you what the Maybe Applicative can clean up, so we won’t be-
labor those points. There’s an alternative to Either, called
Validation, that differs only in the Applicative instance:
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data Validation err a =

Failure err

| Success a

deriving (Eq, Show)

One thing to realize is that this is identical to the Either

datatype and there is even a pair of total functions which can
go between Validation and Either values interchangeably. Re-
member when we mentioned natural transformations? Both
of these functions are natural transformations:

validToEither :: Validation e a

-> Either e a

validToEither (Failure err) = Left err

validToEither (Success a) = Right a

eitherToValid :: Either e a

-> Validation e a

eitherToValid (Left err) = Failure err

eitherToValid (Right a) = Success a

eitherToValid . validToEither == id

validToEither . eitherToValid == id

Howdoes Validationdiffer? Principally inwhat the Applicative

instance does with errors. Rather than just short-circuiting
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when it has two error values, it’ll use the Monoid typeclass to
combine them. Often this’ll just be a list or set of errors but
you can do whatever you want.

data Errors =

DividedByZero

| StackOverflow

| MooglesChewedWires

deriving (Eq, Show)

success = Success (+1)

<*> Success 1

success == Success 2

failure = Success (+1)

<*> Failure [StackOverflow]

failure == Failure [StackOverflow]

failure' = Failure [StackOverflow]

<*> Success (+1)

failure' == Failure [StackOverflow]
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failures =

Failure [MooglesChewedWires]

<*> Failure [StackOverflow]

failures ==

Failure [MooglesChewedWires

, StackOverflow]

With the value failures, we see what distinguishes Either

and Validation: we can now preserve all failures that occurred,
not just the first one.

Exercise: Variations on Either

Validation has the same representation as Either, but it can be
different. The Functor will behave the same, but the Applicative

will be different. See above for an idea of how Validation should
behave. Use the checkers library.

data Validation e a =

Failure e

| Success a

deriving (Eq, Show)
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-- same as Either

instance Functor (Validation e) where

fmap = undefined

-- This is different

instance Monoid e =>

Applicative (Validation e) where

pure = undefined

(<*>) = undefined

17.9 Chapter Exercises

Given a type that has an instance of Applicative, specialize the
types of the methods. Test your specialization in the REPL.
One way to do this is to bind aliases of the typeclass methods
to more concrete types that have the type we told you to fill
in.

1. -- Type

[]

-- Methods

pure :: a -> ? a

(<*>) :: ? (a -> b) -> ? a -> ? b
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2. -- Type

IO

-- Methods

pure :: a -> ? a

(<*>) :: ? (a -> b) -> ? a -> ? b

3. -- Type

(,) a

-- Methods

pure :: a -> ? a

(<*>) :: ? (a -> b) -> ? a -> ? b

4. -- Type

(->) e

-- Methods

pure :: a -> ? a

(<*>) :: ? (a -> b) -> ? a -> ? b

Write instances for the following datatypes. Confused?
Write out what the type should be. Use the checkers library
to validate the instances.

1. data Pair a = Pair a a deriving Show
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2. This should look familiar.

data Two a b = Two a b

3. data Three a b c = Three a b c

4. data Three' a b = Three' a b b

5. data Four a b c d = Four a b c d

6. data Four' a b = Four' a a a b

Combinations

Remember the vowels and stops exercise in the folds chapter?
Write the function to generate the possible combinations of
three input lists using liftA3 from Control.Applicative.

import Control.Applicative (liftA3)

stops :: String

stops = "pbtdkg"

vowels :: String

vowels = "aeiou"

combos :: [a] -> [b] -> [c] -> [(a, b, c)]

combos = undefined
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17.10 Definitions

1. Applicative can be thought of characterizing monoidal
functors in Haskell. For a Haskeller’s purposes, it’s a way
to functorially apply a function which is embedded in
structure 𝑓 of the same type as the value you’re mapping
it over.

fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

17.11 Follow-up resources

1. Tony Morris; Nick Partridge; Validation library
http://hackage.haskell.org/package/validation

2. Conor McBride; Ross Paterson; Applicative Programming
with Effects
http://staff.city.ac.uk/~ross/papers/Applicative.html

3. Jeremy Gibbons; Bruno C. d. S. Oliveira; Essence of the
Iterator Pattern

4. Ross Paterson; Constructing Applicative Functors
http://staff.city.ac.uk/~ross/papers/Constructors.html

http://hackage.haskell.org/package/validation
http://staff.city.ac.uk/~ross/papers/Applicative.html
http://staff.city.ac.uk/~ross/papers/Constructors.html
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5. Sam Lindley; Philip Wadler; Jeremy Yallop; Idioms are
oblivious, arrows are meticulous, monads are promiscu-
ous.

Note: Idiom means applicative functor and is a useful
search term for published work on applicative functors.



Chapter 18

Monad

There is nothing so
practical as a good theory

Phil Wadler, quoting Kurt
Lewin

1140
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18.1 Monad

Finally we come to one of the most talked about structures in
Haskell: the monad. Monads are not, strictly speaking, neces-
sary to Haskell. Although the current Haskell standard does
use monad for constructing and transforming IO actions, older
implementations of Haskell did not. Monads are powerful
and fun, but they do not define Haskell. Rather, monads are
defined in terms of Haskell.

Monads are applicative functors, but they have something
special about them that makes them different from and more
powerful than either <*> or fmap alone. In this chapter, we

• define Monad, its operations and laws;

• look at several examples of monads in practice;

• write the Monad instances for various types;

• address some misinformation about monads.

18.2 Sorry — a monad is not a burrito

Well, then what the heck is a monad?1

1 Section title with all due respect and gratitude to Mark Jason Dominus, whose
blog post, “Monads are like burritos” is a classic of its genre. http://blog.plover.com/prog/
burritos.html

http://blog.plover.com/prog/burritos.html
http://blog.plover.com/prog/burritos.html
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As we said above, a monad is an applicative functor with
some unique features that make it a bit more powerful than
either alone. A functor maps a function over some structure;
an applicative maps a function that is contained in some struc-
ture over some other structure and then combines the two
layers of structure like mappend. So you can think of monads
as another way of applying functions over structure, with a
couple of additional features. We’ll get to those features in a
moment. For now, let’s check out the typeclass definition and
core operations.

If you are using GHC 7.10 or newer, you’ll see an Applicative

constraint in the definition of Monad, as it should be:

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

We’re going to explore this in some detail. Let’s start with
the typeclass constraint on 𝑚.

Applicative m

Older versions of GHC did not have Applicative as a superclass
of Monad. Given that Monad is stronger than Applicative, and
Applicative is stronger than Functor, you can derive Applicative

and Functor in terms of Monad, just as you can derive Functor in
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terms of Applicative. What does this mean? It means you can
write fmap using monadic operations and it works:

fmap f xs = xs >>= return . f

Try it for yourself:

Prelude> fmap (+1) [1..3]

[2,3,4]

Prelude> [1..3] >>= return . (+1)

[2,3,4]

This happens to be a law, not a convenience. Functor, Applicative,
and Monad instances over a given type should have the same
core behavior.

We’ll explore the relationship between these classes more
completely in a bit, but as part of understanding the typeclass
definition above, it’s important to understand this chain of
dependency:

Functor -> Applicative -> Monad

Whenever you’ve implemented an instance of Monad for a
type you necessarily have an Applicative and a Functor as well.
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Core operations

The Monad typeclass defines three core operations, although
you only need to define >>= for a minimally complete Monad

instance. Let’s look at all three:

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

We can dispense with the last of those, return: it’s just the
same as pure. All it does is take a value and return it inside
your structure, whether that structure is a list or Just or IO. We
talked about it a bit, and used it, back in the Modules chapter,
and we covered pure in the Applicative chapter, so there isn’t
much else to say about it.

The next operator, >>, doesn’t have an official English-language
name, but we like to call it Mr. Pointy. Some people do re-
fer to it as the sequencing operator, which we must admit is
more informative than Mr. Pointy. Mr. Pointy sequences
two actions while discarding any resulting value of the first
action. Applicative has a similar operator as well, although we
didn’t talk about it in that chapter. We will see examples of
this operator in the upcoming section on do syntax.

Finally, the big bind! The >>= operator is called bind and is
— or, at least, comprises — what makes Monad special.
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The novel part of Monad

Conventionallywhenweusemonads, we use the bind function,
>>=. Sometimes we use it directly, sometimes indirectly via do

syntax. The question we should ask ourselves is, what’s unique
to Monad — at least from the point of view of types?

We already saw that it’s not return; that’s another name for
pure from Applicative.

We also noted (and will see more clearly soon) that it also
isn’t >> which has a counterpart in Applicative.

And it also isn’t >>=, at least not in its entirety. The type of
>>= is visibly similar to that of fmap and <*>, which makes sense
since monads are applicative functors. For the sake of making
this maximally similar, we’re going to change the 𝑚 of Monad
to 𝑓 :

fmap :: Functor f

=> (a -> b) -> f a -> f b

<*> :: Applicative f

=> f (a -> b) -> f a -> f b

>>= :: Monad f

=> f a -> (a -> f b) -> f b

OK, so bind is quite similar to <*> and fmap but with the first
two arguments flipped. Still, the idea of mapping a function
over a value while bypassing its surrounding structure is not
unique to Monad.
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We can demonstrate this by fmapping a function of type (a

-> m b) to make it more like >>=, and it will work. Nothing will
stop us. We will continue using the tilde to represent rough
equivalence between two things:

-- If b == f b

fmap :: Functor f

=> (a -> f b) -> f a -> f (f b)

Let’s demonstrate this idea with list as our structure:

Prelude> let andOne x = [x, 1]

Prelude> andOne 10

[10,1]

Prelude> :t fmap andOne [4, 5, 6]

fmap andOne [4, 5, 6] :: Num t => [[t]]

Prelude> fmap andOne [4, 5, 6]

[[4,1],[5,1],[6,1]]

But, lo! We knew from our types that we’d end up with
an f (f b) — that is, an extra layer of structure, and now we
have a result of nested lists. What if we wanted Num a => [a]

instead of nested lists? We want a single layer of 𝑓 structure,
but our mapped function has itself generated more structure!
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After mapping a function that generates additionalmonadic
structure in its return type, we want a way to discard one layer
of that structure.

So how do we accomplish that? Well, we saw how to do
what we want with lists very early on in this book:

Prelude> concat $ fmap andOne [4, 5, 6]

[4,1,5,1,6,1]

The type of concat, fully generalized:

concat :: Foldable t => t [a] -> [a]

-- we can assert a less general type

-- for our purposes here

concat :: [[a]] -> [a]

Monad, in a sense, is a generalization of concat! The unique
part of Monad is the following function:

import Control.Monad (join)

join :: Monad m => m (m a) -> m a

-- compare

concat :: [[a]] -> [a]
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It’s somewhat novel that we can inject more structure via
our function application, where applicatives and fmaps have to
leave the structure untouched. Allowing the function itself to
alter the structure is something we’ve not seen in Functor and
Applicative, and we’ll explore the ramifications of that ability
more, especially when we start talking about the Maybe monad.
But we can inject more structure with a standard fmap if we
wish, as we saw above. However, the ability to flatten those two
layers of structure into one is what makes Monad special. And
it’s by putting that join function together with the mapping
function that we get bind, also known as >>=.

So how do we get bind?

The answer is the exercise Write bind in terms of fmap and
join.

Fear is the mind-killer, friend. You can do it.

-- keep in mind this is (>>=) flipped

bind :: Monad m => (a -> m b) -> m a -> m b

bind = undefined

What Monad is not

Since Monad is somewhat abstract and a little slippery, many
people talk about it from one or two perspectives that they feel
most comfortable with. Quite often, they address what Monad
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is from the perspective of the IO Monad. IO does have a Monad

instance, and it is a very common use of monads. However,
understanding monads only through that instance leads to
limited intuitions for what monads are and can do, and to a
lesser extent, a wrong notion of what IO is all about.

A monad is not:

1. Impure. Monadic functions are pure functions. IO is an ab-
stract datatype that allows for impure, or effectful, actions,
and it has a Monad instance. But there’s nothing impure
about monads.

2. An embedded language for imperative programming. Si-
mon Peyton-Jones, one of the lead developers and re-
searchers of Haskell and its implementation in GHC, has
famously said, “Haskell is the world’s finest imperative
programming language,” and he was talking about the
way monads handle effectful programming. While mon-
ads are often used for sequencing actions in a way that
looks like imperative programming, there are commuta-
tive monads that do not order actions. We’ll see one a few
chapters down the line when we talk about Reader.

3. A value. The typeclass describes a specific relationship be-
tween elements in a domain and defines some operations
over them. When we refer to something as “a monad,”
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we’re using that the same way we talk about “a monoid,”
or “a functor.” None of those are values.

4. About strictness. The monadic operations of bind and
return are nonstrict. Some operations can be made strict
within a specific instance. We’ll talk more about this later
in the book.

Using monads also doesn’t require knowing math. Or cate-
gory theory. It does not require mystical trips to the tops of
mountains or starving oneself in a desert somewhere.

The Monad typeclass is generalized structure manipulation
with some laws tomake it sensible. Just like Functor and Applicative.
We sort of hate to diminish the mystique, but that’s all there is
to it.

Monad also lifts!

The Monad class also includes a set of lift functions that are the
same as the ones we already saw in Applicative. They don’t
do anything different, but they are still around because some
libraries used them before applicatives were discovered, so
the liftM set of functions still exists to maintain compatibil-
ity. So, you may still see them sometimes. We’ll take a short
tour of them, comparing them directly to their applicative
counterparts:
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liftA :: Applicative f

=> (a -> b) -> f a -> f b

liftM :: Monad m

=> (a1 -> r) -> m a1 -> m r

As you may recall, that is fmap with a different typeclass
constraint. If you’d like to see examples of how it works, we
encourage you to write fmap functions in your REPL and take
turns replacing the fmap with liftA or liftM.

But that’s not all we have:

liftA2 :: Applicative f

=> (a -> b -> c)

-> f a

-> f b

-> f c

liftM2 :: Monad m

=> (a1 -> a2 -> r)

-> m a1

-> m a2

-> m r

Aside from the numbering these appear the same. Let’s try
them out:

Prelude> liftA2 (,) (Just 3) (Just 5)
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Just (3,5)

Prelude> liftM2 (,) (Just 3) (Just 5)

Just (3,5)

You may remember way back in Lists, we talked about a
function called zipWith. zipWith is liftA2 or liftM2 specialized
to lists:

Prelude> :t zipWith

zipWith :: (a -> b -> c)

-> [a] -> [b] -> [c]

Prelude> zipWith (+) [3, 4] [5, 6]

[8,10]

Prelude> liftA2 (+) [3, 4] [5, 6]

[8,9,9,10]

Well, the types are the same, but the behavior differs. The
differing behavior has to do with which list monoid is being
used.

All right. Then we have the threes:
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liftA3 :: Applicative f

=> (a -> b -> c -> d)

-> f a -> f b

-> f c -> f d

liftM3 :: Monad m

=> (a1 -> a2 -> a3 -> r)

-> m a1 -> m a2

-> m a3 -> m r

And, coincidentally, there is also a zipWith3 function. Let’s
see what happens:

Prelude> :t zipWith3

zipWith3 :: (a -> b -> c -> d) ->

[a] -> [b] -> [c] -> [d]

Prelude> liftM3 (,,) [1, 2] [3] [5, 6]

[(1,3,5),(1,3,6),(2,3,5),(2,3,6)]

Prelude> zipWith3 (,,) [1, 2] [3] [5, 6]

[(1,3,5)]

Again, using a different monoid gives us a different set of
results.

We wanted to introduce these functions here because they
will come up in some later examples in the chapter, but they
aren’t especially pertinent to Monad, and we saw the gist of them
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in the previous chapter. So, let’s turn our attention back to
monads, shall we?

18.3 Do syntax and monads

We introduced do syntax in the Modules chapter. We were
using it within the context of IO as syntactic sugar that allowed
us to easily sequence actions by feeding the result of one action
as the input value to the next. While do syntax works with
any monad — not just IO — it is most commonly seen when
using IO. This section is going to talk about why do is sugar and
demonstrate what the join of Monad can do for us. We will be
using the IO Monad to demonstrate here, but later on we’ll see
some examples of do syntax without IO.

To begin, let’s look at some correspondences:

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

For our purposes, (*>) and (>>) are the same thing: sequenc-
ing functions, but with two different constraints. They should
in all cases do the same thing:

Prelude> putStrLn "Hello, " >> putStrLn "World!"

Hello,

World!
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Prelude> putStrLn "Hello, " *> putStrLn "World!"

Hello,

World!

Not observably different. Good enough for government
work!

We can see what do syntax looks like after the compiler
desugars it for us by manually transforming it ourselves:

import Control.Applicative ((*>))

sequencing :: IO ()

sequencing = do

putStrLn "blah"

putStrLn "another thing"

sequencing' :: IO ()

sequencing' =

putStrLn "blah" >>

putStrLn "another thing"

sequencing'' :: IO ()

sequencing'' =

putStrLn "blah" *>

putStrLn "another thing"
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You should have had the same results for each of the above.
We can do the same with the variable binding that do syntax
includes:

binding :: IO ()

binding = do

name <- getLine

putStrLn name

binding' :: IO ()

binding' =

getLine >>= putStrLn

Instead of naming the variable and passing that as an argu-
ment to the next function, we use >>= which passes it directly.

When fmap alone isn’t enough

Note that if you try to fmap putStrLn over getLine, it won’t do
anything. Try typing this into your REPL:

Prelude> putStrLn <$> getLine

You’ve used getLine, so when you hit enter it should await
your input. Type something in, hit enter again and see what
happens.
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Whatever input you gave it didn’t print, although it seems
like it should have due to the putStrLn being mapped over the
getLine. We evaluated the IO action that requests input, but not
the one that prints it. So, what happened?

Well, let’s start with the types. The type of what you tried
to do is this:

Prelude> :t putStrLn <$> getLine

putStrLn <$> getLine :: IO (IO ())

We’re going to break it down a little bit so that we’ll under-
stand why this didn’t work. First, getLine performs I/O to get
a String:

getLine :: IO String

And putStrLn takes a String argument, performs I/O, and
returns nothing interesting — parents of children with an
allowance can sympathize:

putStrLn :: String -> IO ()

What is the type of fmap as it concerns putStrLn and getLine?
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-- The type we start with

<$> :: Functor f => (a -> b) -> f a -> f b

-- Our (a -> b) is putStrLn

(a -> b )

putStrLn :: String -> IO ()

That 𝑏 gets specialized to the type IO (), which is going to
jam another IO action inside of the I/O that getLine performs.
Perhaps this looks familiar from our demonstration of what
happens when you use fmap to map a function with type (a ->

m b) instead of (a -> b) — that is what’s happening here. This
is what is happening with our types:

f :: Functor f => f String -> f (IO ())

f x = putStrLn <$> x

g :: (String -> b) -> IO b

g x = x <$> getLine

putStrLn <$> getLine :: IO (IO ())

Okay...so, which IO is which, and why does it ask for input
but not print what we typed in?
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-- [1] [2] [3]

h :: IO (IO ())

h = putStrLn <$> getLine

1. This outermost IO structure represents the effects getLine

must perform to get you a String that the user typed in.

2. This inner IO structure represents the effects that would
be performed if putStrLn was evaluated.

3. The unit here is the unit that putStrLn returns.

One of the strengths of Haskell is that we can refer to, com-
pose, and map over effectful computations without perform-
ing them or bending over backwards to make that pattern
work. For a simpler example of how we can wait to evalu-
ate IO actions (or any computation in general), consider the
following:

Prelude> let printOne = putStrLn "1"

Prelude> let printTwo = putStrLn "2"

Prelude> let twoActions = (printOne, printTwo)

Prelude> :t twoActions

twoActions :: (IO (), IO ())

With that tuple of two IO actions defined, we can now grab
one and evaluate it:
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Prelude> fst twoActions

1

Prelude> snd twoActions

2

Prelude> fst twoActions

1

Note that we are able to evaluate IO actions multiple times.
This will be significant later.

Back to our conundrum of why we can’t fmap putStrLn over
getLine. Perhaps you’ve already figured out what we need to do.
We need to join those two IO layers together. To get what we
want, we need the unique thing that Monad offers: join. Watch
it work:

Prelude> import Control.Monad (join)

Prelude> join $ putStrLn <$> getLine

blah

blah

Prelude> :t join $ putStrLn <$> getLine

join $ putStrLn <$> getLine :: IO ()

What joindid here ismerge the effects of getLine and putStrLn

into a single IO action. This merged IO action performs the
effects in the order determined by the nesting of the IO actions.
As it happens, the cleanest way to express ordering in a lambda



CHAPTER 18. MONAD 1161

calculus without bolting on something unpleasant is through
nesting of expressions or lambdas.

That’s right. We still haven’t left the lambda calculus behind.
Monadic sequencing and do syntax seem on the surface to
be very far removed from that. But they aren’t. As we said,
monadic actions are still pure, and the sequencing operations
we use here are ways of nesting lambdas. Now, IO is a bit dif-
ferent, as it does allow for side effects, but since those effects
are constrained within the IO type, all the rest of it is still a
pure lambda calculus.

Sometimes it is valuable to suspend or otherwise not per-
form an I/O action until some determination is made, so types
like IO (IO ()) aren’t necessarily invalid, but you should be
aware of what’s needed to make this example work.

Let’s get back to desugaring do syntaxwith our now-enriched
understanding of what monads do for us:
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bindingAndSequencing :: IO ()

bindingAndSequencing = do

putStrLn "name pls:"

name <- getLine

putStrLn ("y helo thar: " ++ name)

bindingAndSequencing' :: IO ()

bindingAndSequencing' =

putStrLn "name pls:" >>

getLine >>=

\name ->

putStrLn ("y helo thar: " ++ name)

As the nesting intensifies, you can see how do syntax can
make things a bit cleaner and easier to read:

twoBinds :: IO ()

twoBinds = do

putStrLn "name pls:"

name <- getLine

putStrLn "age pls:"

age <- getLine

putStrLn ("y helo thar: "

++ name ++ " who is: "

++ age ++ " years old.")
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twoBinds' :: IO ()

twoBinds' =

putStrLn "name pls:" >>

getLine >>=

\name ->

putStrLn "age pls:" >>

getLine >>=

\age ->

putStrLn ("y helo thar: "

++ name ++ " who is: "

++ age ++ " years old.")

18.4 Examples of Monad use

All right, we’ve seen what is different about Monad and seen a
small demonstration of what that does for us. What we need
now is to see how monads work in code, with Monads other than
IO.

List

We’ve been starting off our examples of these typeclasses in
use with list examples because they can be quite easy to see
and understand. We will keep this section brief, though, as we
have more exciting things to show you.
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Specializing the types

This process should be familiar to you by now:

(>>=) :: Monad m

=> m a -> (a -> m b) -> m b

(>>=) :: [ ] a -> (a -> [ ] b) -> [ ] b

-- or more syntactically common

(>>=) :: [a] -> (a -> [b]) -> [b]

-- same as pure

return :: Monad m => a -> m a

return :: a -> [ ] a

return :: a -> [a]

Excellent. It’s like fmap except the order of arguments is
flipped and we can now generate more list (or an empty list)
inside of our mapped function. Let’s take it for a spin.

Example of the List Monad in use

Let’s start with a function and identify how the parts fit with
our monadic types:
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twiceWhenEven :: [Integer] -> [Integer]

twiceWhenEven xs = do

x <- xs

if even x

then [x*x, x*x]

else [x*x]

The x <- xs line binds individual values out of the list input,
like a list comprehension, giving us an 𝑎. The if-then-else is
our a -> m b. It takes the individual 𝑎 values that have been
bound out of our m a and can generate more values, thereby
increasing the size of the list.

The m a that is our first input will be the argument we pass
to it below:

Prelude> twiceWhenEven [1..3]

[1,4,4,9]

Now try this:

twiceWhenEven :: [Integer] -> [Integer]

twiceWhenEven xs = do

x <- xs

if even x

then [x*x, x*x]

else []
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And try giving it the same input as above (for easy compar-
ison). Was the result what you expected? Keep playing around
with this, forming hypotheses about what will happen and
why and testing them in the REPL to develop an intuition for
how monads are working on a simple example. The examples
in the next sections are longer and more complex.

Maybe Monad

Now we come to a more exciting demonstration of what we
can do with our newfound power.

Specializing the types

It is the season for examining the types:

-- type M = Maybe

-- m ~ Maybe

(>>=) :: Monad m

=> m a -> (a -> m b) -> m b

(>>=) ::

Maybe a -> (a -> Maybe b) -> Maybe b

-- same as pure

return :: Monad m => a -> m a

return :: a -> Maybe a
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There should have been nothing surprising there, so let’s
get to the meat of the matter.

Using the Maybe Monad

This example looks like the one from the Applicative chapter,
but it’s different. We encourage you to compare the two, al-
though we’ve been explicit about what exactly is happening
here. You developed some intutions above for do syntax and
the list Monad; here we’ll be quite explicit about what’s happen-
ing, and by the time we get to the Either demonstration below,
it should be clear. Let’s get started:

data Cow = Cow {

name :: String

, age :: Int

, weight :: Int

} deriving (Eq, Show)

noEmpty :: String -> Maybe String

noEmpty "" = Nothing

noEmpty str = Just str

noNegative :: Int -> Maybe Int

noNegative n | n >= 0 = Just n

| otherwise = Nothing
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-- if Cow's name is Bess, must be under 500

weightCheck :: Cow -> Maybe Cow

weightCheck c =

let w = weight c

n = name c

in if n == "Bess" && w > 499

then Nothing

else Just c

mkSphericalCow :: String

-> Int

-> Int

-> Maybe Cow

mkSphericalCow name' age' weight' =

case noEmpty name' of

Nothing -> Nothing

Just nammy ->

case noNegative age' of

Nothing -> Nothing

Just agey ->

case noNegative weight' of

Nothing -> Nothing

Just weighty ->

weightCheck

(Cow nammy agey weighty)
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Prelude> mkSphericalCow "Bess" 5 499

Just (Cow {name = "Bess", age = 5, weight = 499})

Prelude> mkSphericalCow "Bess" 5 500

Nothing

First, we’ll clean it up with do syntax, then we’ll see why we
can’t do this with Applicative:

-- Do syntax isn't just for IO.

mkSphericalCow' :: String

-> Int

-> Int

-> Maybe Cow

mkSphericalCow' name' age' weight' = do

nammy <- noEmpty name'

agey <- noNegative age'

weighty <- noNegative weight'

weightCheck (Cow nammy agey weighty)

And this works as expected.

Prelude> mkSphericalCow' "Bess" 5 500

Nothing

Prelude> mkSphericalCow' "Bess" 5 499

Just (Cow {name = "Bess", age = 5, weight = 499})
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Can we write it with (>>=)? Sure!

-- Stack up the nested lambdas.

mkSphericalCow'' :: String

-> Int

-> Int

-> Maybe Cow

mkSphericalCow'' name' age' weight' =

noEmpty name' >>=

\nammy ->

noNegative age' >>=

\agey ->

noNegative weight' >>=

\weighty ->

weightCheck (Cow nammy agey weighty)

So why can’t we do this with Applicative? Because our
weightCheck function depends on the prior existence of a Cow

value and returns more monadic structure in its return type
Maybe Cow.

If your do syntax looks like this:
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doSomething = do

a <- f

b <- g

c <- h

pure (a, b, c)

You can rewrite it using Applicative. On the other hand, if
you have something like this:

doSomething' n = do

a <- f n

b <- g a

c <- h b

pure (a, b, c)

You’re going to need Monad because 𝑔 and ℎ are producing
monadic structure based on values that can only be obtained
by depending on values generated from monadic structure.
You’ll need join to crunch the nesting of monadic structure
back down. If you don’t believe us, try translating doSomething'

to Applicative: so no resorting to >>= or join.
Here’s some code to kick that around:

f :: Integer -> Maybe Integer

f 0 = Nothing

f n = Just n
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g :: Integer -> Maybe Integer

g i =

if even i

then Just (i + 1)

else Nothing

h :: Integer -> Maybe String

h i = Just ("10191" ++ show i)

doSomething' n = do

a <- f n

b <- g a

c <- h b

pure (a, b, c)

The long and short of it:

1. With the Maybe Applicative, each Maybe computation fails
or succeeds independently of each other. You’re lifting
functions that are also Just or Nothing over Maybe values.

2. With the Maybe Monad, computations contributing to the
final result can choose to return Nothing based on previous
computations.
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Exploding a spherical cow

We said we’d be quite explicit about what’s happening in the
above, so let’s do this thing. Let’s get in the guts of this code
and how binding over Maybe values works.

For once, this example instance is what’s in GHC’s base

library at time of writing:

instance Monad Maybe where

return x = Just x

(Just x) >>= k = k x

Nothing >>= _ = Nothing

mkSphericalCow'' :: String

-> Int

-> Int

-> Maybe Cow

mkSphericalCow'' name' age' weight' =

noEmpty name' >>=

\nammy ->

noNegative age' >>=

\agey ->

noNegative weight' >>=

\weighty ->

weightCheck (Cow nammy agey weighty)
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And what happens if we pass it some arguments?

-- Proceeding outermost to innermost.

mkSphericalCow'' "Bess" 5 499 =

noEmpty "Bess" >>=

\nammy ->

noNegative 5 >>=

\agey ->

noNegative 499 >>=

\weighty ->

weightCheck (Cow nammy agey weighty)

-- "Bess" /= "", so skipping this pattern

-- noEmpty "" = Nothing

noEmpty "Bess" = Just "Bess"

So we produced the value Just "Bess"; however, nammy will
be the String and not also the Maybe structure because >>= passes
𝑎 to the function it binds over the monadic value, not 𝑚𝑎. Here
we’ll use the Maybe Monad instance to examine why:
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instance Monad Maybe where

return x = Just x

(Just x) >>= k = k x

Nothing >>= _ = Nothing

noEmpty "Bess" >>= \nammy ->

(rest of the computation)

-- noEmpty "Bess" evaluated

-- to Just "Bess". So the first

-- Just case matches.

(Just "Bess") >>= \nammy -> ...

(Just x) >>= k = k x

-- k is \nammy et al.

-- x is "Bess" by itself.

So nammy is bound to ”Bess”, and the following is the whole 𝑘:

\"Bess" ->

noNegative 5 >>=

\agey ->

noNegative 499 >>=

\weighty ->

weightCheck (Cow nammy agey weighty)
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Then how does the age check go?

mkSphericalCow'' "Bess" 5 499 =

noEmpty "Bess" >>=

\"Bess" ->

noNegative 5 >>=

\agey ->

noNegative 499 >>=

\weighty ->

weightCheck (Cow "Bess" agey weighty)

-- 5 >= 0 is true, so we get Just 5

noNegative 5 | 5 >= 0 = Just 5

| otherwise = Nothing

Again, although noNegative returns Just 5, the bind function
will pass 5 on:
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mkSphericalCow'' "Bess" 5 499 =

noEmpty "Bess" >>=

\"Bess" ->

noNegative 5 >>=

\5 ->

noNegative 499 >>=

\weighty ->

weightCheck (Cow "Bess" 5 weighty)

-- 499 >= 0 is true, so we get Just 499

noNegative 499 | 499 >= 0 = Just 499

| otherwise = Nothing

Passing 499 on:

mkSphericalCow'' "Bess" 5 499 =

noEmpty "Bess" >>=

\"Bess" ->

noNegative 5 >>=

\5 ->

noNegative 499 >>=

\499 ->

weightCheck (Cow "Bess" 5 499)
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weightCheck (Cow "Bess" 5 499) =

let 499 = weight (Cow "Bess" 5 499)

"Bess" = name (Cow "Bess" 5 499)

-- fyi, 499 > 499 is False.

in if "Bess" == "Bess" && 499 > 499

then Nothing

else Just (Cow "Bess" 5 499)

So in the end, we return Just (Cow "Bess" 5 499).

Fail fast, like an overfunded startup

But what if we had failed? We’ll dissect the following compu-
tation:

Prelude> mkSphericalCow'' "" 5 499

Nothing

And how do the guts fall when we explode this poor bovine?
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mkSphericalCow'' "" 5 499 =

noEmpty "" >>=

\nammy ->

noNegative 5 >>=

\agey ->

noNegative 499 >>=

\weighty ->

weightCheck (Cow nammy agey weighty)

-- "" == "", so we get the Nothing case

noEmpty "" = Nothing

-- noEmpty str = Just str

After we’ve evaluated noEmpty "" and gotten a Nothing value,
we use (>>=). How does that go?
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instance Monad Maybe where

return x = Just x

(Just x) >>= k = k x

Nothing >>= _ = Nothing

-- noEmpty "" := Nothing

Nothing >>=

\nammy ->

-- Just case doesn't match, so skip it.

-- (Just x) >>= k = k x

-- This is what we're doing.

Nothing >>= _ = Nothing

So it turns out that the bind function will drop the entire
rest of the computation on the floor the moment any of the
functions participating in the Maybe Monad actions produce a
Nothing value:

mkSphericalCow'' "" 5 499 =

Nothing >>= -- NOPE.

In fact, you can demonstrate to yourself that that stuff never
gets used with bottom, but does with a Just value:
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Prelude> Nothing >>= undefined

Nothing

Prelude> Just 1 >>= undefined

*** Exception: Prelude.undefined

But why do we use the Maybe Applicative and Monad? Because
this:

mkSphericalCow' :: String

-> Int

-> Int

-> Maybe Cow

mkSphericalCow' name' age' weight' = do

nammy <- noEmpty name'

agey <- noNegative age'

weighty <- noNegative weight'

weightCheck (Cow nammy agey weighty)

is a lot nicer than case matching the Nothing case over and
over just so we can say Nothing -> Nothing a million times. Life
is too short for repetition when computers love taking care of
repetition.

Either

Whew. Let’s all be thankful that cow was full of Maybe values
and not tripe. Moving along, we’re going to demonstrate use
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of the Either Monad, step back a bit, and let your intuitions and
what you learned about Maybe guide you through.

Specializing the types

As always, we present the types:

-- m ~ Either e

(>>=) :: Monad m

=> m a

-> (a -> m b)

-> m b

(>>=) :: Either e a

-> (a -> Either e b)

-> Either e b

-- same as pure

return :: Monad m => a -> m aq

return :: a -> Either e a

Why do we keep doing this? To remind you that the types
always show you the way, once you’ve figured them out.

Using the Either Monad

Use what you know to go carefully through this code and
follow the types. First, we define our datatypes:
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module EitherMonad where

-- years ago

type Founded = Int

-- number of programmers

type Coders = Int

data SoftwareShop =

Shop {

founded :: Founded

, programmers :: Coders

} deriving (Eq, Show)

data FoundedError =

NegativeYears Founded

| TooManyYears Founded

| NegativeCoders Coders

| TooManyCoders Coders

| TooManyCodersForYears Founded Coders

deriving (Eq, Show)

Let’s bring some functions now:
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validateFounded

:: Int

-> Either FoundedError Founded

validateFounded n

| n < 0 = Left $ NegativeYears n

| n > 500 = Left $ TooManyYears n

| otherwise = Right n

-- Tho, many programmers *are* negative.

validateCoders

:: Int

-> Either FoundedError Coders

validateCoders n

| n < 0 = Left $ NegativeCoders n

| n > 5000 = Left $ TooManyCoders n

| otherwise = Right n
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mkSoftware

:: Int

-> Int

-> Either FoundedError SoftwareShop

mkSoftware years coders = do

founded <- validateFounded years

programmers <- validateCoders coders

if programmers > div founded 10

then Left $

TooManyCodersForYears

founded programmers

else Right $ Shop founded programmers

Note that Either always short-circuits on the first thing to
have failed. Itmust because in the Monad, later values can depend
on previous ones:

Prelude> mkSoftware 0 0

Right (Shop {founded = 0, programmers = 0})

Prelude> mkSoftware (-1) 0

Left (NegativeYears (-1))

Prelude> mkSoftware (-1) (-1)

Left (NegativeYears (-1))

Prelude> mkSoftware 0 (-1)
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Left (NegativeCoders (-1))

Prelude> mkSoftware 500 0

Right (Shop {founded = 500, programmers = 0})

Prelude> mkSoftware 501 0

Left (TooManyYears 501)

Prelude> mkSoftware 501 501

Left (TooManyYears 501)

Prelude> mkSoftware 100 5001

Left (TooManyCoders 5001)

Prelude> mkSoftware 0 500

Left (TooManyCodersForYears 0 500)

So, there is no Monad for Validation. Applicative and Monad in-
stances must have the same behavior. This is usually expressed
in the form:

import Control.Monad (ap)

(<*>) == ap

This is a way of saying the Applicative apply for a type must
not change behavior if derived from the Monad instance’s bind
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operation.

-- Keeping in mind

(<*>) :: Applicative f

=> f (a -> b) -> f a -> f b

ap :: Monad m

=> m (a -> b) -> m a -> m b

Then deriving Applicative (<*>) from the stronger instance:

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap m m' = do

x <- m

x' <- m'

return (x x')

The problem is you can’t make a Monad for Validation that
accumulates the errors like the Applicative does. Instead, any
Monad instance for Validationwould be identical to Either’s Monad
instance.

Short Exercise: Either Monad

Implement the Either Monad.
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data Sum a b =

First a

| Second b

deriving (Eq, Show)

instance Functor (Sum a) where

fmap = undefined

instance Applicative (Sum a) where

pure = undefined

(<*>) = undefined

instance Monad (Sum a) where

return = pure

(>>=) = undefined

18.5 Monad laws

The Monad typeclass has laws, as the other typeclasses do. These
laws exist, as with all the other typeclass laws, to ensure that
your code does nothing surprising or harmful. If the Monad

instance you write for your type abides by these laws, then
your monads should work as you want them to. To write your
own instance, you only have to define a >>= operation, but you
want your binding to be as predictable as possible.
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Identity laws

Monad has two identity laws:

-- right identity

m >>= return = m

-- left identity

return x >>= f = f x

Basically both of these laws are saying that return should be
neutral and not perform any computation. We’ll line them up
with the type of >>= to clarify what’s happening:

(>>=) :: Monad m

=> m a -> (a -> m b) -> m b

-- [1] [2] [3]

First, right identity:

return :: a -> m a

m >>= return = m

-- [1] [2] [3]

The 𝑚 does represent an m a and m b, respectively, so the
structure is there even if it’s not apparent from the way the
law is written.
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And left identity:

-- applying return to x gives us an

-- m a value to start

return x >>= f = f x

-- [1] [2] [3]

Like pure, return shouldn’t change any of the behavior of the
rest of the function; it is only there to put things into structure
when we need to, and the existence of the structure should
not affect the computation.

Associativity

The law of associativity is not so different from other laws of
associativity we have seen. It does look a bit different because
of the nature of >>=:

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

Regrouping the functions should not have any impact on
the final result, same as the associativity of Monoid. The syntax
there, in which, for the right side of the equals sign, we had to
pass in an 𝑥 argument might seem confusing at first. So, let’s
look at it more carefully.

This side looks the way we expect it to:
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(m >>= f) >>= g

But remember that (>>=) allows the result value of one func-
tion to be passed as input to the next, like function application
but with our value at the left and successive functions proceed-
ing to the right. Remember this code?

getLine >>= putStrLn

The IO action for getLine is evaluated first, then putStrLn is
passed the input string that resulted from running getLine’s
effects. This left-to-right is partly down to the history of IO in
Haskell — it’s so the “order” of the code reads top to bottom.
We’ll explain this more later in the book.

When we reassociate them, we need to apply 𝑓 so that 𝑔 has
an input value of type m a to start the whole thing off. So, we
pass in the argument 𝑥 via an anonymous function:

m >>= (\x -> f x >>= g)

And bada bing, now nothing can slow this roll.

We’re doing that thing again

Out of mercy, we’ll be using checkers (not Nixon’s dog) again.
The argument the Monad TestBatch wants is identical to the
Applicative, a tuple of three value types embedded in the struc-
tural type.
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Prelude> quickBatch (monad [(1, 2, 3)])

monad laws:

left identity: +++ OK, passed 500 tests.

right identity: +++ OK, passed 500 tests.

associativity: +++ OK, passed 500 tests.

Going forward we’ll be using this to validate Monad instances.
Let’s write a bad Monad to see what it can catch for us.

Bad Monads and their denizens

We’re going to write an invalid Monad (and Functor). You could
pretend it’s Identity with an integer thrown in which gets in-
cremented on each fmap or bind.

module BadMonad where

import Test.QuickCheck

import Test.QuickCheck.Checkers

import Test.QuickCheck.Classes
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data CountMe a =

CountMe Integer a

deriving (Eq, Show)

instance Functor CountMe where

fmap f (CountMe i a) =

CountMe (i + 1) (f a)

instance Applicative CountMe where

pure = CountMe 0

CountMe n f <*> CountMe n' a =

CountMe (n + n') (f a)

instance Monad CountMe where

return = pure

CountMe n a >>= f =

let CountMe _ b = f a

in CountMe (n + 1) b
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instance Arbitrary a

=> Arbitrary (CountMe a) where

arbitrary =

CountMe <$> arbitrary <*> arbitrary

instance Eq a => EqProp (CountMe a) where

(=-=) = eq

main = do

let trigger :: CountMe (Int, String, Int)

trigger = undefined

quickBatch $ functor trigger

quickBatch $ applicative trigger

quickBatch $ monad trigger

When we run the tests, the Functor and Monad will fail top
to bottom. The Applicative technically only failed the laws
because Functor did; in the Applicative instance we were using
a proper monoid-of-structure.

Prelude> main

functor:

identity: *** Failed! Falsifiable (after 1 test):

CountMe 0 0

compose: *** Failed! Falsifiable (after 1 test):
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<function>

<function>

CountMe 0 0

applicative:

identity: +++ OK, passed 500 tests.

composition: +++ OK, passed 500 tests.

homomorphism: +++ OK, passed 500 tests.

interchange: +++ OK, passed 500 tests.

functor: *** Failed! Falsifiable (after 1 test):

<function>

CountMe 0 0

monad laws:

left identity: *** Failed! Falsifiable (after 1 test):

<function>

0

right identity: *** Failed! Falsifiable (after 1 test):

CountMe 0 0

associativity: *** Failed! Falsifiable (after 1 test):

CountMe 0 0

We can reapply the weird, broken increment semantics and
get a broken Applicative as well.
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instance Applicative CountMe where

pure = CountMe 0

CountMe n f <*> CountMe _ a =

CountMe (n + 1) (f a)

Now it’s all broken.

applicative:

identity:

*** Failed! Falsifiable (after 1 test):

CountMe 0 0

composition:

*** Failed! Falsifiable (after 1 test):

CountMe 0 <function>

CountMe 0 <function>

CountMe 0 0

homomorphism:

*** Failed! Falsifiable (after 1 test):

<function>

0

interchange:

*** Failed! Falsifiable (after 3 tests):

CountMe (-1) <function>

0

Understanding what makes sense structurally for a Functor,
Applicative, and Monoid can tell you what is potentially an in-
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valid instance before you’ve written any code. Incidentally,
even if you fix the Functor and Applicative instances, the Monad

instance is not yet fixed.

instance Functor CountMe where

fmap f (CountMe i a) = CountMe i (f a)

instance Applicative CountMe where

pure = CountMe 0

CountMe n f <*> CountMe n' a =

CountMe (n + n') (f a)

instance Monad CountMe where

return = pure

CountMe _ a >>= f = f a

This’ll pass as a valid Functor and Applicative, but it’s not a
valid Monad. The problem is that while pure setting the integer
value to zero is fine for the purposes of the Applicative, but it
violates the right identity law of Monad.

Prelude> CountMe 2 "blah" >>= return

CountMe 0 "blah"

So our pure is too opinionated. Still a valid Applicative and
Functor, but what if pure didn’t agree with the Monoid of the
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structure? The following will pass the Functor laws but it isn’t a
valid Applicative.

instance Functor CountMe where

fmap f (CountMe i a) = CountMe i (f a)

instance Applicative CountMe where

pure = CountMe 1

CountMe n f <*> CountMe n' a =

CountMe (n + n') (f a)

As it happens, if we change the monoid-of-structure to
match the identity such that we have addition and the number
zero, it’s a valid Applicative again.

instance Applicative CountMe where

pure = CountMe 0

CountMe n f <*> CountMe n' a =

CountMe (n + n') (f a)

As you gain experience with these structures, you’ll learn to
identify what might have a valid Applicative but no valid Monad

instance. But how do we fix the Monad instance? By fixing the
underlying Monoid!
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instance Monad CountMe where

return = pure

CountMe n a >>= f =

let CountMe n' b = f a

in CountMe (n + n') b

Once our Monad instance starts summing the counts like the
Applicative did, it works fine! It can be easy at times to acciden-
tally write an invalid Monad that typechecks, so it’s important to
use QuickCheck to validate your Monoid, Functor, Applicative, and
Monad instances.

18.6 Application and composition

What we’ve seen so far has been primarily about function
application. We probably weren’t thinking too much about the
relationship between function application and composition
because with Functor and Applicative it hadn’t mattered much.
Both concerned functions that looked like the usual (a -> b)

arrangement, so composition “just worked” and that this was
true was guaranteed by the laws of those typeclasses:
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fmap id = id

-- guarantees

fmap f . fmap g = fmap (f . g)

Which means composition under functors just works:

Prelude> fmap ((+1) . (+2)) [1..5]

[4,5,6,7,8]

Prelude> fmap (+1) . fmap (+2) $ [1..5]

[4,5,6,7,8]

With Monad the situation seems less neat at first. Let’s attempt
to define composition for monadic functions in a simple way:

mcomp :: Monad m =>

(b -> m c)

-> (a -> m b)

-> a -> m c

mcomp f g a = f (g a)

If we try to load this, we’ll get an error like this:

Couldn't match expected type ‘b’

with actual type ‘m b’

‘b’ is a rigid type variable bound



CHAPTER 18. MONAD 1201

by the type signature for

mcomp :: Monad m =>

(b -> m c)

-> (a -> m b)

-> a -> m c

at kleisli.hs:21:9

Relevant bindings include

g :: a -> m b (bound at kleisli.hs:22:8)

f :: b -> m c (bound at kleisli.hs:22:6)

mcomp :: (b -> m c)

-> (a -> m b)

-> a -> m c

(bound at kleisli.hs:22:1)

In the first argument of ‘f’, namely ‘(g a)’

In the expression: f (g a)

Failed, modules loaded: none.

Well, that didn’t work. That error message is telling us that
𝑓 is expecting a 𝑏 for its first argument, but 𝑔 is passing an m b

to 𝑓 . So, how do we apply a function in the presence of some
context that we want to ignore? We use fmap. That’s going to
give us an m (m c) instead of an m c, so we’ll want to join those
two monadic structures.
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mcomp :: Monad m =>

(b -> m c)

-> (a -> m b)

-> a -> m c

mcomp f g a = join (f <$> (g a))

But using join and fmap together means we can go ahead
and use (>>=).

mcomp'' :: Monad m =>

(b -> m c)

-> (a -> m b)

-> a -> m c

mcomp'' f g a = g a >>= f

You don’t need to write anything special to make monadic
functions compose (as long as the monadic contexts are the
same Monad) because Haskell has it covered: what you want is
Kleisli composition. Don’t sweat the strange name; it’s not as
weird as it sounds. As we saw above, what we need is function
composition written in terms of >>= to allow us to deal with
the extra structure, and that’s what the Kleisli fish gives us.

Let’s remind ourselves of the types of ordinary function
composition and >>=:
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(.) :: (b -> c) -> (a -> b) -> a -> c

(>>=) :: Monad m

=> m a -> (a -> m b) -> m b

To get Kleisli composition off the ground, we have to flip
some arguments around to make the types work:

import Control.Monad

-- the order is flipped to match >>=

(>=>)

:: Monad m

=> (a -> m b) -> (b -> m c) -> a -> m c

See any similarities to something you know yet?

(>=>)

:: Monad m

=> (a -> m b) -> (b -> m c) -> a -> m c

flip (.)

:: (a -> b) -> (b -> c) -> a -> c

It’s function composition with monadic structure hanging
off the functions we’re composing. Let’s see an example!
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import Control.Monad ((>=>))

sayHi :: String -> IO String

sayHi greeting = do

putStrLn greeting

getLine

readM :: Read a => String -> IO a

readM = return . read

getAge :: String -> IO Int

getAge = sayHi >=> readM

askForAge :: IO Int

askForAge =

getAge "Hello! How old are you? "

We used return composed with read to turn it into some-
thing that provides monadic structure after being bound over
the output of sayHi. We needed the Kleisli composition opera-
tor to stitch sayHi and readM together:
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sayHi :: String -> IO String

readM :: Read a => String -> IO a

-- [1] [2] [3]

(a -> m b)

String -> IO String

-- [4] [5] [6]

-> (b -> m c)

String -> IO a

-- [7] [8] [9]

-> a -> m c

String IO a

1. The first type is the type of the input to sayHi, String.

2. The IO that sayHi performs in order to present a greeting
and receive input.

3. The String input from the user that sayHi returns.

4. The String that readM expects as an argument and which
sayHi will produce.

5. The IO readM returns into. Note that return/pure produce
IO values which perform no I/O.
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6. The Int that readM returns.

7. The original, initial String input sayHi expects so it knows
how to greet the user and ask for their age.

8. The final combined IO action which performs all effects
necessary to produce the final result.

9. The value inside of the final IO action; in this case, this is
the Int value that readM returned.

18.7 Chapter Exercises

Write Monad instances for the following types. Use the QuickCheck

properties we showed you to validate your instances.

1. Welcome to the Nope Monad, where nothing happens and
nobody cares.

data Nope a =

NopeDotJpg

-- We're serious. Write it anyway.

2. data PhhhbbtttEither b a =

Left a

| Right b
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3. Write a Monad instance for Identity.

newtype Identity a = Identity a

deriving (Eq, Ord, Show)

instance Functor Identity where

fmap = undefined

instance Applicative Identity where

pure = undefined

(<*>) = undefined

instance Monad Identity where

return = pure

(>>=) = undefined

4. This one should be easier than the Applicative instance
was. Remember to use the Functor that Monad requires, then
see where the chips fall.

data List a =

Nil

| Cons a (List a)

Write the following functions using the methods provided
by Monad and Functor. Using stuff like identity and composition
is fine, but it has to typecheck with types provided.
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1. j :: Monad m => m (m a) -> m a

Expecting the following behavior:

Prelude> j [[1, 2], [], [3]]

[1,2,3]

Prelude> j (Just (Just 1))

Just 1

Prelude> j (Just Nothing)

Nothing

Prelude> j Nothing

Nothing

2. l1 :: Monad m => (a -> b) -> m a -> m b

3. l2 :: Monad m

=> (a -> b -> c) -> m a -> m b -> m c

4. a :: Monad m => m a -> m (a -> b) -> m b

5. You’ll need recursion for this one.

meh :: Monad m

=> [a] -> (a -> m b) -> m [b]

6. Hint: reuse “meh”

flipType :: (Monad m) => [m a] -> m [a]
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18.8 Definition

1. Monad is a typeclass reifying an abstraction that is com-
monly used in Haskell. Instead of an ordinary function of
type 𝑎 to 𝑏, you’re functorially applying a function which
produces more structure itself and using join to reduce
the nested structure that results.

fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

(=<<) :: (a -> f b) -> f a -> f b

2. A monadic function is one which generates more structure
after having been lifted over monadic structure. Contrast
the function arguments to fmap and (>>=) in:

fmap :: (a -> b) -> f a -> f b

(>>=) :: m a -> (a -> m b) -> m b

The significant difference is that the result is m b and re-
quires joining the result after lifting the function over 𝑚.
What does this mean? That depends on the Monad instance.

The distinction can be seen with ordinary function com-
position and Kleisli composition as well:
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(.)

:: (b -> c) -> (a -> b) -> a -> c

(>=>)

:: Monad m

=> (a -> m b) -> (b -> m c) -> a -> m c

3. bind is unfortunately a somewhat overloaded term. You
first saw it used early in the book with respect to binding
variables to values, such as with the following:

let x = 2 in x + 2

Where 𝑥 is a variable bound to 2. However, when we’re
talking about a Monad instance typically bind will refer
to having used >>= to lift a monadic function over the
structure. The distinction being:

-- lifting (a -> b) over f in f a

fmap :: (a -> b) -> f a -> f b

-- binding (a -> m b) over m in m a

(>>=) :: m a -> (a -> m b) -> m b

You’ll sometimes see us talk about the use of the bind
do-notation <- or (>>=) as “binding over.” When we do, we
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mean that we lifted a monadic function and we’ll even-
tually join or smush the structure back down when we’re
done monkeying around in the Monad. Don’t panic if we’re a
little casual about describing the use of <- as having bound
over/out some 𝑎 out of m a.

18.9 Follow-up resources

1. What a Monad is not
https://wiki.haskell.org/What_a_Monad_is_not

2. Gabriel Gonzalez; How to desugar Haskell code

3. Stephen Diehl; What I wish I knew when Learning Haskell
http://dev.stephendiehl.com/hask/#monads

4. Stephen Diehl; Monads Made Difficult
http://www.stephendiehl.com/posts/monads.html

5. Brent Yorgey; Typeclassopedia
https://wiki.haskell.org/Typeclassopedia

https://wiki.haskell.org/What_a_Monad_is_not
http://dev.stephendiehl.com/hask/#monads
http://www.stephendiehl.com/posts/monads.html
https://wiki.haskell.org/Typeclassopedia


Chapter 19

Applying structure

I often repeat repeat
myself, I often repeat
repeat. I don’t don’t know
why know why, I simply
know that I I I am am
inclined to say to say a lot
a lot this way this way- I
often repeat repeat
myself, I often repeat
repeat.

Jack Prelutsky

1212
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19.1 Applied structure

We thought you’d like to see Monoid, Functor, Applicative, and
Monad in the wild as it were. Since we’d like to finish this book
before we have grandchildren, this will not be accompanied
by the painstaking explanations and exercise regime you’ve
experienced up to this point. Don’t understand something?
Figure it out! We’ll do our best to leave a trail of breadcrumbs
for you to follow up on the code we show you. Consider this a
breezy survey of how Haskellers write code when they think
no one is looking and a pleasant break from your regularly
scheduled exercises. The code demonstrated will not always
include all necessary context to make it run, so don’t expect
to be able to load the snippets in GHCi and have them work.

If you don’t have a lot of previous programming experience
and some of the applications are difficult for you to follow,
you might prefer to return to this chapter at a later time, once
you start trying to read and use Haskell libraries for practical
projects.

19.2 Monoid

Monoids are everywhere once you recognize the pattern and
start looking for them, but we’ve tried to choose a few good
examples to illustrate typical use-cases.
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Templating content in Scotty

Here the scotty web framework’s “Hello, World” example uses
mconcat to inject the parameter “word” into the HTML page
returned:

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

import Data.Monoid (mconcat)

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

html

(mconcat

[ "<h1>Scotty, "

, beam

, " me up!</h1>"])

If you’re interested in following up on this example, you
can find this example and a tutorial on the scotty Github repos-
itory.
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Concatenating connection parameters

The next example is from Aditya Bhargava’s “Making A Web-
site With Haskell,” a blog post that walks you through several
steps for, well, making a simple website in Haskell. It also uses
the scotty web framework.

Here we’re using foldr and Monoid to concatenate connection
parameters for connecting to the database:

runDb :: SqlPersist (ResourceT IO) a

-> IO a

runDb query = do

let connStr =

foldr (\(k,v) t ->

t <> (encodeUtf8 $

k <> "=" <> v <> " "))

"" params

runResourceT

. withPostgresqlConn connStr

$ runSqlConn query

If you’re interested in following up on this, this blog post
is one of many that shows you step by step how to use scotty,
although many of them breeze through each step without a
great deal of explanation. It will be easier to understand scotty

in detail once you’ve worked through monad transformers, but
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if you’d like to start playing around with some basic projects,
you may want to try them out.

Concatenating key configurations

The next example is going to be a bit meatier than the two
previous ones.

xmonad is a windowing system for X11 written in Haskell.
The configuration language is Haskell — the binary that runs
your WM is compiled from your personal configuration. The
following is an example of using mappend to combine the default
configuration’s key mappings and a modification of those keys:
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import XMonad

import XMonad.Actions.Volume

import Data.Map.Lazy (fromList)

import Data.Monoid (mappend)

main = do

xmonad def { keys =

\c -> fromList [

((0, xK_F6),

lowerVolume 4 >> return ()),

((0, xK_F7),

raiseVolume 4 >> return ())

] `mappend` keys defaultConfig c

}

The type of keys is a function:

keys :: !(XConfig Layout

-> Map (ButtonMask, KeySym) (X ()))

You don’t need to get too excited about the exclamation
point right now; it’s the syntax for a nifty thing called a strictness
annotation, which makes a field in a product strict. That is, you
won’t be able to construct the record or product that contains
the value without also forcing that field to weak head normal
form. We’ll explain this in more detail later in the book.
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The gist of the main above is that it allows your keymapping
to be based on the current configuration of your environment.
Whenever you type a key, xmonad will pass the current config to
your keys function in order to determine what (if any) action it
should take based on that. We’re using the Monoid here to add
new keyboard shortcuts for lowering and raising the volume
with F6 and F7. The monoid of the keys functions is combining
all of the key maps each function produces when applied to
the XConfig to produce a final canonical key map.

Say what?
This is a Monoid instance we hadn’t covered in the Monoid

chapter, so let’s take a look at it now:

instance Monoid b

=> Monoid (a -> b)

-- Defined in ‘GHC.Base’

This, friends, is the Monoid of functions.
But how does it work? First, let’s set up some very trivial

functions for demonstration:

Prelude> import Data.Monoid

Prelude> let f = const (Sum 1)

Prelude> let g = const (Sum 2)

Prelude> f 9001

Sum {getSum = 1}

Prelude> g 9001
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Sum {getSum = 2}

Query the types of those functions and see how you think
they will match up to the Monoid instance above.

We know that whatever arguments we give to 𝑓 and 𝑔, they
will always return their first arguments, which are Sum monoids.
So if we mappend 𝑓 and 𝑔, they’re going to ignore whatever argu-
ment we tried to apply them to and use the Monoid to combine
the results:

Prelude> (f <> g) 9001

Sum {getSum = 3}

So this Monoid instance allows to mappend the results of two
function applications:

(a -> b) <> (a -> b)

Just as long as the 𝑏 has a Monoid instance.
We’re going to offer a few more examples that will get you

closer to what the particular use of mappend in the xmonad ex-
ample is doing. We mentioned Data.Map back in the Testing
chapter. It gives us ordered pairs of keys and values:

Prelude> import qualified Data.Map as M

Prelude M> :t M.fromList

M.fromList :: Ord k => [(k, a)] -> Map k a
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Prelude M> let f = M.fromList [('a', 1)]

Prelude M> let g = M.fromList [('b', 2)]

Prelude M> :t f

f :: Num a => Map Char a

Prelude M> import Data.Monoid

Prelude M Data.Monoid> f <> g

fromList [('a',1),('b',2)]

Prelude M Data.Monoid> :t (f <> g)

(f <> g) :: Num a => Map Char a

Prelude M Data.Monoid> mappend f g

fromList [('a',1),('b',2)]

Prelude M Data.Monoid> f `mappend` g

fromList [('a',1),('b',2)]

-- but note what happens here:

Prelude> f <> g

fromList [('a',1)]

So, returning to the xmonad configuration we started with.
The keys field is a function which, given an XConfig, produces a
keymapping. It uses the monoid of functions to combine the
pre-existing function that generates the keymap to produce as
many maps as you have mappended functions, then combine
all the key maps into one.

This part:
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>> return ()

says that the key assignment is performing some effects and
only performing some effects. Functions have to reduce to
some result, but sometimes their only purpose is to perform
some effects and youdon’t want to do anythingwith the “result”
of evaluating the terms.

As we’ve said and other people have noted as well, monoids
are everywhere— not just in Haskell but in all of programming.

19.3 Functor

There’s a reason we chose that Michael Neale quotation for
the Functor chapter epigraph: lifting really is the cheat mode.
fmap is ubiquitous in Haskell, for all sorts of applications, but
we’ve picked a couple that we found especially demonstrative
of why it’s so handy.

Lifting over IO

Herewe’re taking a function that doesn’t perform I/O, addUTCTime,
partially applying it to the offset we’re going to add to the sec-
ond argument, then mapping it over the IO action that gets us
the current time:
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import Data.Time.Clock

offsetCurrentTime :: NominalDiffTime

-> IO UTCTime

offsetCurrentTime offset =

fmap (addUTCTime (offset * 24 * 3600)) $

getCurrentTime

Context for the above:

1. NominalDiffTime is a newtype of Pico and has a Num instance,
that’s why the arithmetic works.

addUTCTime :: NominalDiffTime

-> UTCTime

-> UTCTime

2. getCurrentTime :: IO UTCTime

3. fmap’s type got specialized.

fmap :: (UTCTime -> UTCTime)

-> IO UTCTime

-> IO UTCTime

Here we’re lifting some data conversion stuff over the fact
that the UUID library has to touch an outside resource (ran-
dom number generation) to give us a random identifier. The
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UUID library used is named uuid on Hackage. The Text pack-
age used is named…text:

import Data.Text (Text)

import qualified Data.Text as T

import qualified Data.UUID as UUID

import qualified Data.UUID.V4 as UUIDv4

textUuid :: IO Text

textUuid =

fmap (T.pack . UUID.toString)

UUIDv4.nextRandom

1. nextRandom :: IO UUID

2. toString :: UUID -> String

3. pack :: String -> Text

4. fmap :: (UUID -> Text)

-> IO UUID

-> IO Text

Lifting over web app monads

Frequently when you write web applications, you’ll have a
custom datatype to describe the web application which is also
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a Monad. It’s a Monad because your “app context” will have a
type parameter to describe what result was produced in the
course of a running web application. Often these types will
abstract out the availability of a request or other configuration
data with a Reader (explained in a later chapter), as well as the
performance of effects via IO. In the following example, we’re
lifting over AppHandler and Maybe:

userAgent :: AppHandler (Maybe UserAgent)

userAgent =

(fmap . fmap) userAgent' getRequest

userAgent' :: Request -> Maybe UserAgent

userAgent' req =

getHeader "User-Agent" req

We need the Functor here because while we can pattern
match on the Maybe value, an AppHandler isn’t something we can
pattern match on. It’s a convention in this web framework
library, snap, to make a type alias for your web application type.
It usually looks like this:

type AppHandler = Handler App App

The underlying infrastructure for snap is more complicated
than we can cover to any depth here, but suffice to say there
are a few things floating around:
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1. HTTP request which triggered the processing currently
occurring.

2. The current (possibly empty or default) response that will
be returned to the client when the handlers and middle-
ware are done.

3. A function for updating the request timeout.

4. A helper function for logging.

5. And a fair bit more than this.

The issue here is that your AppHandler is meant to be slotted
into a web application which requires the reading in of con-
figuration, initialization of a web server, and the sending of a
request to get everything in motion. This is essentially a bunch
of functions waiting for arguments — waiting for something
to do. It doesn’t make sense to do all that yourself every time
you want a value that can only be obtained in the course of
the web application doing its thing. Accordingly, our Functor

is letting us write functions over structure which handles all
this work. It’s like we’re saying, “here’s a function, apply it to a
thing that resulted from an HTTP request coming down the
pipe, if one comes along.”
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19.4 Applicative

Applicative is somewhat new to Haskell, but it’s useful enough,
particularlywith parsers, that it’s easy to find examples. There’s
a whole chapter on parsers coming up later, but we thought
these examples were mostly comprehensible even without
that context.

hgrev

This is an example from Luke Hoersten’s hgrev project. The
example in the README is a bit dense, but uses Monoid and
Applicative to combine parsers of command line arguments:

jsonSwitch :: Parser (a -> a)

jsonSwitch =

infoOption $(hgRevStateTH jsonFormat)

$ long "json"

<> short 'J'

<> help

"Display JSON version information"

parserInfo :: ParserInfo (a -> a)

parserInfo =

info (helper <*> verSwitch <* jsonSwitch)

fullDesc
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You might be wondering what the <* operator is. It’s an-
other operator from the Applicative typeclass. It allows you to
sequence actions, discarding the result of the second argument.
Does this look familiar?

Prelude> :t (<*)

(<*) :: Applicative f => f a -> f b -> f a

Prelude> :t const

const :: a -> b -> a

Basically the (<*) operator (like its sibling, (*>), and the
monadic operator, >>) is useful when you’re emitting effects.
In this case, you’ve done something with effects and want to
discard any value that resulted.

More parsing

Here we’re using Applicative to lift the data constructor for the
Payload type over the Parser returned by requesting a value by
key out of a JSON object, which is basically an association of
text keys to further more JSON values which may be strings,
numbers, arrays, or more JSON objects:
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parseJSON :: Value -> Parser a

(.:) :: FromJSON a

=> Object

-> Text

-> Parser a

instance FromJSON Payload where

parseJSON (Object v) =

Payload <$> v .: "from"

<*> v .: "to"

<*> v .: "subject"

<*> v .: "body"

<*> v .: "offset_seconds"

parseJSON v = typeMismatch "Payload" v

This is the same as the JSON but for CSV1 data:

parseRecord :: Record -> Parser a

1CSV stands for comma-separated values, a common, though not entirely standard-
ized file format.
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instance FromRecord Release where

parseRecord v

| V.length v == 5 = Release <$> v .! 0

<*> v .! 1

<*> v .! 2

<*> v .! 3

<*> v .! 4

| otherwise = mzero

This one uses liftA2 to lift the tuple data constructor over
parseKey and parseValue to give key-value pairings. You can see
the (<*) operator in there again as well, along with the infix
operator for fmap and =<< as well:
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instance Deserializeable ShowInfoResp where

parser =

e2err =<< convertPairs

. HM.fromList <$> parsePairs

where

parsePairs :: Parser [(Text, Text)]

parsePairs =

parsePair `sepBy` endOfLine

parsePair =

liftA2 (,) parseKey parseValue

parseKey =

takeTill (==':') <* kvSep

kvSep = string ": "

parseValue = takeTill isEndOfLine

This one instance is a virtual cornucopia of applications
of the previous chapters and we believe it demonstrates how
much cleaner and more readable these can make your code.

And now for something different

This next example is also using an applicative, but this is a bit
different than the above examples. We’ll spend more time
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explaining this one, as this pattern for writing utility functions
is common:

module Web.Shipping.Utils ((<||>)) where

import Control.Applicative (liftA2)

(<||>) :: (a -> Bool)

-> (a -> Bool)

-> a

-> Bool

(<||>) = liftA2 (||)

At first glance, this doesn’t seem too hard to understand,
but some examples will help you develop an understanding
of what’s going on. We start with the operator for boolean
disjunction, (||), which is an or:

Prelude> True || False

True

Prelude> False || False

False

Prelude> (2 > 3) || (3 == 3)

True

And now we want to be able to keep that as an infix operator
but lift it over some context, so we use liftA2:
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Prelude> import Control.Applicative

Prelude> let (<||>) = liftA2 (||)

Andwe’llmake some trivial functions again for the purposes
of demonstration:

Prelude> let f 9001 = True; f _ = False

Prelude> let g 42 = True; g _ = False

Prelude> :t f

f :: (Eq a, Num a) => a -> Bool

Prelude> f 42

False

Prelude> f 9001

True

Prelude> g 42

True

Prelude> g 9001

False

We can compose the two functions 𝑓 and 𝑔 to take one input
and give one summary result like this:

Prelude> (\n -> f n || g n) 0

False

Prelude> (\n -> f n || g n) 9001

True

Prelude> :t (\n -> f n || g n)



CHAPTER 19. MONADS GONEWILD 1233

(\n -> f n || g n)

:: (Eq a, Num a) => a -> Bool

But we have to pass in that argument 𝑛 in order to do it that
way. Our utility function gives us a cleaner way:

Prelude> (f <||> g) 0

False

Prelude> (f <||> g) 9001

True

It’s parallel application of the functions against an argument.
That application produces two values, so we monoidally com-
bine the two values so that we have a single value to return.
We’ve set up an environment so that two (a -> Bool) functions
that don’t have an 𝑎 argument yet can return a result based on
those two Bool values when the combined function is eventu-
ally applied against an 𝑎.

19.5 Monad

Because effectful programming is constrained inHaskell through
the use of IO, and IO has an instance of Monad, examples of Monad
in practical Haskell code are everywhere. We tried to find
some examples that illustrate different interesting use cases.
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Opening a network socket

Here we’re using do syntax for IO’s Monad in order to bind a
socket handle from the socket smart constructor, connect it
to an address, then return the handle for reading and writing.
This example is from haproxy-haskell by Michael Xavier. See
the network library on Hackage for use and documentation:

import Network.Socket

openSocket :: FilePath -> IO Socket

openSocket p = do

sock <- socket AF_UNIX

Stream

defaultProtocol

connect sock sockAddr

return sock

where sockAddr =

SockAddrUnix . encodeString $ p

This isn’t too unlike anything you saw in previous chapters,
at least since we built the hangman game. The next example
is a bit richer.
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Binding over failure in initialization

Michael Xavier’s Seraph is a process monitor and has a main

entry point which is typical of more developed libraries and
applications. The outermost Monad is IO, but the monad trans-
former variant of Either, called EitherT, is used to bind over the
possibility of failure in constructing an initialization function.
This possibility of failure centers on being able to pull up a
correct configuration:
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main :: IO ()

main = do

initAndFp <- runEitherT $ do

fp <- tryHead NoConfig =<< lift getArgs

initCfg <- load' fp

return (initCfg, fp)

either bail (uncurry boot) initAndFp

where

boot initCfg fp =

void $ runMVC mempty

oracleModel (core initCfg fp)

bail NoConfig =

errorExit "Please pass a config"

bail (InvalidConfig e) =

errorExit

("Invalid config " ++ show e)

load' fp =

hoistEither

. fmapL InvalidConfig

=<< lift (load fp)

If you found that very dense and difficult to follow at this
point, we’d encourage you to have another look at it after we’ve
covered monad transformers.
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19.6 An end-to-end example: URL
shortener

In this section, we’re going to walk through an entire program,
beginning to end.2 There are some pieces we are not going to
explain thoroughly; however, this is something you can build
and work with if you’re interested in doing so.

First, the .cabal file for the project:

name: shawty

version: 0.1.0.0

synopsis: URI shortener

description: Please see README.md

homepage: http://github.com/

license: BSD3

license-file: LICENSE

author: Chris Allen

maintainer: cma@bitemyapp.com

copyright: 2015, Chris Allen

category: Web

build-type: Simple

cabal-version: >=1.10

executable shawty

2 The code in this example can be found here: https://github.com/bitemyapp/

shawty-prime/blob/master/app/Main.hs

https://github.com/bitemyapp/shawty-prime/blob/master/app/Main.hs
https://github.com/bitemyapp/shawty-prime/blob/master/app/Main.hs
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hs-source-dirs: app

main-is: Main.hs

ghc-options: -threaded

build-depends: base

, bytestring

, hedis

, mtl

, network-uri

, random

, scotty

, semigroups

, text

, transformers

default-language: Haskell2010

And the project layout:

$ tree

.

├── LICENSE

├── Setup.hs

├── app

│   └── Main.hs

├── shawty.cabal

└── stack.yaml
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You may choose to use Stack or not. That is how we got the
template for the project in place. If you’d like to learn more,
check out Stack’s Github repo3 and the Stack video tutorial4

we worked on together. The code following from this point is
in Main.hs.

We need to start our program off with a language extension:

{-# LANGUAGE OverloadedStrings #-}

OverloadedStrings is a way to make String literals polymor-
phic, the way numeric literals are polymorphic over the Num

typeclass. String literals are not ordinarily polymorphic; String
is a concrete type. Using OverloadedStrings allows us to use
String literals as Text and ByteString values.

Brief aside about polymorphic literals

We mentioned that the integral number literals in Haskell
are typed Num a => a by default. Now that we have another
example to work with, it’s worth examining how they work
under the hood, so to speak. First, let’s look at a typeclass from
a module in base:

Prelude> import Data.String

3Stack Github repo https://github.com/commercialhaskell/stack
4The video Stack mega-tutorial! The whole video is long, but covers a lot of abnormal

use cases. Use the time stamps to jump to what you need to learn. https://www.youtube.

com/watch?v=sRonIB8ZStw&feature=youtu.be

https://github.com/commercialhaskell/stack
https://www.youtube.com/watch?v=sRonIB8ZStw&feature=youtu.be
https://www.youtube.com/watch?v=sRonIB8ZStw&feature=youtu.be
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Prelude> :info IsString

class IsString a where

fromString :: String -> a

-- Defined in ‘Data.String’

instance IsString [Char]

-- Defined in ‘Data.String’

Then we may notice something in Num and Fractional:

class Num a where

-- irrelevant bits elided

fromInteger :: Integer -> a

class Num a => Fractional a where

-- elision again

fromRational :: Rational -> a

OK, and what about our literals?

Prelude> :set -XOverloadedStrings

Prelude> :t 1

1 :: Num a => a

Prelude> :t 1.0

1.0 :: Fractional a => a

Prelude> :t "blah"

"blah" :: IsString a => a
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The basic design is that the underlying representation is
concrete, butGHCautomaticallywraps it in fromString/fromInteger/fromRational.
So it’s as if:

{-# LANGUAGE OverloadedStrings #-}

"blah" :: Text

== fromString ("blah" :: String)

1 :: Int

== fromInteger (1 :: Integer)

2.5 :: Double

== fromRational (2.5 :: Rational)

Libraries like text and bytestringprovide instances for IsString
in order to perform the conversion. Assuming you have those
libraries installed, you can kick it around a little. Note that,
due to the monomorphism restriction, the following will work
in the REPL but would not work if we loaded it from a source
file (because it would default to a concrete type; we’ve seen
this a couple times earlier in the book):

Prelude> :set -XOverloadedStrings

Prelude> let a = "blah"

Prelude> a
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"blah"

Prelude> :t a

a :: Data.String.IsString a => a

Then you can make it a Text or ByteString value:

Prelude> import Data.Text (Text)

Prelude> :{

*Main| import Data.ByteString (ByteString)

*Main| :}

Prelude> let t = "blah" :: Text

Prelude> let bs = "blah" :: ByteString

Prelude> t == bs

Couldn't match expected type ‘Text’ with

actual type ‘ByteString’

In the second argument of ‘(==)’,

namely ‘bs’

In the expression: t == bs

OverloadedStrings is a convenience that originated in the
desire of working Haskell programmers to use String literals
for Text and ByteString values. It’s not too big a deal, but it
can be nice and saves you manually wrapping each literal in
fromString.
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Back to the show

Next, the module name must be Main as that is required for
anything exporting a main executable to be invoked when the
program runs. We follow the OverloadedStrings extension with
our imports:

module Main where

import Control.Monad (replicateM)

import Control.Monad.IO.Class (liftIO)

import qualified Data.ByteString.Char8

as BC

import Data.Text.Encoding

(decodeUtf8, encodeUtf8)

import qualified Data.Text.Lazy as TL

import qualified Database.Redis as R

import Network.URI (URI, parseURI)

import qualified System.Random as SR

import Web.Scotty

Where we import something “qualified (…) as (…)” we are
doing two things. Qualifying the import means that we can
only refer to values in the module with the full module path,
and we use as to give the module that we want in scope a name.
For example, Data.ByteString.Char8.pack is a fully qualified ref-
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erence to pack. We qualify the import so that we don’t import
declarations that would conflict with bindings that already
exist in Prelude. By specifying a name using as, we can give the
value a shorter, more convenient name. Where we import the
module name followed by parentheses, such as with replicateM

or liftIO, we are saying we only want to import the functions
or values of that name and nothing else. In the case of import
Web.Scotty, we are importing everything Web.Scotty exports. An
unqualified and unspecific import should be avoided except in
those cases where the provenance of the imported functions
will be obvious, or when the import is a toolkit you must use
all together, such as scotty.

Next we need to generate our shortened URLs that will refer
to the links people post to the service. We will make a String

of the characters we want to select from:

alphaNum :: String

alphaNum = ['A'..'Z'] ++ ['0'..'9']

Now we need to pick random elements from alphaNum. The
general idea here should be familiar from the hangman game.
First, we find the length of the list to determine a range to
select from, then get a random number in that range, using IO

to handle the randomness:
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randomElement :: String -> IO Char

randomElement xs = do

let maxIndex :: Int

maxIndex = length xs - 1

-- Right of arrow is IO Int,

-- so randomDigit is Int

randomDigit <- SR.randomRIO (0, maxIndex)

return (xs !! randomDigit)

Next, we apply randomElement to alphaNum to get a single ran-
dom letter or number fromour alphabet. Thenweuse replicateM

7 to repeat this action 7 times, giving a list of 7 random letters
or numbers:

shortyGen :: IO [Char]

shortyGen =

replicateM 7 (randomElement alphaNum)

For additional fun, see what replicateM 2 [1, 3] does and
whether you can figure out why. Compare it to the Prelude

function, replicate.
You may have noticed a mention of Redis in our imports

and wondered what was up. If you’re not already familiar with
it, Redis is in-memory, key-value data storage. The details
of how Redis works are well beyond the scope of this book
and they’re not very important here. Redis can be convenient
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for some common use cases like caching, or when you want
persistence without a lot of ceremony, as was the case here.
You will need to install and have Redis running in order for
the project to work; otherwise, the web server will throw an
error upon failing to connect to Redis.

This next bit is a function whose arguments are our con-
nection to Redis (R.Connection), the key we are setting in Redis,
and the value we are setting the key to. We also perform side
effects in IO to get Either R.Reply R.Status as a result. The key
in this case is the randomly generated URI we created, and
the value is the URL the user wants the shortener to provide
at that address:

saveURI :: R.Connection

-> BC.ByteString

-> BC.ByteString

-> IO (Either R.Reply R.Status)

saveURI conn shortURI uri =

R.runRedis conn $ R.set shortURI uri

The next function, getURI, takes the connection to Redis and
the shortened URI key in order to get the URI associated with
that short URL and show users where they’re headed:
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getURI :: R.Connection

-> BC.ByteString

-> IO (Either R.Reply

(Maybe BC.ByteString))

getURI conn shortURI =

R.runRedis conn $ R.get shortURI

Next some basic templating functions for returning output
to the web browser:

linkShorty :: String -> String

linkShorty shorty =

concat

[ "<a href=\""

, shorty

, "\">Copy and paste your short URL</a>"

]

The final output to scotty has to be a Text value, so we’re
concatenating lists of Text values to produce responses to the
browser:



CHAPTER 19. MONADS GONEWILD 1248

-- TL.concat :: [TL.Text] -> TL.Text

shortyCreated :: Show a

=> a

-> String

-> TL.Text

shortyCreated resp shawty =

TL.concat [ TL.pack (show resp)

, " shorty is: "

, TL.pack (linkShorty shawty)

]

shortyAintUri :: TL.Text -> TL.Text

shortyAintUri uri =

TL.concat

[ uri

, " wasn't a url,"

, " did you forget http://?"

]

shortyFound :: TL.Text -> TL.Text

shortyFound tbs =

TL.concat

[ "<a href=\""

, tbs, "\">"

, tbs, "</a>" ]
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Now we get to the bulk of web-appy bits in the form of our
application. We’ll enumerate the application in chunks, but
they’re all in one app function:

app :: R.Connection

-> ScottyM ()

app rConn = do

-- [1]

get "/" $ do

-- [2]

uri <- param "uri"

-- [3]

1. Redis connection that should’ve been fired up before the
web server started.

2. get is a function that takes a RoutePattern, an action that
returns an HTTP response, and adds the route to the
Scotty server it’s embedded in. As you might suspect,
RoutePattern has an IsString instance so that the pattern
can be a String literal. The top-level route is expressed as
”/”, i.e., like going to https://google.com/or https://bitemyapp.
com/. That final / character is what’s being expressed.

3. The param function is a means of getting…parameters.

https://google.com/
https://bitemyapp.com/
https://bitemyapp.com/
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param :: Parsable a

=> Data.Text.Internal.Lazy.Text

-> ActionM a

It’s sort of like Read, but it’s parsing a value of the type
you ask for. The param function can find arguments via
URL path captures (see below with :short), HTML form
inputs, or query parameters. The first argument to param

is the “name” or key for the input. We cannot explain the
entirety of HTTP and HTML here, but the following are
means of getting a param with the key name:

a) URL path capture

get "/user/:name/view" $ do

-- requesting the URL /user/Blah/view

-- would make name = "Blah"

-- such as:

-- http://localhost:3000/user/Blah/view

b) HTML input form. Here the name attribute for the
input field is ”name”.

<form>

Name:<br>

<input type="text" name="name">

</form>
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c) Query parameters for URIs are pairings of keys and
values following a question mark.

http://localhost:3000/?name=Blah

You can define more than one by using ampersand to
separate the key value pairs.

/?name=Blah&state=Texas

Now for the next chunk of the app function:

let parsedUri :: Maybe URI

parsedUri =

parseURI (TL.unpack uri)

case parsedUri of

-- [1]

Just _ -> do

shawty <- liftIO shortyGen

-- [2]

let shorty = BC.pack shawty

-- [3]
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uri' =

encodeUtf8 (TL.toStrict uri)

-- [4]

resp <-

liftIO (saveURI rConn shorty uri')

-- [5]

html (shortyCreated resp shawty)

-- [6]

Nothing -> text (shortyAintUri uri)

-- [7]

1. We test that the user gave us a valid URI by using the
network-uri library’s parseURI function. We don’t really
care about the datatype it got wrapped in, so when we
check if it’s Just or Nothing, we drop it on the floor.

2. The Monad here is ActionM (an alias of ActionT), which is a
datatype representing code that handles web requests
and returns responses. You can perform IO actions in
this Monad, but you have to lift the IO action over the addi-
tional structure. Conventionally, one uses MonadIO as a sort
of auto-lift for IO actions, but you could do it manually.
We won’t demonstrate this here. We will explain monad
transformers in a later chapter so that ActionT will be less
mysterious.
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3. Converting the short code for theURI into a Char8 ByteString

for storage in Redis.

4. Converting the URI the user provided from a lazy Text

value into a strict Text value, then encoding as a UTF-8 (a
common Unicode format) ByteString for storage in Redis.

5. Again using liftIO so that we can perform an IO action
inside a scotty ActionM. In this case, we’re saving the short
code and the URI in Redis so that we can look things up
with the short code as a key, then get the URI back as a
value if it has been stored in the past.

6. The templated response we return when we successfully
saved the short code for the URI. This gives the user a
shortened URI to share.

7. Error response in case the user gave us a URI that wasn’t
valid.

The second handler handles requests to a shortened URI
and returns the unshortened URL to follow:
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get "/:short" $ do

-- [1]

short <- param "short"

-- [2]

uri <- liftIO (getURI rConn short)

-- [3]

case uri of

Left reply ->

text (TL.pack (show reply))

-- [4] [5]

Right mbBS -> case mbBS of

-- [6]

Nothing -> text "uri not found"

-- [7]

Just bs -> html (shortyFound tbs)

-- [8]

where tbs :: TL.Text

tbs =

TL.fromStrict

(decodeUtf8 bs)

-- [9]

1. This is the URL path capture we mentioned earlier, such
that requesting /blah from the server will cause it to get
the key “blah” from Redis and, if there’s a value stored in



CHAPTER 19. MONADS GONEWILD 1255

that key, return that URI in the response. To do that in a
web browser or with curl/wget, you’d point your client at
http://localhost:3000/blah to test it.

2. Same parameter fetching as before. This time we expect
it to be part of the path capture rather than a query argu-
ment.

3. Lifting an IO action inside ActionM again, this time to get
the short code as the lookup key from Redis.

4. Left here (in the Either we get back from Redis) signifies
some kind of failure, usually an error.

5. Text response returning an error in case we got Left so that
the user knows what the error was, taking advantage of
Redis having Showable errors to render it in the response.

6. Happy path.

7. Just because an error didn’t happen doesn’t mean the key
was in the database.

8. We fetch a key that exists in the database, get the ByteString

out of the Just data constructor and render the URI in the
success template to show the user the URI we stored.

9. Going in the opposite direction we went in before — de-
coding the ByteString on the assumption it’s encoded as

http://localhost:3000/blah
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UTF-8, then converting from a strict Text value to a lazy
Text value.

Now we come to the main event. main returns IO () and acts as
the entry point for our web server when we start the executable.
We begin by invoking scotty 3000, a helper function from the
scotty framework which, given a port to run on and a scotty

application, will listen for requests and respond to them:

main :: IO ()

main = do

rConn <- R.connect R.defaultConnectInfo

scotty 3000 (app rConn)

And that is the entirety of this URL shortener. We have a
couple of exercises based on this code, and we encourage you
to come back to it after we’ve covered monad transformers as
well and see how your comprehension is growing.

Exercise

In the URL shortener, an important step was omitted. We’re
not checking if we’re overwriting an existing short code, which
is entirely possible despite them being randomly generated.
We can calculate the odds of this by examining the cardinality
of the values.



CHAPTER 19. MONADS GONEWILD 1257

-- alphaNum = ['A'..'Z'] ++ ['0'..'9']

-- shortyGen =

-- replicateM 7 (randomElement alphaNum)

length alphaNum ^ 7 == 78364164096

So, the problem is, what if we accidentally clobber a previ-
ously generated short URI? There are a few ways of solving
this. One is to check to see if the short URI already exists in the
database before saving it and throwing an error if it does. This
is going to be vanishingly unlikely to happen unless you’ve
suddenly become a very popular URI shortening service, but
it’d prevent the loss of any data. Your exercise is to devise
some means of making this less likely. The easiest way would
be to simply make the short codes long enough that you’d
need to run a computer until the heat death of the universe
to get a collision, but you should try throwing an error in the
first handler we showed you first.

19.7 That’s a wrap!

We hope this chapter gave you some idea of how Haskellers
use the typeclasses we’ve been talking about in real code, to
handle various types of problems. In the next two chapters,
we’ll be looking at Foldable and Traversable, two typeclasses
with some interesting properties that rely on these four alge-
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braic structures (monoid, functor, applicative, and monad),
so we encourage you to take some time to explore some of
the uses we’ve demonstrated here. Consider going back to
anything you didn’t understand very well the first time you
went through those chapters.

19.8 Follow-up resources

1. The case of the mysterious explosion in space; Bryan
O’Sullivan; Explains how GHC handles string literals.
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Foldable

You gotta know when to
hold ’em, know when to
fold ’em, know when to
walk away, know when to
run.

Kenny Rogers

1259
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20.1 Foldable

This typeclass has been appearing in type signatures at least
since Chapter 3, but for your purposes in those early chapters,
we said you could think of a Foldable thing as a list. As you
saw in the chapter on folds, lists are certainly foldable data
structures. But it is also true that lists are not the only foldable
data structures, so this chapter will expand on the idea of
catamorphisms and generalize it to many datatypes.

A list fold is a way to reduce the values inside a list to one
summary value by recursively applying some function. It is
sometimes difficult to appreciate that, as filtering and mapping
functions may be implemented in terms of a fold and yet
return an entirely new list! The new list is the summary value
of the old list after being reduced, or transformed, by function
application.

The folding function is always dependent on some Monoid

instance. The folds we wrote previously mostly relied on
implicit monoidal operations. As we’ll see in this chapter,
generalizing catamorphisms to other datatypes depends on
understanding the monoids for those structures and, in some
cases, making them explicit.

This chapter will cover:

• the Foldable class and its core operations;

• the monoidal nature of folding;
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• standard operations derived from folding.

20.2 The Foldable class

The Hackage documentation for the Foldable typeclass de-
scribes it as being a, “class of data structures that can be folded
to a summary value.” The folding operations that we’ve seen
previously fit neatly into that definition, but this typeclass in-
cludes many operations. We’re going to go through the full
definition a little at a time. The definition in the library begins:

class Foldable t where

{-# MINIMAL foldMap | foldr #-}

The MINIMAL annotation on the typeclass tells you that a
minimally complete definition of the typeclass will define
foldMap or foldr for a datatype. As it happens, foldMap and foldr

can each be implemented in terms of the other, and the other
operations included in the typeclass can be implemented in
terms of either of them. As long as at least one is defined,
you have a working instance of Foldable. Some methods in the
typeclass have default implementations that can be overridden
when needed. This is in case there’s a more efficient way to
do something that’s specific to your datatype.

If you query the info about the typeclass in GHCi, the first
line of the definition includes the kind signature for 𝑡:
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class Foldable (t :: * -> *) where

That 𝑡 should be a higher-kinded type is not surprising: lists
are higher-kinded types. We need 𝑡 to be a type constructor
for the same reasons we did with Functor, and we will see that
the effects are very similar. Types that take more than one
type argument, such as tuples and Either, will necessarily have
their first type argument included as part of their structure.

Please note that you will need to use GHC 7.10 or later ver-
sions for all the examples in this chapter to work. Also, while
the Prelude as of GHCi 7.10 includes many changes related to
the Foldable typeclass, not all of Foldable is in the Prelude. To
follow along with the examples in the chapter, you may need
to import Data.Foldable and Data.Monoid (for some of the Monoid

newtypes).

20.3 Revenge of the monoids

One thing we did not talk about when we covered folds pre-
viously is the importance of monoids. Folding necessarily
implies a binary associative operation that has an identity
value. The first two operations defined in Foldable make this
explicit:
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class Foldable (t :: * -> *) where

fold :: Monoid m => t m -> m

foldMap :: Monoid m

=> (a -> m) -> t a -> m

While fold allows you to combine elements inside a Foldable

structure using the Monoid defined for those elements, foldMap
first maps each element of the structure to a Monoid and then
combines the results using that instance of Monoid.

Thesemight seema littleweird until you realize that Foldable
is requiring that you make the implicit Monoid visible in folding
operations. Let’s take a look at a very basic foldr operation
and see how it compares to fold and foldMap:

Prelude> foldr (+) 0 [1..5]

15

The binary associative operation for that fold is (+), so we’ve
specified it without thinking of it as a monoid. The fact that
the numbers in our list have other possible monoids is not
relevant once we’ve specified which operation to use.

We can already see from the type of fold that it’s not going to
work the same as foldr, because it doesn’t take a function for its
first argument. But we also can’t just fold up a list of numbers,
because the fold function doesn’t have a Monoid specified:

Prelude> fold (+) [1, 2, 3, 4, 5]



CHAPTER 20. FOLDABLE 1264

-- error message resulting from incorrect

-- number of arguments

Prelude> fold [1, 2, 3, 4, 5]

-- error message resulting from not having

-- an instance of Monoid

So, what we need to do to make fold work is specify a Monoid

instance:

Prelude> let xs = map Sum [1..5]

Prelude> fold xs

Sum {getSum = 15}

Or, less tediously:

Prelude> :{

*Main| let xs :: Sum Integer

*Main| xs = [1, 2, 3, 4, 5]

*Main| :}

Prelude> fold xs

Sum {getSum = 15}

Prelude> :{

*Main| let xs :: Product Integer

*Main| xs = [1, 2, 3, 4, 5]

*Main| :}

Prelude> fold xs
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Product {getProduct = 120}

In some cases, the compiler can identify and use the stan-
dard Monoid for a type, without us being explicit:

Prelude> foldr (++) "" ["hello", " julie"]

"hello julie"

Prelude> fold ["hello", " julie"]

"hello julie"

The default Monoid instance for lists gives us what we need
without having to specify it.

And now for something different

Let’s turn our attention now to foldMap. Unlike fold, foldMap has
a function as its first argument. Unlike foldr, the first (function)
argument of foldMap must explicitly map each element of the
structure to a Monoid:

Prelude> foldMap Sum [1, 2, 3, 4]

Sum {getSum = 10}

Prelude> foldMap Product [1, 2, 3, 4]

Product {getProduct = 24}

Prelude> foldMap All [True, False, True]

All {getAll = False}
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Prelude> foldMap Any [(3 == 4), (9 > 5)]

Any {getAny = True}

Prelude> let xs = [Just 1, Nothing, Just 5]

Prelude> foldMap First xs

First {getFirst = Just 1}

Prelude> foldMap Last xs

Last {getLast = Just 5}

In the above examples, the function being applied is a data
constructor. The data constructor identifies the Monoid instance
— the mappend — for those types. It already contains enough
information to allow foldMap to reduce the collection of values
to one summary value.

However, foldMap can also have a function to map that is
different from the Monoid it’s using:

Prelude> let xs = map Product [1..3]

Prelude> foldMap (*5) xs

Product {getProduct = 750}

-- 5 * 10 * 15

750

Prelude> let xs = map Sum [1..3]

Prelude> foldMap (*5) xs

Sum {getSum = 30}
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-- 5 + 10 + 15

30

It can map the function to each value first and then use the
Monoid instance to reduce them to one value. Compare this to
foldr in which the function has the Monoid instance baked in:

Prelude> foldr (*) 5 [1, 2, 3]

-- (1 * (2 * (3 * 5)))

30

In fact, due to the way foldr works, declaring a Monoid in-
stance that is different from what is implied in the folding
function doesn’t change the final result:

Prelude> let sumXs = map Sum [2..4]

Prelude> foldr (*) 3 sumXs

Sum {getSum = 72}

Prelude> let productXs = map Product [2..4]

Prelude> foldr (*) 3 productXs

Product {getProduct = 72}

However, it is worth pointing out that if what you’re trying
to fold only contains one value, declaring a Monoid instance
won’t change the behavior of foldMap either:

Prelude> let fm = foldMap (*5)

Prelude> fm (Just 100) :: Product Integer
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Product {getProduct = 500}

Prelude> fm (Just 5) :: Sum Integer

Sum {getSum = 25}

With only one value, it doesn’t need the Monoid instance.
Specifying the Monoid instance is necessary to satisfy the type-
checker, but with only one value, there is nothing to mappend.
It just applies the function. It will use the mempty value from
the declared Monoid instance, though, in cases where what you
are trying to fold is empty:

Prelude> fm Nothing :: Sum Integer

Sum {getSum = 0}

Prelude> fm Nothing :: Product Integer

Product {getProduct = 1}

So, what we’ve seen so far is that Foldable is a way of general-
izing catamorphisms — folding — to different datatypes, and
at least in some cases, it forces you to think about the monoid
you’re using to combine values.

20.4 Demonstrating Foldable instances

As we said above, a minimal Foldable instance must have either
foldr or foldMap. Any of the other functions in this typeclass
can be derived from one or the other of those. With that said,
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let’s turn our attention to implementing Foldable instances for
different types.

Identity

We’ll kick things off by writing a Foldable instance for Identity:

data Identity a =

Identity a

We’re only obligated to write foldr or foldMap, but we’ll write
both plus foldl so you have the gist of it.

instance Foldable Identity where

foldr f z (Identity x) = f x z

foldl f z (Identity x) = f z x

foldMap f (Identity x) = f x

With foldr and foldl, we’re doing basically the same thing,
but with the arguments swapped. We didn’t need to do any-
thing special for foldMap.

It may seem strange to think of folding one value. When
we’ve talked about catamorphisms previously, we’ve focused
on how they can reduce a bunch of values down to one sum-
mary value. In the case of this Identity catamorphism, though,
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the point is less to reduce the values inside the structure to
one value and more to consume, or use, the value:

Prelude> foldr (*) 1 (Identity 5)

5

Prelude> foldl (*) 5 (Identity 5)

25

Prelude> let fm = foldMap (*5)

Prelude> type PI = Product Integer

Prelude> fm (Identity 100) :: PI

Product {getProduct = 500}

Maybe

This one is a littlemore interesting because, unlikewith Identity,
we have to account for the Nothing cases. When the Maybe value
that we’re folding is Nothing, we need to be able to return some
“zero” value, while doing nothing with the folding function
but also disposing of the Maybe structure. For foldr and foldl,
that zero value is the start value provided:

Prelude> foldr (+) 1 Nothing

1

On the other hand, for foldMap we use the Monoid’s identity
value as our zero:
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Prelude> let fm = foldMap (+1)

Prelude> fm Nothing :: Sum Integer

Sum {getSum = 0}

When the value is a Just value, though, we need to apply
the folding function to the value and, again, dispose of the
structure:

Prelude> foldr (+) 1 (Just 3)

4

Prelude> fm $ Just 3 :: Sum Integer

Sum {getSum = 4}

So, let’s look at the instance. We’ll use a fake Maybe type
again, to avoid conflict with the Maybe instance that already
exists:

instance Foldable Optional where

foldr _ z Nada = z

foldr f z (Yep x) = f x z

foldl _ z Nada = z

foldl f z (Yep x) = f z x

foldMap _ Nada = mempty

foldMap f (Yep a) = f a
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Note that if you don’t tell it what Monoid you mean, it will
complain about the type being ambiguous:

Prelude> foldMap (+1) Nada

No instance for (Num a0) arising

from a use of ‘it’

The type variable ‘a0’ is ambiguous

(... blah blah who cares ...)

So, we need to assert a type that has a Monoid for this to work:

Prelude> import Data.Monoid

Prelude> foldMap (+1) Nada :: Sum Int

Sum {getSum = 0}

Prelude> foldMap (+1) Nada :: Product Int

Product {getProduct = 1}

Prelude> foldMap (+1) (Just 1) :: Sum Int

Sum {getSum = 2}

With a Nada value and a declared type of Sum Int (giving us
our Monoid), foldMap gave us Sum 0 because that was the mempty or
identity for Sum. Similarly with Nada and Product, we got Product
1 because that was the identity for Product.
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20.5 Some basic derived operations

The Foldable typeclass includes some other operations that
we haven’t covered in this context yet. Some of these, such
as length, were previously defined for use with lists, but their
types have been generalized now to make them useful with
other types of data structures. Below are descriptions, type
signatures, and examples for several of these:

-- | List of elements of a structure,

-- from left to right.

toList :: t a -> [a]

Prelude> toList (Just 1)

[1]

Prelude> let xs = [Just 1, Just 2, Just 3]

Prelude> map toList xs

[[1],[2],[3]]

Prelude> concatMap toList xs

[1,2,3]

Prelude> let xs = [Just 1, Just 2, Nothing]

Prelude> concatMap toList xs

[1,2]

Prelude> toList (1, 2)

[2]
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Why doesn’t it put the 1 in the list? For the same reason that
fmap doesn’t apply a function to the 1.

-- | Test whether the structure is empty.

null :: t a -> Bool

Notice that null returns True on Left and Nothing values, just
as it does on empty lists and so forth:

Prelude> null (Left 3)

True

Prelude> null []

True

Prelude> null Nothing

True

Prelude> null (1, 2)

False

Prelude> let xs = [Just 1, Just 2, Nothing]

Prelude> fmap null xs

[False,False,True]

The next one, length, returns a count of how many 𝑎 values
inhabit the t a. In a list, that could be multiple 𝑎 values due to
the definition of that datatype. It’s important to note, though,
that for tuples, the first argument (as well as the leftmost, or
outermost, type arguments of datatypes such as Maybe and
Either) is part of the 𝑡 here, not part of the 𝑎.
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-- | Returns the size/length of a finite

-- structure as an 'Int'.

length :: t a -> Int

Prelude> length (1, 2)

1

Prelude> let xs = [(1, 2), (3, 4), (5, 6)]

Prelude> length xs

3

Prelude> fmap length xs

[1,1,1]

Prelude> fmap length Just [1, 2, 3]

1

The last example looks strange, we know. But if you run
it in your REPL, you’ll see it returns the result we promised.
Why? And why does this

Prelude> length $ Just [1, 2, 3]

1

return the same result?
The 𝑎 of Just a in the last case above is a list. There is only

one list.
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Prelude> let xs = [Just 1, Just 2, Just 3]

Prelude> fmap length xs

[1,1,1]

Prelude> let xs = [Just 1, Just 2, Nothing]

Prelude> fmap length xs

[1,1,0]

-- | Does the element occur

-- in the structure?

elem :: Eq a => a -> t a -> Bool

We’ve used Either in the following example set to demon-
strate the behavior of Foldable functions with Left values. As
we saw with Functor, you can’t map over the left data construc-
tor, because the left type argument is part of the structure. In
the following example set, that means that elem can’t see inside
the Left constructor to whatever the value is, so the result will
be False, even if the value matches:

Prelude> elem 2 (Just 3)

False

Prelude> elem True (Left False)

False

Prelude> elem True (Left True)

False

Prelude> elem True (Right False)

False
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Prelude> elem True (Right True)

True

Prelude> let xs = [Right 1,Right 2,Right 3]

Prelude> fmap (elem 3) xs

[False,False,True]

-- | The largest element

-- of a non-empty structure.

maximum :: Ord a => t a -> a

-- | The least element

-- of a non-empty structure.

minimum :: Ord a => t a -> a

Here, notice that Left and Nothing (and similar) values are
empty for the purposes of these functions:

Prelude> maximum [10, 12, 33, 5]

33

Prelude> let xs = [Just 2, Just 10, Just 4]

Prelude> fmap maximum xs

[2,10,4]

Prelude> fmap maximum (Just [3, 7, 10, 2])

Just 10
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Prelude> minimum "julie"

'e'

Prelude> fmap minimum (Just "julie")

Just 'e'

Prelude> let xs = map Just "jul"

Prelude> xs

[Just 'j',Just 'u',Just 'l']

Prelude> fmap minimum xs

"jul"

Prelude> let xs = [Just 4, Just 3, Nothing]

Prelude> fmap minimum xs

[4,3,*** Exception:

minimum: empty structure

Prelude> minimum (Left 3)

*** Exception: minimum: empty structure

We’ve seen sum and product before, and they do what their
names suggest: return the sum and product of the members
of a structure:

sum :: (Foldable t, Num a) => t a -> a

product :: (Foldable t, Num a) => t a -> a

And now for some examples:
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Prelude> sum (7, 5)

5

Prelude> fmap sum [(7, 5), (3, 4)]

[5,4]

Prelude> fmap sum (Just [1, 2, 3, 4, 5])

Just 15

Prelude> product Nothing

1

Prelude> fmap product (Just [])

Just 1

Prelude> fmap product (Right [1, 2, 3])

Right 6

Exercises: Library Functions

Implement the functions in terms of foldMap or foldr from
Foldable, then try them out with multiple types that have
Foldable instances.

1. This and the next one are nicer with foldMap, but foldr is
fine too.

sum :: (Foldable t, Num a) => t a -> a

2. product :: (Foldable t, Num a) => t a -> a

3. elem :: (Foldable t, Eq a)

=> a -> t a -> Bool
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4. minimum :: (Foldable t, Ord a)

=> t a -> Maybe a

5. maximum :: (Foldable t, Ord a)

=> t a -> Maybe a

6. null :: (Foldable t) => t a -> Bool

7. length :: (Foldable t) => t a -> Int

8. Some say this is all Foldable amounts to.

toList :: (Foldable t) => t a -> [a]

9. Hint: use foldMap.

-- | Combine the elements

-- of a structure using a monoid.

fold :: (Foldable t, Monoid m) => t m -> m

10. Define foldMap in terms of foldr.

foldMap :: (Foldable t, Monoid m)

=> (a -> m) -> t a -> m

20.6 Chapter Exercises

Write Foldable instances for the following datatypes.
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1. data Constant a b =

Constant b

2. data Two a b =

Two a b

3. data Three a b c =

Three a b c

4. data Three' a b =

Three' a b b

5. data Four' a b =

Four' a b b b

Thinking cap time. Write a filter function for Foldable types
using foldMap.

filterF :: ( Applicative f

, Foldable t

, Monoid (f a))

=> (a -> Bool) -> t a -> f a

filterF = undefined

20.7 Follow-up resources

1. Jakub Arnold; Foldable and Traversable.
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Traversable

O, Thou hast damnable
iteration; and art, indeed,
able to corrupt a saint.

Shakespeare

1282
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21.1 Traversable

Functor gives us a way to transform any values embedded in
structure. Applicative gives us a way to transform any val-
ues contained within a structure using a function that is also
embedded in structure. This means that each application pro-
duces the effect of adding structure which is then applicatively
combined. Foldable gives us a way to process values embedded
in a structure as if they existed in a sequential order, as we’ve
seen ever since we learned about list folding.

Traversable was introduced in the same paper as Applicative
and its introduction to Prelude didn’t come until the release
of GHC 7.10. However, it was available as part of the base

library before that. Traversable depends on Applicative, and
thus Functor, and is also superclassed by Foldable.

Traversable allows you to transform elements inside the
structure like a functor, producing applicative effects along the
way, and lift those potentially multiple instances of applicative
structure outside of the traversable structure. It is commonly
described as a way to traverse a data structure, mapping a
function inside a structure while accumulating the applicative
contexts along the way. This is easiest to see, perhaps, through
liberal demonstration of examples, so let’s get to it.

In this chapter, we will:

• explain the Traversable typeclass and its canonical func-



CHAPTER 21. TRAVERSABLE 1284

tions;

• explore examples of Traversable in practical use;

• tidy up some code using this typeclass;

• and, of course, write some Traversable instances.

21.2 The Traversable typeclass definition

This is the typeclass definition as it appears in the library
Data.Traversable:

class (Functor t, Foldable t)

=> Traversable t where

traverse :: Applicative f =>

(a -> f b)

-> t a

-> f (t b)

traverse f = sequenceA . fmap f

traverse maps each element of a structure to an action, eval-
uates the actions from left to right, and collects the results. So,
for example, if you have a list (structure) of IO actions, at the
end you’d have
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-- | Evaluate each action in the

-- structure from left to right,

-- and collect the results.

sequenceA :: Applicative f

=> t (f a) -> f (t a)

sequenceA = traverse id

{-# MINIMAL traverse | sequenceA #-}

A minimal instance for this typeclass provides an imple-
mentation of either traverse or sequenceA, because as you can
see they can be defined in terms of each other. As with Foldable,
we can define more than the bare minimum if we can leverage
information specific to our datatype to make the behavior
more efficient. We’re going to focus on these two functions in
this chapter, though, as those are the most typically useful.

21.3 sequenceA

We will start with some examples of sequenceA in action, as it is
the simpler of the two. You can see from the type signature
above that the effect of sequenceA is flipping two contexts or
structures. It doesn’t by itself allow you to apply any function
to the 𝑎 value inside the structure; it only flips the layers of
structure around. Compare these:

Prelude> sum [1, 2, 3]
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6

Prelude> fmap sum [Just 1, Just 2, Just 3]

[1,2,3]

Prelude> (fmap . fmap) sum Just [1, 2, 3]

Just 6

Prelude> fmap product [Just 1, Just 2, Nothing]

[1,2,1]

To these:

Prelude> fmap Just [1, 2, 3]

[Just 1,Just 2,Just 3]

Prelude> sequenceA $ fmap Just [1, 2, 3]

Just [1,2,3]

Prelude> sequenceA [Just 1, Just 2, Just 3]

Just [1,2,3]

Prelude> sequenceA [Just 1, Just 2, Nothing]

Nothing

Prelude> fmap sum $ sequenceA [Just 1, Just 2, Just 3]

Just 6

Prelude> let xs = [Just 3, Just 4, Nothing]

Prelude> fmap product (sequenceA xs)

Nothing

In the first example, using sequenceA flips the structures
around — instead of a list of Maybe values, you get a Maybe of a
list value. In the next two examples, we can lift a function over
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the Maybe structure and apply it to the list that is inside, if we
have a Just a value after applying the sequenceA.

It’s worth mentioning here that the Data.Maybe module has a
function called catMaybes that offers a different way of handling
a list of Maybe values:

Prelude> import Data.Maybe

Prelude> catMaybes [Just 1, Just 2, Just 3]

[1,2,3]

Prelude> catMaybes [Just 1, Just 2, Nothing]

[1,2]

Prelude> let xs = [Just 1, Just 2, Just 3, Nothing]

Prelude> sum $ catMaybes xs

6

Prelude> fmap sum $ sequenceA xs

Nothing

Using catMaybes allows you to sum (or otherwise process) the
list of Maybe values even if there’s potentially a Nothing value
lurking within.

21.4 traverse

Let’s look next at the type of traverse:
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traverse

:: (Applicative f, Traversable t)

=> (a -> f b) -> t a -> f (t b)

You might notice a similarity between that and the types of
fmap and (=<<) (flip bind):

fmap :: (a -> b) -> f a -> f b

(=<<) :: (a -> m b) -> m a -> m b

traverse :: (a -> f b) -> t a -> f (t b)

We’re still mapping a function over some embedded value(s), like
fmap, but similar to flip bind, that function is itself generating
more structure. However, unlike flip bind, that structure can
be of a different type than the structure we lifted over to apply
the function. And at the end, it will flip the two structures
around, as sequenceA did.

In fact, as we saw in the typeclass definition, traverse is fmap

composed with sequenceA:

traverse f = sequenceA . fmap f

Let’s look at how that works in practice:

Prelude> fmap Just [1, 2, 3]

[Just 1,Just 2,Just 3]

Prelude> sequenceA $ fmap Just [1, 2, 3]
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Just [1,2,3]

Prelude> sequenceA . fmap Just $ [1, 2, 3]

Just [1,2,3]

Prelude> traverse Just [1, 2, 3]

Just [1,2,3]

We’ll run through some longer examples in a moment, but
the general idea is that anytime you’re using sequenceA . fmap

f, you can use traverse to achieve the same result in one step.

mapM is traverse

Youmayhave seen a slightly differentway of expressing traverse

before, in the form of mapM.
In versions of GHC prior to 7.10, the type of mapM was the

following:

mapM :: Monad m

=> (a -> m b) -> [a] -> m [b]

-- contrast with

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

We can think of traverse in Traversable as abstracting the []

in mapM to being any traversable data structure and generalizing
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the Monad requirement to only need an Applicative. This is
valuable as it means we can use this pattern more widely and
with more code. For example, the list datatype is fine for
small pluralities of values but in more performance-sensitive
code, you may want to use a Vector from the vector1 library.
With traverse, you won’t have to change your code because
the primary Vector datatype has a Traversable instance and so
should work.

Similarly, the type for sequence in GHC versions prior to
7.10 is a less useful sequenceA:

sequence :: Monad m

=> [m a]

-> m [a]

-- contrast with

sequenceA :: (Applicative f, Traversable t)

=> t (f a)

-> f (t a)

Again we’re generalizing the list to any Traversable and weak-
ening the Monad requirement to Applicative.

1http://hackage.haskell.org/package/vector

http://hackage.haskell.org/package/vector
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21.5 So, what’s Traversable for?

In a literal sense, anytime you need to flip two type construc-
tors around, or map something and then flip them around,
that’s probably Traversable:

sequenceA :: Applicative f

=> t (f a) -> f (t a)

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

We’ll kick around some hypothetical functions and values
without bothering to implement them in the REPL to see when
we may want traverse or sequenceA:

Prelude> let f = undefined :: a -> Maybe b

Prelude> let xs = undefined :: [a]

Prelude> :t map f xs

map f xs :: [Maybe b]

But what if we want a value of type Maybe [b]? The following
will work, but we can do better:

Prelude> :t sequenceA $ map f xs

sequenceA $ map f xs :: Maybe [a]
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It’s usually better to use traverse whenever we see a sequence

or sequenceA combined with a map or fmap:

Prelude> :t traverse f xs

traverse f xs :: Maybe [b]

Next we’ll start looking at real examples of when you’d want
to do this.

21.6 Morse code revisited

We’re going to call back to what we did in the Testing chapter
with the Morse code to look at a nice example of how to use
traverse. Let’s recall what we had done there:

stringToMorse :: String -> Maybe [Morse]

stringToMorse s =

sequence $ fmap charToMorse s

-- what we want to do:

stringToMorse :: String -> Maybe [Morse]

stringToMorse = traverse charToMorse

Normally, you might expect that if you mapped an (a ->

f b) over a t a, you’d end up with t (f b) but traverse flips
that around. Remember, we had each character conversion
wrapped in a Maybe due to the possibility of getting characters in
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a string that aren’t translatable into Morse (or, in the opposite
conversion, aren’t Morse characters):

Prelude> morseToChar "gobbledegook"

Nothing

Prelude> morseToChar "-.-."

Just 'c'

We can use fromMaybe to remove the Maybe layer:

Prelude> import Data.Maybe

Prelude Data.Maybe> fromMaybe ' ' (morseToChar "-.-.")

'c'

Prelude> stringToMorse "chris"

Just ["-.-.","....",".-.","..","..."]

Prelude> import Data.Maybe

Prelude> fromMaybe [] (stringToMorse "chris")

["-.-.","....",".-.","..","..."]

We’ll define a little helper for use in the following examples:

Prelude> let morse s = fromMaybe [] (stringToMorse s)

Prelude> :t morse

morse :: String -> [Morse]

Now, if we fmap morseToChar, we get a list of Maybe values:
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Prelude> fmap morseToChar (morse "chris")

[Just 'c',Just 'h',Just 'r',Just 'i',Just 's']

We don’t want catMaybes here because it drops the Nothing

values. What we want here is for any Nothing values to make the
final result Nothing. The function that gives us what we want for
this is sequence. We did use sequence in the original version of
the stringToMorse function. sequence is useful for flipping your
types around as well (note the positions of the 𝑡 and 𝑚). There
is a sequence in Prelude and another, more generic, version in
Data.Traversable:

Prelude> :t sequence

sequence :: (Monad m, Traversable t) =>

t (m a) -> m (t a)

-- more general, can be used with types

-- other than List

Prelude> import Data.Traversable as T

Prelude T> :t T.sequence

T.sequence :: (Traversable t, Monad m)

=> t (m a) -> m (t a)

To use this over a list of Maybe (or other monadic) values, we
need to compose it with fmap:

Prelude> :t (sequence .) . fmap
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(sequence .) . fmap

:: (Monad m, Traversable t) =>

(a1 -> m a) -> t a1 -> m (t a)

Prelude> sequence $ fmap morseToChar (morse "chris")

Just "chris"

Prelude> sequence $ fmap morseToChar (morse "julie")

Just "julie"

The weird looking composition, which you’ve possibly also
seen in the form of (join .) . fmap is because fmap takes two
(not one) arguments, so the expressions aren’t proper unless
we compose twice to await a second argument for fmap to get
applied to.

-- we want this

(sequence .) . fmap =

\f xs -> sequence (fmap f xs)

-- not this

sequence . fmap =

\f -> sequence (fmap f)

This composition of sequence and fmap is so common that
traverse is now a standard Prelude function. Compare the
above to the following:
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*Morse T> traverse morseToChar (morse "chris")

Just "chris"

*Morse T> traverse morseToChar (morse "julie")

Just "julie"

So, traverse is just fmap and the Traversable version of sequence
bolted together into one convenient function. sequence is the
unique bit, but you need to do the fmap first most of the time,
so you end up using traverse. This is very similar to the way
>>= is just join composed with fmap where join is the bit that is
unique to Monad.

21.7 Axing tedious code

Try to bear with us for a moment and realize that the following
is real but also intentionally fake code. That is, one of the
authors helped somebody with refactoring their code, and
this simplified version is what your author was given. One of
the strengths of Haskell is that we can work in terms of types
without worry about code that actually runs sometimes. This
code is from Alex Petrov:
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-- Thanks for the great example, Alex

data Query = Query

data SomeObj = SomeObj

data IoOnlyObj = IoOnlyObj

data Err = Err

-- There's a decoder function that makes

-- some object from String

decodeFn :: String -> Either Err SomeObj

decodeFn = undefined

-- There's a query, that runs against the

-- DB and returns array of strings

fetchFn :: Query -> IO [String]

fetchFn = undefined

-- an additional "context initializer",

-- that also has IO

makeIoOnlyObj :: [SomeObj]

-> IO [(SomeObj, IoOnlyObj)]

makeIoOnlyObj = undefined
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-- before

pipelineFn

:: Query

-> IO (Either Err [(SomeObj, IoOnlyObj)])

pipelineFn query = do

a <- fetchFn query

case sequence (map decodeFn a) of

(Left err) -> return $ Left $ err

(Right res) -> do

a <- makeIoOnlyObj res

return $ Right a

The objective was to clean up this code. A few things made
them suspicious:

1. The use of sequence and map.

2. Manually casing on the result of the sequence and the map.

3. Binding monadically over the Either only to perform an-
other monadic (IO) action inside of that.

We pared the pipeline function down to this:
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pipelineFn

:: Query

-> IO (Either Err [(SomeObj, IoOnlyObj)])

pipelineFn query = do

a <- fetchFn query

traverse makeIoOnlyObj (mapM decodeFn a)

Thanks to merijn on the IRC channel for helping with this.
We can make it pointfree if we want to:

pipelineFn

:: Query

-> IO (Either Err [(SomeObj, IoOnlyObj)])

pipelineFn =

(traverse makeIoOnlyObj

. mapM decodeFn =<<) . fetchFn

And since mapM is just traverse with a slightly different type:

pipelineFn

:: Query

-> IO (Either Err [(SomeObj, IoOnlyObj)])

pipelineFn =

(traverse makeIoOnlyObj

. traverse decodeFn =<<) . fetchFn
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This is the terse, clean style many Haskellers prefer. As we
said back when we first introduced it, pointfree style can help
focus the attention on the functions, rather than the specifics
of the data that are being passed around as arguments. Using
functions like traverse cleans up code by drawing attention to
the ways the types are changing and signaling the program-
mer’s intent.

21.8 Do all the things

We’re going to use an HTTP client library named wreq2 for
this demonstration so we can make calls to a handy-dandy
website for testing HTTP clients at http://httpbin.org/. Feel
free to experiment and substitute your own ideas for HTTP
services or websites you could poke and prod.

2 http://hackage.haskell.org/package/wreq

http://httpbin.org/
http://hackage.haskell.org/package/wreq
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module HttpStuff where

import Data.ByteString.Lazy hiding (map)

import Network.Wreq

-- replace with other websites

-- if desired or needed

urls :: [String]

urls = [ "http://httpbin.org/ip"

, "http://httpbin.org/bytes/5"

]

mappingGet :: [IO (Response ByteString)]

mappingGet = map get urls

But what if we don’t want a list of IO actions we can perform
to get a response, but rather one big IO action that produces a
list of responses? This is where Traversable can be helpful:

traversedUrls :: IO [Response ByteString]

traversedUrls = traverse get urls

We hope that these examples have helped demonstrate that
Traversable is a useful typeclass. While Foldable seems trivial,
it is a necessary superclass of Traversable, and Traversable, like
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Functor and Monad, is now widely used in everyday Haskell code,
due to its practicality.

Strength for understanding

Traversable is stronger than Functor and Foldable. Because of
this, we can recover the Functor and Foldable instance for a
type from the Traversable, just as we can recover the Functor

and Applicative from the Monad. Here we can use the Identity

type to get something that is essentially just fmap all over again:

Prelude> import Data.Functor.Identity

Prelude> traverse (Identity . (+1)) [1, 2]

Identity [2,3]

Prelude> runIdentity $ traverse (Identity . (+1)) [1, 2]

[2,3]

Prelude> :{

Prelude| let edgeMap f t =

Prelude| runIdentity $ traverse (Identity . f) t

Prelude| :}

Prelude> :t edgeMap

edgeMap :: Traversable t => (a -> b) -> t a -> t b

Prelude> edgeMap (+1) [1..5]

[2,3,4,5,6]
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Using Const or Constant, we can recover a foldMappy-looking
Foldable as well:

Prelude> import Data.Monoid

-- from `transformers`

Prelude> import Data.Functor.Constant

Prelude> let xs = [1, 2, 3, 4, 5] :: [Sum Integer]

Prelude> traverse (Constant . (+1)) xs

Constant (Sum {getSum = 20})

Prelude> :{

Prelude| let foldMap' f t =

Prelude| getConstant $ traverse (Constant . f) t

Prelude| :}

Prelude> :t foldMap'

foldMap' :: (Traversable t, Monoid a)

=> (a1 -> a) -> t a1 -> a

Prelude> :t foldMap

foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

Doing exercises like this can help strengthen your intuitions
for the relationships of these typeclasses and their canonical
functions. We know it sometimes feels like these things are
pure intellectual exercise, but getting comfortable with ma-
nipulating functions like these is ultimately the key to getting
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comfortable with Haskell. This is how you learn to play type
Tetris with the pros.

21.9 Traversable instances

You knew this was coming.

Either

The Traversable instance that follows here is identical to the
one in the Data.Traversable module in base, but we’ve added
a Functor, Foldable, and Applicative so that you might see a
progression:
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data Either a b =

Left a

| Right b

deriving (Eq, Ord, Show)

instance Functor (Either a) where

fmap _ (Left x) = Left x

fmap f (Right y) = Right (f y)

instance Applicative (Either e) where

pure = Right

Left e <*> _ = Left e

Right f <*> r = fmap f r

instance Foldable (Either a) where

foldMap _ (Left _) = mempty

foldMap f (Right y) = f y

foldr _ z (Left _) = z

foldr f z (Right y) = f y z

instance Traversable (Either a) where

traverse _ (Left x) = pure (Left x)

traverse f (Right y) = Right <$> f y
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Given what you’ve seen above, this hopefully isn’t too sur-
prising. We have function application and type-flipping, in an
Either context.

Tuple

As above, we’ve provided a progression of instances, but for
the two-tuple or anonymous product:

instance Functor ((,) a) where

fmap f (x,y) = (x, f y)

instance Monoid a

=> Applicative ((,) a) where

pure x = (mempty, x)

(u, f) <*> (v, x) =

(u `mappend` v, f x)

instance Foldable ((,) a) where

foldMap f (_, y) = f y

foldr f z (_, y) = f y z

instance Traversable ((,) a) where

traverse f (x, y) = (,) x <$> f y

Here, we have much the same, but for a tuple context.
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21.10 Traversable Laws

The traverse function must satisfy the following laws:

1. Naturality

t . traverse f = traverse (t . f)

This law tells us that function composition behaves in
unsurprising ways with respect to a traversed function.
Since a traversed function 𝑓 is generating the structure
that appears on the “outside” of the traverse operation,
there’s no reason we shouldn’t be able to float a function
over the structure into the traversal itself.

2. Identity

traverse Identity = Identity

This law says that traversing the data constructor of the
Identity type over a value will produce the same result
as just putting the value in Identity. This tells us Identity

represents a structural identity for traversing data. This is
another way of saying that a Traversable instance cannot
add or inject any structure or effects.

3. Composition

traverse (Compose . fmap g . f) =

Compose . fmap (traverse g) . traverse f
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This law demonstrates how we can collapse sequential
traversals into a single traversal, by taking advantage of
the Compose datatype, which combines structure.

The sequenceA function must satisfy the following laws:

1. Naturality

t . sequenceA = sequenceA . fmap t

2. Identity

sequenceA . fmap Identity = Identity

3. Composition

sequenceA . fmap Compose =

Compose . fmap sequenceA . sequenceA

Noneof this should’ve been too surprising givenwhat you’ve
seen with traverse.

21.11 Quality Control

Great news! You can QuickCheck your Traversable instances as
well, since they have laws. Conveniently, the checkers library
we’ve been using already has the laws for us. You can add the
following to a module and change the type alias to change
what instances are being tested:



CHAPTER 21. TRAVERSABLE 1309

type TI = []

main = do

let trigger :: TI (Int, Int, [Int])

trigger = undefined

quickBatch (traversable trigger)

21.12 Chapter Exercises

Traversable instances

Write a Traversable instance for the datatype provided, filling
in any required superclasses. Use QuickCheck to validate your
instances.

Identity

Write a Traversable instance for Identity.

newtype Identity a = Identity a

deriving (Eq, Ord, Show)

instance Traversable Identity where

traverse = undefined
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Constant

newtype Constant a b =

Constant { getConstant :: a }

Maybe

data Optional a =

Nada

| Yep a

List

data List a =

Nil

| Cons a (List a)

Three

data Three a b c =

Three a b c

Pair

data Pair a b =

Pair a b
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Big

When you have more than one value of type 𝑏, you’ll want
to use Monoid and Applicative for the Foldable and Traversable

instances respectively.

data Big a b =

Big a b b

Bigger

Same as for Big.

data Bigger a b =

Bigger a b b b

S

This may be difficult. To make it easier, we’ll give you the
constraints and QuickCheck instances:

{-# LANGUAGE FlexibleContexts #-}

module SkiFree where

import Test.QuickCheck

import Test.QuickCheck.Checkers
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data S n a = S (n a) a deriving (Eq, Show)

instance ( Functor n

, Arbitrary (n a)

, Arbitrary a )

=> Arbitrary (S n a) where

arbitrary =

S <$> arbitrary <*> arbitrary

instance ( Applicative n

, Testable (n Property)

, EqProp a )

=> EqProp (S n a) where

(S x y) =-= (S p q) =

(property $ (=-=) <$> x <*> p)

.&. (y =-= q)

instance Traversable n

=> Traversable (S n) where

traverse = undefined

main =

sample' (arbitrary :: Gen (S [] Int))
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Instances for Tree

This might be hard. Write the following instances for Tree.

data Tree a =

Empty

| Leaf a

| Node (Tree a) a (Tree a)

deriving (Eq, Show)

instance Functor Tree where

fmap = undefined

-- foldMap is a bit easier

-- and looks more natural,

-- but you can do foldr too

-- for extra credit.

instance Foldable Tree where

foldMap = undefined

instance Traversable Tree where

traverse = undefined

Hints:

1. For foldMap, think Functor but with some Monoid thrown in.
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2. For traverse, think Functor but with some Functor3 thrown
in.

21.13 Follow-up resources

1. Foldable and Traversable; Jakub Arnold.

2. The Essence of the Iterator Pattern; Jeremy Gibbons and
Bruno Oliveira.

3. Applicative Programming with Effects; Conor McBride
and Ross Paterson.

3Not a typo.
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Reader

The tears of the world are
a constant quantity. For
each one who begins to
weep somewhere else
another stops. The same
is true of the laugh.

Samuel Beckett

1315
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22.1 Reader

The last two chapters were focused on some typeclasses that
might still seem strange and difficult to you. The next three
chapters are going to focus on some patterns that might still
seem strange and difficult. Foldable, Traversable, Reader, State,
and parser combinators are not strictly necessary to under-
standing and using Haskell. We do have reasons for introduc-
ing them now, but those reasons might not seem clear to you
for a while. If you don’t quite grasp all of it on the first pass,
that’s completely fine. Read it through, do your best with the
exercises, come back when you feel like you’re ready.

Whenwriting applications, programmers oftenneed to pass
around some information that may be needed intermittently
or universally throughout an entire application. We don’t want
to simply pass this information as arguments because it would
be present in the type of almost every function. This can make
the code harder to read and harder to maintain. To address
this, we use Reader.

In this chapter, we will:

• examine the Functor, Applicative, and Monad instances for
functions;

• learn about the Reader newtype;

• see some examples of using Reader.
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22.2 A new beginning

We’re going to set this chapter up a bit differently from previ-
ous chapters, because we’re hoping that this will help demon-
strate that what we’re doing here is not that different from
things you’ve done before. So, we’re going to start with some
examples. Start a file like this:

import Control.Applicative

boop = (*2)

doop = (+10)

bip :: Integer -> Integer

bip = boop . doop

We know that the bip function will take one argument be-
cause of the types of boop, doop, and (.). Note that if you do not
specify the types and load it from a file, it will be monomor-
phic by default; if you wish to make bip polymorphic, you
may change its signature but you also need to specify a poly-
morphic type for the two functions it’s built from. The rest of
the chapter will wait while you verify these things.

When we apply bip to an argument, doop will be applied to
that argument first, and then the result of that will be passed
as input to boop. So far, nothing new.
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We can also write that function composition this way:

bloop :: Integer -> Integer

bloop = fmap boop doop

We aren’t accustomed to fmapping a function over another
function, and you may be wondering what the functorial con-
text here is. By “functorial context” we mean the structure
(datatype) that the function is being lifted over in order to
apply to the value inside. For example, a list is a functorial
context we can lift functions over. We say that the function gets
lifted over the structure of the list and applied to or mapped
over the values that are inside the list.

In bloop, the context is a partially applied function. As in
function composition, fmap composes the two functions before
applying them to the argument. The result of the one can then
get passed to the next as input. Using fmap here lifts the one
partially applied function over the next, in a sense setting up
something like this:

fmap boop doop x == (*2) ((+10) x)

-- when this x comes along, it's the

-- first necessary argument to (+10)

-- then the result for that is the

-- first necessary argument to (*2)
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This is the Functor of functions. We’re going to go into more
detail about this soon.

For now, let’s turn to another set of examples. Put these in
the same file so boop and doop are still in scope:

bbop :: Integer -> Integer

bbop = (+) <$> boop <*> doop

duwop :: Integer -> Integer

duwop = liftA2 (+) boop doop

Now we’re in an Applicative context. We’ve added another
function to lift over the contexts of our partially applied func-
tions. This time, we still have partially applied functions that
are awaiting application to an argument, but this will work
differently than fmapping did. This time, the argument will
get passed to both boop and doop in parallel, and the results will
be added together.

boop and doop are each waiting for an input. We can apply
them both at once like this:

Prelude> bbop 3

19

That does something like this:
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((+) <$> (*2) <*> (+10)) 3

-- First the fmap

(*2) :: Num a => a -> a

(+) :: Num a => a -> a -> a

(+) <$> (*2) :: Num a => a -> a -> a

Mapping a function awaiting two arguments over a function
awaiting one produces a two argument function.

Remember, this is identical to function composition:

(+) . (*2) :: Num a => a -> a -> a

With the same result:

Prelude> ((+) . (*2)) 5 3

13

Prelude> ((+) <$> (*2)) 5 3

13

So what’s happening?
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((+) <$> (*2)) 5 3

-- Keeping in mind that this

-- is (.) under the hood

((+) . (*2)) 5 3

-- f . g = \ x -> f (g x)

((+) . (*2)) == \ x -> (+) (2 * x)

The tricky part here is that even after we apply 𝑥, we’ve got
(+) partially applied to the first argument which was doubled
by (*2). There’s a second argument, and that’s what will get
added to the first argument that got doubled:
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-- The first function to get

-- applied is (*2), and the

-- first argument is 5. (*2)

-- takes one argument, so we get:

((+) . (*2)) 5 3

(\ x -> (+) (2 * x)) 5 3

(\ 5 -> (+) (2 * 5)) 3

((+) 10) 3

-- Then it adds 10 and 3

13

Okay, but what about the second bit?

((+) <$> (*2) <*> (+10)) 3

-- Wait, what? What happened to the

-- first argument?

((+) <$> (*2) <*> (+10)) :: Num b => b -> b

One of the nice things about Haskell is we can assert a more
concrete type for functions like (<*>) and see if the compiler
agrees we’re putting forth something hypothetically possible.
Let’s remind ourselves of the type of (<*>):

Prelude> :t (<*>)
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(<*>) :: Applicative f => f (a -> b) -> f a -> f b

-- in this case, we know f is ((->) a)

-- so we concretize it thusly

Prelude> :t (<*>) :: (a -> a -> b) -> (a -> a) -> (a -> b)

(<*>) :: (a -> a -> b) -> (a -> a) -> (a -> b)

The compiler agrees that this is a possible type for (<*>).
So how does that work? What’s happening is we’re feeding

a single argument to the (*2) and (+10) and the two results
form the two arguments to (+):

((+) <$> (*2) <*> (+10)) 3

(3*2) + (3+10)

6 + 13

19

We’d use this when two functions would share the same
input and we want to apply some other function to the result
of those to reach a final result. This happens more than you
might think, and we saw an example of it back in the Abstract
Structure Applied chapter:
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module Web.Shipping.Utils ((<||>)) where

import Control.Applicative (liftA2)

(<||>) :: (a -> Bool)

-> (a -> Bool)

-> a

-> Bool

(<||>) = liftA2 (||)

That is the same idea as duwop above.
Finally, another example:

boopDoop :: Integer -> Integer

boopDoop = do

a <- boop

b <- doop

return (a + b)

This will do precisely the same thing as the Applicative ex-
ample, but this time the context is monadic. This distinction
doesn’t much matter with this particular function. We assign
the variable 𝑎 to the partially applied function boop, and 𝑏 to
doop. As soon as we receive an input, it will fill the empty slots
in boop and doop. The results will be bound to the variables 𝑎
and 𝑏 and passed into return.
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So, we’ve seen here that we can have a Functor, Applicative,
and Monad for partially applied functions. In all cases, these
are awaiting application to one argument that will allow both
functions to be evaluated. The Functor of functions is function
composition. The Applicative and Monad chain the argument
forward in addition to the composition (applicatives and mon-
ads are both varieties of functors, so they retain that core
functorial behavior).

This is the idea of Reader. It is a way of stringing functions
together when all those functions are awaiting one input from
a shared environment. We’re going to get into the details of
how it works, but the important intuition here is that it’s an-
other way of abstracting out function application and gives us
a way to do computation in terms of an argument that hasn’t
been supplied yet. We use this most often when we have a con-
stant value that we will obtain from somewhere outside our
program that will be an argument to a whole bunch of func-
tions. Using Reader allows us to avoid passing that argument
around explicitly.

Short Exercise: Warming Up

We’ll be doing something here very similar to what you saw
above, to give you practice and try to develop a feel or intuition
for what is to come. These are similar enough to what you just
saw that you can almost copy and paste, so try not to overthink
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them too much.
First, start a file off like this:

import Data.Char

cap :: [Char] -> [Char]

cap xs = map toUpper xs

rev :: [Char] -> [Char]

rev xs = reverse xs

Two simple functions with the same type, taking the same
type of input. We could compose them, using (.) or fmap:

composed :: [Char] -> [Char]

composed = undefined

fmapped :: [Char] -> [Char]

fmapped = undefined

The output of those two should be identical: one string that
is made all uppercase and reversed, like this:

Prelude> composed "Julie"

"EILUJ"

Prelude> fmapped "Chris"

"SIRHC"
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Now we want to return the results of cap and rev both, as a
tuple, like this:

Prelude> tupled "Julie"

("JULIE","eiluJ")

-- or

Prelude> tupled' "Julie"

("eiluJ","JULIE")

We will want to use an Applicative here. The type will look
like this:

tupled :: [Char] -> ([Char], [Char])

There is no special reason such a function needs to be
monadic, but let’s do that, too, to get some practice. Do it
one time using do syntax; then try writing a new version using
(>>=). The types will be the same as the type for tupled.

22.3 This is Reader

As we saw above, functions have Functor, Applicative, and Monad

instances. Usually when you see or hear the term Reader, it’ll
be referring to the Monad instance.

We use function composition because it lets us compose two
functions without explicitly having to recognize the argument
that will eventually arrive; the Functor of functions is function
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composition. With the Functor of functions, we are able to map
an ordinary function over another to create a new function
awaiting a final argument. The Applicative and Monad instances
for the function type give us a way to map a function that is
awaiting an 𝑎 over another function that is also awaiting an 𝑎.

Giving it a name helps us know the what and why of what
we’re doing: reading an argument from the environment into
functions. It’ll be especially nice for clarity’s sake later when
we make the ReaderT monad transformer.

Exciting, right? Let’s back up here and go into more detail
about how Reader works.

22.4 Breaking down the Functor of
functions

If you type :info Functor in your REPL, one of the instances
you might notice is the one for the partially applied type
constructor of functions ((->) r):

instance Functor ((->) r)

This can be a little confusing, so we’re going to unwind it
until hopefully it’s a bit more comfortable. First, let’s see what
we can accomplish with this:

Prelude> fmap (+1) (*2) 3
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7

-- Rearranging a little bit

Prelude> fmap (+1) (*2) $ 3

7

Prelude> (fmap (+1) (*2)) 3

7

This should look familiar:

Prelude> (+1) . (*2) $ 3

7

Prelude> (+2) . (*1) $ 2

4

Prelude> fmap (+2) (*1) $ 2

4

Prelude> (+2) `fmap` (*1) $ 2

4

Fortunately, there’s nothing weird going on here. If you
check the implementation of the instance in base, you’ll find
the following:
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instance Functor ((->) r) where

fmap = (.)

Let’s unravel the types. Remember that (->) takes two argu-
ments and therefore has kind * -> * -> *. So, we know upfront
that we have to apply one of the type arguments before we
can have a Functor. With the Either Functor, we know that we
will lift over the Either a and if our function will be applied, it
will be applied to the 𝑏 value. With the function type:

data (->) a b

the same rule applies: you have to lift over the (->) a and
only transform the 𝑏 value. The 𝑎 is conventionally called 𝑟
for Reader in these instances, but a type variable of any other
name smells as sweet. Here, 𝑟 is the first argument of (a -> b):
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-- Type constructor of functions

(->)

-- Fully applied

a -> b

((->) r)

-- is

r ->

-- so r is the type of the

-- argument to the function

From this, we can determine that 𝑟, the argument type for
functions, is part of the structure being lifted over when we lift
over a function, not the value being transformed or mapped
over.

This leaves the result of the function as the value being
transformed. This happens to line up neatly with what func-
tion composition is about:

(.) :: (b -> c) -> (a -> b) -> a -> c

-- or perhaps

(.) :: (b -> c) -> (a -> b) -> (a -> c)

Now how does this line up with Functor?
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(.) :: (b -> c) -> (a -> b) -> (a -> c)

fmap :: Functor f => (a -> b) -> f a -> f b

We’ll remove the names of the functions and the typeclass
constraint as we can take them for granted from here on out:
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:: (b -> c) -> (a -> b) -> (a -> c)

:: (a -> b) -> f a -> f b

-- Changing up the letters

-- without changing the meaning

:: (b -> c) -> (a -> b) -> (a -> c)

:: (b -> c) -> f b -> f c

-- f is ((->) a)

:: (b -> c)

-> (a -> b)

-> (a -> c)

:: (b -> c)

-> ((->) a) b

-> ((->) a) c

-- Unroll the prefix notation into infix

:: (b -> c) -> (a -> b) -> (a -> c)

:: (b -> c) -> (a -> b) -> (a -> c)

Bada bing. Functorial lifting for functions.
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22.5 But uh, Reader?

Ah yes, right. Reader is a newtype wrapper for the function
type:

newtype Reader r a =

Reader { runReader :: r -> a }

The 𝑟 is the type we’re reading in and 𝑎 is the result type of
our function.

The Reader newtype has a handy runReader accessor to get
the function out of Reader. Let us prove for ourselves that
this is the same thing, but with a touch of data constructor
jiggery-pokery mixed in. What does the Functor for this look
like compared to function composition?
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instance Functor (Reader r) where

fmap :: (a -> b)

-> Reader r a

-> Reader r b

fmap f (Reader ra) =

Reader $ \r -> f (ra r)

-- same as (.)

compose :: (b -> c) -> (a -> b) -> (a -> c)

compose f g = \x -> f (g x)

-- see it?

\r -> f (ra r)

\x -> f (g x)

Basically the same thing right? In the Reader functor, ra has
the type r -> a, and f has the type a -> b. Applying ra to the
value r yields a value of type a, which f is then applied to,
yielding a value of type b. Function composition!

We can use the fact that we recognize this as function com-
position to make a slightly different instance for Reader:
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instance Functor (Reader r) where

fmap :: (a -> b)

-> Reader r a

-> Reader r b

fmap f (Reader ra) =

Reader $ (f . ra)

So what we’re doing here is basically:

1. Unpack r -> a out of Reader

2. Compose 𝑓 with the function we unpacked out of Reader.

3. Put the new function made from the composition back
into Reader.

Without the Reader newtype, we drop steps 1 and 3 and have
function composition.

Exercise: Ask

Implement the following function. If you get stuck, remem-
ber it’s less complicated than it looks. Write down what you
know. What do you know about the type 𝑎? What does the
type simplify to? How many inhabitants does that type have?
You’ve seen the type before.

ask :: Reader a a

ask = Reader ???
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22.6 Functions have an Applicative too

We’ve seen a couple of examples already of the Applicative of
functions and how it works. Now we’ll get into the details.

The first thing we want to do is notice how the types spe-
cialize:

-- Applicative f =>

-- f ~ (->) r

pure :: a -> f a

pure :: a -> (r -> a)

(<*>) :: f (a -> b)

-> f a

-> f b

(<*>) :: (r -> a -> b)

-> (r -> a)

-> (r -> b)

As we saw in the Functor instance, the 𝑟 of Reader is part of
the 𝑓 structure. We have two arguments in this function, and
both of them are functions waiting for the 𝑟 input. When that
comes, both functions will be applied to return a final result
of 𝑏.
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Demonstrating the function Applicative

This example is similar to other demonstrations we’ve done
previously in the book, but this time we’ll be aiming to show
you what specific use the Applicative of functions typically has.
We start with some newtypes for tracking our different String
values:

newtype HumanName =

HumanName String

deriving (Eq, Show)

newtype DogName =

DogName String

deriving (Eq, Show)

newtype Address =

Address String

deriving (Eq, Show)

We do this so that our types are more self-explanatory, to
express intent, and so we don’t accidentally mix up our inputs.
A type like this:

String -> String -> String

is difficult when:
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1. They aren’t strictly any string value.

2. They aren’t processed in an identical fashion. You don’t
handle addresses the same as names.

So make the difference explicit.
We’ll make two record types:

data Person =

Person {

humanName :: HumanName

, dogName :: DogName

, address :: Address

} deriving (Eq, Show)

data Dog =

Dog {

dogsName :: DogName

, dogsAddress :: Address

} deriving (Eq, Show)

The following are sample data to use. You can modify them
as you’d like:
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pers :: Person

pers =

Person (HumanName "Big Bird")

(DogName "Barkley")

(Address "Sesame Street")

chris :: Person

chris = Person (HumanName "Chris Allen")

(DogName "Papu")

(Address "Austin")

And here is how we’d write it with and without Reader:

-- without Reader

getDog :: Person -> Dog

getDog p =

Dog (dogName p) (address p)

-- with Reader

getDogR :: Person -> Dog

getDogR =

Dog <$> dogName <*> address

Can’t see the Reader? What if we concrete the types a bit?
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(<$->>) :: (a -> b)

-> (r -> a)

-> (r -> b)

(<$->>) = (<$>)

(<*->>) :: (r -> a -> b)

-> (r -> a)

-> (r -> b)

(<*->>) = (<*>)

-- with Reader

getDogR' :: Person -> Dog

getDogR' =

Dog <$->> dogName <*->> address

What we’re trying to highlight here is that Reader is not
always Reader, sometimes it’s the ambient Applicative or Monad

associated with the partially applied function type, here that
is r ->.

The pattern of using Applicative in this manner is common,
so there’s an alternate way to do this using liftA2:
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import Control.Applicative (liftA2)

-- with Reader, alternate

getDogR' :: Person -> Dog

getDogR' =

liftA2 Dog dogName address

Here’s the type of liftA2.

liftA2 :: Applicative f =>

(a -> b -> c)

-> f a -> f b -> f c

Again, we’re waiting for an input from elsewhere. Rather
than having to thread the argument through our functions,
we elide it and let the types manage it for us.

Exercise: Reading Comprehension

1. Write liftA2 yourself. Think about it in terms of abstract-
ing out the difference between getDogR and getDogR' if that
helps.

myLiftA2 :: Applicative f =>

(a -> b -> c)

-> f a -> f b -> f c

myLiftA2 = undefined
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2. Write the following function. Again, it is simpler than it
looks.

asks :: (r -> a) -> Reader r a

asks f = Reader ???

3. Implement the Applicative for Reader.

To write the Applicative instance for Reader, we’ll use an
extension called InstanceSigs. It’s an extension we need
in order to assert a type for the typeclass methods. You
ordinarily cannot assert type signatures in instances. The
compiler already knows the type of the functions, so it’s
not usually necessary to assert the types in instances any-
way. We did this for the sake of clarity, to make the Reader

type explicit in our signatures.
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-- you'll need this pragma

{-# LANGUAGE InstanceSigs #-}

instance Applicative (Reader r) where

pure :: a -> Reader r a

pure a = Reader $ ???

(<*>) :: Reader r (a -> b)

-> Reader r a

-> Reader r b

(Reader rab) <*> (Reader ra) =

Reader $ \r -> ???

Some instructions and hints.

a) When writing the pure function for Reader, remember
that what you’re trying to construct is a function that
takes a value of type 𝑟, which you know nothing about,
and return a value of type 𝑎. Given that you’re not
really doing anything with 𝑟, there’s really only one
thing you can do.

b) We got the definition of the apply function started for
you, we’ll describe what you need to do and you write
the code. If you unpack the type of Reader’s apply
above, you get the following:
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<*> :: (r -> a -> b)

-> (r -> a)

-> (r -> b)

-- contrast this with the type of fmap

fmap :: (a -> b)

-> (r -> a)

-> (r -> b)

So what’s the difference? The difference is that apply,
unlike fmap, also takes an argument of type 𝑟.

Make it so.

22.7 The Monad of functions

Functions also have a Monad instance. You saw this in the be-
ginning of this chapter, and you perhaps have some intuition
now for how this must work. We’re going to walk through a
simplified demonstration of how it works before we get to the
types and instance. Feel free to work through this section as
quickly or slowly as you think appropriate to your own grasp
of what we’ve presented so far.

Let’s start by supposing that we could write a couple of
functions like so:
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foo :: (Functor f, Num a) => f a -> f a

foo r = fmap (+1) r

bar :: Foldable f => t -> f a -> (t, Int)

bar r t = (r, length t)

Now, as it happens in our program, we want to make one
function that will do both — increment the values inside our
structure and also tell us the length of the value. We could
write that like this:

froot :: Num a => [a] -> ([a], Int)

froot r = (map (+1) r, length r)

Or we could write the same function by combining the
two functions we already had. As it is written above, bar takes
two arguments. We could write a version that takes only one
argument, so that both parts of the tuple apply to the same
argument. That is easy enough to do (notice the change in the
type signature as well):

barOne :: Foldable t => t a -> (t a, Int)

barOne r = (r, length r)

That gave us the reduction to one argument that we wanted
but didn’t increment the values in the list as our foo function
does. We can add that this way:
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barPlus r = (foo r, length r)

But we can also do that more compactly by making (foo r)

the first argument to bar:

frooty :: Num a => [a] -> ([a], Int)

frooty r = bar (foo r) r

Now we have an environment in which two functions are
waiting for the same argument to come in. They’ll both apply
to that argument in order to produce a final result.

Let’s make a small change to make it look a little more
Reader-y:

frooty' :: Num a => [a] -> ([a], Int)

frooty' = \r -> bar (foo r) r

Then we abstract this out so that it’s not specific to these
functions:

fooBind m k = \r -> k (m r) r

In this very polymorphic version, the type signature will
look like this:

fooBind :: (t2 -> t1)

-> (t1 -> t2 -> t)

-> t2

-> t
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So many 𝑡 types! That’s because we can’t know very much
about those types once our function is that abstract. We can
make it a little more clear by making some substitutions. We’ll
use the 𝑟 to represent the argument that both of our functions
are waiting on — the Reader-y part:

fooBind :: (r -> a)

-> (a -> r -> b)

-> (r -> b)

If we could take the 𝑟 parts out, we might notice that fooBind
itself looks like a very abstract and simplified version of some-
thing we’ve seen before (overparenthesizing a bit, for clarity):

(>>=) :: Monad m =>

m a -> (a -> (m b)) -> m b

(r -> a) -> (a -> (r -> b)) -> (r -> b)

This is how we get to the Monad of functions. Just as with the
Functor and Applicative instances, the ((->) r) is our structure
— the 𝑚 in the type of (>>=). In the next section, we’ll work
forward from the types.

The Monad instance

As we noted, the 𝑟 argument remains part of our (monadic)
structure:



CHAPTER 22. FUNCTIONS WAITING FOR INPUT 1349

(>>=) :: Monad m

=> m a -> (a -> m b) -> m b

(>>=) ::

(->) r a -> (a -> (->) r b) -> (->) r b

(>>=) ::

(r -> a) -> (a -> r -> b) -> r -> b

return :: Monad m => a -> m a

return :: a -> (->) r a

return :: a -> r -> a

You may notice that return looks like a function we’ve seen
a lot of in this book.

Let’s look at it side by side with the Applicative:

(<*>) :: (r -> a -> b)

-> (r -> a)

-> (r -> b)

(>>=) :: (r -> a)

-> (a -> r -> b)

-> (r -> b)

Or with the flipped bind:
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(<*>) :: (r -> a -> b)

-> (r -> a)

-> (r -> b)

(=<<) :: (a -> r -> b)

-> (r -> a)

-> (r -> b)

So you’ve got this ever-present type 𝑟 following your func-
tions around like a lonely puppy.

Example uses of the Reader type

Remember the earlier example with Person and Dog? Here’s the
same but with the Reader Monad and do syntax:

-- with Reader Monad

getDogRM :: Person -> Dog

getDogRM = do

name <- dogName

addy <- address

return $ Dog name addy

Exercise: Reader Monad

1. Implement the Reader Monad.
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-- Don't forget instancesigs.

instance Monad (Reader r) where

return = pure

(>>=) :: Reader r a

-> (a -> Reader r b)

-> Reader r b

(Reader ra) >>= aRb =

Reader $ \r -> ???

Hint: constrast the type with the Applicative instance and
perform the most obvious change you can imagine to
make it work.

2. Rewrite the monadic getDogRM to use your Reader datatype.

22.8 Reader Monad by itself is boring

It can’t do anything the Applicative cannot.
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{-# LANGUAGE NoImplicitPrelude #-}

module PrettyReader where

flip :: (a -> b -> c) -> (b -> a -> c)

flip f a b = f b a

const :: a -> b -> a

const a b = a

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \a -> f (g a)

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

class Applicative f => Monad f where

return :: a -> f a

(>>=) :: f a -> (a -> f b) -> f b
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instance Functor ((->) r) where

fmap = (.)

instance Applicative ((->) r) where

pure = const

f <*> a = \r -> f r (a r)

instance Monad ((->) r) where

return = pure

m >>= k = flip k <*> m

Speaking generally in terms of the algebras alone, you can-
not get a Monad instance from the Applicative. You can get
an Applicative from the Monad. However, our instances above
aren’t in terms of an abstract datatype; we know it’s the type
of functions. Because it’s not hiding behind a Reader newtype,
we can use flip and apply to make the Monad instance. We need
specific type information to augment what the Applicative is
capable of before we can get our Monad instance.
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22.9 You can change what comes below,
but not above

The “read-only” nature of the type argument 𝑟 means that you
can swap in a different type or value of 𝑟 for functions that
you call, but not for functions that call you. The best way to
demonstrate this is with the withReaderT function which lets
us start a new Reader context with a different argument being
provided:

withReaderT

:: (r' -> r)

-- ^ The function to modify

-- the environment.

-> ReaderT r m a

-- ^ Computation to run in the

-- modified environment.

-> ReaderT r' m a

withReaderT f m =

ReaderT $ runReaderT m . f

In the next chapter, we’ll see the State monad where we can
not only read in a value, but provide a new one which will
change the value carried by the functions that called us, not
only those we called.
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22.10 You tend to see ReaderT, not Reader

Reader rarely stands alone. Usually it’s one Monad in a stack of
multiple types providing a Monad instance such as with a web
application that uses Reader to give you access to context about
the HTTP request. When used in that fashion, it’s a monad
transformer and we put a letter T after the type to indicate
when we’re using it as such, so you’ll usually see ReaderT in
production Haskell code rather than Reader.

Further, a Reader of Int isn’t all that useful or compelling.
Usually if you have a Reader, it’s of a record of several (possibly
many) values that you’re getting out of the Reader.

22.11 Chapter Exercises

A warm-up stretch

These exercises are designed to be a warm-up and get you
using some of the stuff we’ve learned in the last few chap-
ters. While these exercises comprise code fragments from
real code, they are simplified in order to be discrete exercises.
That will allow us to highlight and practice some of the type
manipulation from Traversable and Reader, both of which are
tricky.

The first simplified part is that we’re going to set up some
toy data; in the real programs these are taken from, the data
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is coming from somewhere else — a database, for example.
We just need some lists of numbers. We’re going to use some
functions from Control.Applicative and Data.Maybe, so we’ll im-
port those at the top of our practice file. We’ll call our lists of
toy data by common variable names for simplicity.

module ReaderPractice where

import Control.Applicative

import Data.Maybe

x = [1, 2, 3]

y = [4, 5, 6]

z = [7, 8, 9]

The next thing we want to do is write some functions that
zip those lists together and use lookup to find the value associ-
ated with a specified key in our zipped lists. For demonstration
purposes, it’s nice to have the outputs be predictable, so we
recommend writing some that are concrete values, as well as
one that can be applied to a variable:

lookup :: Eq a => a -> [(a, b)] -> Maybe b

-- zip x and y using 3 as the lookup key

xs :: Maybe Integer

xs = undefined
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-- zip y and z using 6 as the lookup key

ys :: Maybe Integer

ys = undefined

-- it's also nice to have one that

-- will return Nothing, like this one

-- zip x and y using 4 as the lookup key

zs :: Maybe Integer

zs = lookup 4 $ zip x y

-- now zip x and z using a

-- variable lookup key

z' :: Integer -> Maybe Integer

z' n = undefined

Now we want to add the ability to make a Maybe (,) of values
using Applicative. Have x1 make a tuple of xs and ys, and x2

make a tuple of of ys and zs. Also, write x3 which takes one
input and makes a tuple of the results of two applications of
z' from above.
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x1 :: Maybe (Integer, Integer)

x1 = undefined

x2 :: Maybe (Integer, Integer)

x2 = undefined

x3 :: Integer

-> (Maybe Integer, Maybe Integer)

x3 = undefined

Your outputs from those should look like this:

*ReaderPractice> x1

Just (6,9)

*ReaderPractice> x2

Nothing

*ReaderPractice> x3 3

(Just 9,Just 9)

Next, we’re going to make some helper functions. Let’s use
uncurry to allow us to add the two values that are inside a tuple:
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uncurry :: (a -> b -> c) -> (a, b) -> c

-- that first argument is a function

-- in this case, we want it to be addition

-- summed is uncurry with addition as

-- the first argument

summed :: Num c => (c, c) -> c

summed = undefined

And now we’ll make a function similar to some we’ve seen
before that lifts a boolean function over two partially applied
functions:

bolt :: Integer -> Bool

-- use &&, >3, <8

bolt = undefined

Finally, we’ll be using fromMaybe in the main exercise, so let’s
look at that:

fromMaybe :: a -> Maybe a -> a

You give it a default value and a Maybe value. If the Maybe

value is a Just a, it will return the 𝑎 value. If the value is a
Nothing, it returns the default value instead:

*ReaderPractice> fromMaybe 0 xs
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6

*ReaderPractice> fromMaybe 0 zs

0

Now we’ll cobble together a main, so that in one call we can
execute several things at once.

main :: IO ()

main = do

print $

sequenceA [Just 3, Just 2, Just 1]

print $ sequenceA [x, y]

print $ sequenceA [xs, ys]

print $ summed <$> ((,) <$> xs <*> ys)

print $ fmap summed ((,) <$> xs <*> zs)

print $ bolt 7

print $ fmap bolt z

When you run this in GHCi, your results should look like
this:

*ReaderPractice> main

Just [3,2,1]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

Just [6,9]

Just 15

Nothing
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True

[True,False,False]

Next, we’re going to add one that combines sequenceA and
Reader in a somewhat surprising way (add this to main):

print $ sequenceA [(>3), (<8), even] 7

The type of sequenceA is

sequenceA :: (Applicative f, Traversable t)

=> t (f a) -> f (t a)

-- so in this:

sequenceA [(>3), (<8), even] 7

-- f ~ (->) a and t ~ []

Wehave a Reader for the Applicative (functions) and a traversable
for the list. Pretty handy. We’re going to call that function
sequA for the purposes of the following exercises:

sequA :: Integral a => a -> [Bool]

sequA m = sequenceA [(>3), (<8), even] m

And henceforth let

summed <$> ((,) <$> xs <*> ys)



CHAPTER 22. FUNCTIONS WAITING FOR INPUT 1362

be known as s'.
OK, your turn. Within the main above, write the following

(you can delete everything after do now if you prefer — just
remember to use print to be able to print the results of what
you’re adding):

1. fold the boolean conjunction operator over the list of
results of sequA (applied to some value).

2. apply sequA to s'; you’ll need fromMaybe.

3. apply bolt to ys; you’ll need fromMaybe.

Rewriting Shawty

Remember the URL shortener? Instead of manually passing
the database connection rConn from main to the app function
that generates a Scotty app, use ReaderT to make the database
connection available. We know you haven’t seen the trans-
former variant yet and we’ll explain them soon, but you should
try to do the transformation mechanically. Research as neces-
sary using a search engine. Use this version of the app: https:
//github.com/bitemyapp/shawty-prime/blob/master/app/Main.hs

22.12 Definition

A monad transformer is a special type that takes a monad as
an argument and returns a monad as a result. It allows us to

https://github.com/bitemyapp/shawty-prime/blob/master/app/Main.hs
https://github.com/bitemyapp/shawty-prime/blob/master/app/Main.hs
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combine two monads into one that shares the behaviors of
both, such as allowing us to add exception handling to a State

monad. It is somewhat common to create a stack of transform-
ers to create one large monad that has features from several
monads, for example, rolling Reader, Either, and IO together
to get a monad that captures the behavior of waiting for an
argument that will get passed around to multiple functions
but is likely to come in via some kind of I/O action and has the
possibility of failure we might like to catch. Often this stack
will be given a type alias for convenience.

22.13 Follow-up resources

1. Reader Monad; All About Monads
https://wiki.haskell.org/All_About_Monads

2. Reader Monad; Programming with Monads; Real World
Haskell

https://wiki.haskell.org/All_About_Monads
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State

Four centuries ago,
Descartes pondered the
mind-body problem:
how can incorporeal
minds interact with
physical bodies? Today,
computing scientists face
their own version of the
mind-body problem:
how can virtual software
interact with the real
world?

Philip Wadler
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23.1 State

What if I need state? In Haskell we have many means of repre-
senting, accessing, and modifying state. We can think of state
as data that exists in addition to the inputs and outputs of our
functions, data that can potentially change after each function
is evaluated.

In this chapter, we will:

• talk about what state means;

• explore some ways of handling state in Haskell;

• generate some more random numbers;

• and examine the State newtype and Monad instance.

23.2 What is state?

The concept of state originates in the circuit and automata
theory that much of computer science and programming be-
gan with. The simplest form of state could be understood as a
light switch. A light switch has two possible states, on or off.
That disposition of the light switch, being on or off, could be
understood as its state. Similarly, transistors in computers
have binary states of being on or off. This is a very low-level
way of seeing it, but this maps onto the state that exists in
computer memory.
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In most imperative programming languages, this stateful-
ness is pervasive, implicit, and not referenced in the types
of your functions. In Haskell, we’re not allowed to secretly
change some value; all we can do is accept arguments and
return a result. The State type in Haskell is a means of express-
ing state that may change in the course of evaluating code
without resort to mutation. The monadic interface for State

is, much as you’ve seen already, more of a convenience than a
strict necessity for working with State.

We have the option to capture the idea and convenience
of a value which potentially changes with each computation
without resorting to mutability. State captures this idea and
cleans up the bookkeeping required. If you need in-place
mutation, then the ST type is what you want, and we address
that briefly in later chapters.

In Haskell, if we use the State type and its associated Monad

(for convenience, not strictly necessary), we can have state
which:

1. doesn’t require IO;

2. is limited only to the data in our State container;

3. maintains referential transparency;

4. is explicit in the types of our functions.
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There are other means of sharing data within a program
that are designed for different needs than the State datatype
itself. State is appropriate when you want to express your
program in terms of values that potentially vary with each
evaluation step, which can be read and modified, but don’t
otherwise have specific operational constraints.

23.3 Random numbers

As we did in the previous chapter, we’ll start with an extended
example. This will help you get an idea of the problem we’re
trying to solve with the State datatype.

We’ll be using the random1 library, version 1.1, in this ex-
ample.

First, let’s give an overview of some of the functions we’ll
be using here. We used the System.Random library back in the
chapter where we built the hangman game, but we’ll be using
some different functions for this example. This is in broad
strokes; it isn’t meant to go into great detail about how these
generators work.

System.Random is designed to generate pseudorandom values.
You can generate those values through providing a seed value
or by using the system-initialised generator. We’ll be using
the following from that library:

1 https://hackage.haskell.org/package/random

https://hackage.haskell.org/package/random
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1. One of the types we’ll be seeing here, StdGen, is a datatype
that is a product of two Int32 values. So a value of type
StdGen always comprises two Int32 values. They are the
seed values used to generate the next random number.

2. mkStdGen has the type:

mkStdGen :: Int -> StdGen

We’ll ignore the implementation at this point because
those details aren’t important here. The idea is that it takes
an Int argument and maps it into a generator to return a
value of type StdGen, which is a pair of Int32 values.

3. next has the type:

next :: g -> (Int, g)

where 𝑔 is a value of type StdGen. The Int that is first in the
tuple is the pseudorandom number generated from the
StdGen value; the second value is a new StdGen value.

4. random has the type:

random :: (RandomGen g, Random a)

=> g -> (a, g)

This is similar to next but allows us to generate random
values that aren’t numbers. The range generated will be
determined by the type.
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Now, let’s have a little demonstration of these:

Prelude> import System.Random

Prelude> mkStdGen 0

1 1

Prelude> :t mkStdGen 0

mkStdGen 0 :: StdGen

Prelude> let sg = mkStdGen 0

Prelude> :t next sg

next sg :: (Int, StdGen)

Prelude> next sg

(2147482884,40014 40692)

Prelude> next sg

(2147482884,40014 40692)

We get the same answer twice because the underlying func-
tion that’s deciding the values returned is pure; the type doesn’t
permit the performance of any effects to get spooky action.
Define a new version of sg that provides a different input value
to mkStdGen and see what happens.

So, we have a value called next sg. Now, if we want to use
that to generate the next random number, we need to feed the
StdGen value from that tuple to next again. We can use snd to
extract that StdGen value and pass it as an input to next:

Prelude> snd (next sg)

40014 40692
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Prelude> let newSg = snd (next sg)

Prelude> :t newSg

newSg :: StdGen

Prelude> next newSg

(2092764894,1601120196 1655838864)

You’ll keep getting the same results of next there, but you
can extract that StdGen value and pass it to next again to get a
new tuple:

Prelude> next (snd (next newSg))

(1679949200,1635875901 2103410263)

Now we’ll look at a few examples using random. Because
random can generate values of different types, we need to specify
the type to use:

Prelude> :t random newSg

random newSg :: Random a => (a, StdGen)

Prelude> random newSg :: (Int, StdGen)

(138890298504988632,439883729 1872071452)

Prelude> random newSg :: (Double, StdGen)

(0.41992072972993366,439883729 1872071452)

Simple enough, but what if we want a number within a
range?
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Prelude> :t randomR

randomR :: (RandomGen g, Random a) => (a, a) -> g -> (a, g)

Prelude> randomR (0, 3) newSg :: (Int, StdGen)

(1,1601120196 1655838864)

Prelude> randomR (0, 3) newSg :: (Double, StdGen)

(1.259762189189801,439883729 1872071452)

We have to pass the new state of the random number gen-
erator to the next function to get a new value:

Prelude> let rx :: (Int, StdGen); rx = random (snd sg3)

Prelude> rx

(2387576047905147892,1038587761 535353314)

Prelude> snd rx

1038587761 535353314

This chaining of state can get tedious. Addressing this te-
dium is our aim in this chapter.

23.4 The State newtype

State is defined in a newtype, like Reader in the previous chap-
ter, and that type looks like this:

newtype State s a =

State { runState :: s -> (a, s) }
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It’s initially a bit strange looking, but you might notice some
similarity to the Reader newtype:

newtype Reader r a =

Reader { runReader :: r -> a }

We’ve seen several newtypes whose contents are a function,
particularly with our Monoid newtypes (Sum, Product, etc.). New-
types must have the same underlying representation as the
type they wrap, as the newtype wrapper disappears at compile
time. So the function contained in the newtype must be iso-
morphic to the type it wraps. That is, there must be a way to go
from the newtype to the thing it wraps and back again without
losing information. For example, the following demonstrates
an isomorphism:

type Iso a b = (a -> b, b -> a)

newtype Sum a = Sum { getSum :: a }

sumIsIsomorphicWithItsContents

:: Iso a (Sum a)

sumIsIsomorphicWithItsContents =

(Sum, getSum)

Whereas the following do not:
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-- Not an isomorphism, because

-- it might not work.

(a -> Maybe b, b -> Maybe a)

-- Not an isomorphism for two reasons.

-- You lose information whenever there

-- was more than one element in [a]. Also,

-- [a] -> a is partial because there

-- might not be any elements.

[a] -> a, a -> [a]

With that in mind, let us look at the State data constructor
and runState record accessor as our means of putting a value
in and taking a value out of the State type:

State :: (s -> (a, s)) -> State s a

runState :: State s a -> s -> (a, s)

State is a function that takes input state and returns an out-
put value, 𝑎, tupled with the new state value. The key is that
the previous state value from each application is chained to
the next one, and this is not an uncommon pattern. State is
often used for things like random number generators, solvers,
games, and carrying working memory while traversing a data
structure. The polymorphism means you don’t have to make
a new state for each possible instantiation of 𝑠 and 𝑎.
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Let’s get back to our random numbers:
Note that random looks an awful lot like State here:

random :: (Random a)

=> StdGen -> (a, StdGen)

State { runState

:: s -> (a, s) }

If we look at the type of randomR, once partially applied, it
should also remind you of State:

randomR :: (...) => (a, a) -> g -> (a, g)

State { runState :: s -> (a, s) }

23.5 Throw down

Now let us use this kit to generate die such as for a game:
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module RandomExample where

import System.Random

-- Six-sided die

data Die =

DieOne

| DieTwo

| DieThree

| DieFour

| DieFive

| DieSix

deriving (Eq, Show)

As you might expect, we’ll be using the random library, and a
simple Die datatype to represent a six-sided die.
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intToDie :: Int -> Die

intToDie n =

case n of

1 -> DieOne

2 -> DieTwo

3 -> DieThree

4 -> DieFour

5 -> DieFive

6 -> DieSix

-- Use 'error'

-- _extremely_ sparingly.

x ->

error $

"intToDie got non 1-6 integer: "

++ show x

Don’t use error outside of experiments like this, or in cases
where the branch you’re ignoring is provably impossible. We
do not use the word provably here lightly.2

Now we need to roll the dice:
2 Because partial functions are a pain, you should only use an error like this when

the branch that would spawn the error can literally never happen. Unexpected software
failures are often due to things like this. It is also completely unnecessary in Haskell; we
have good alternatives, like using Maybe or Either. The only reason we didn’t here is to
keep it simple and focus attention on the State Monad.
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rollDieThreeTimes :: (Die, Die, Die)

rollDieThreeTimes = do

let s = mkStdGen 0

(d1, s1) = randomR (1, 6) s

(d2, s2) = randomR (1, 6) s1

(d3, _) = randomR (1, 6) s2

(intToDie d1, intToDie d2, intToDie d3)

This code isn’t optimal, but it does work. It will produce
the same results every time, because it is free of effects, but
you can make it produce a new result on a new dice roll if you
modify the start value. Try it a couple of times to see what we
mean. It seems unlikely that this will develop into a gambling
addiction, but in the event it does, the authors disclaim liability
for such.

So, how can we improve our suboptimal code there. With
State, of course!

module RandomExample2 where

import Control.Applicative (liftA3)

import Control.Monad (replicateM)

import Control.Monad.Trans.State

import System.Random

import RandomExample
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First, we’ll add some new imports. You’ll need transformers

to be installed for the State import to work, but that should
have come with your GHC install, so you should be good to
go.

Using State will allow us to factor out the generation of a
single Die:

rollDie :: State StdGen Die

rollDie = state $ do

(n, s) <- randomR (1, 6)

return (intToDie n, s)

For our purposes, the state function is a constructor that
takes a State-like function and embeds it in the State monad
transformer. Ignore the transformer part for now — we’ll get
there. The state function has the following type:

state :: Monad m

=> (s -> (a, s))

-> StateT s m a

Note that we’re binding the result of randomR out of the State

monad the do block is in rather than using let. This is still more
verbose than is necessary. We can lift our intToDie function
over the State:
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rollDie' :: State StdGen Die

rollDie' =

intToDie <$> state (randomR (1, 6))

State StdGen had a final type argument of Int. We lifted Int

-> Die over it and transformed that final type argument to Die.
We’ll exercise more brevity upfront in the next function:

rollDieThreeTimes'

:: State StdGen (Die, Die, Die)

rollDieThreeTimes' =

liftA3 (,,) rollDie rollDie rollDie

Lifting the three-tuple constructor over three State actions
that produce Die values when given an initial state to work
with. How does this look in practice?

Prelude> evalState rollDieThreeTimes' (mkStdGen 0)

(DieSix,DieSix,DieFour)

Prelude> evalState rollDieThreeTimes' (mkStdGen 1)

(DieSix,DieFive,DieTwo)

Seems to work fine. Again, the same inputs give us the same
result. What if we want a list of Die instead of a tuple?
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-- Seems appropriate?

repeat :: a -> [a]

infiniteDie :: State StdGen [Die]

infiniteDie = repeat <$> rollDie

Does this infiniteDie function do what we want or expect?
What is it repeating?

Prelude> take 6 $ evalState infiniteDie (mkStdGen 0)

[DieSix,DieSix,DieSix,DieSix,DieSix,DieSix]

We already know based on previous inputs that the first 3
values shouldn’t be identical for a seed value of 0. So what
happened? What happened is we repeated a single die value
— we didn’t repeat the state action that produces a die. This is
what we need:

replicateM :: Monad m

=> Int -> m a -> m [a]

nDie :: Int -> State StdGen [Die]

nDie n = replicateM n rollDie

And when we use it?

Prelude> evalState (nDie 5) (mkStdGen 0)
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[DieSix,DieSix,DieFour,DieOne,DieFive]

Prelude> evalState (nDie 5) (mkStdGen 1)

[DieSix,DieFive,DieTwo,DieSix,DieFive]

We get precisely what we wanted.

Keep on rolling

In the following example, we keep rolling a single die until we
reach or exceed a sum of 20.

rollsToGetTwenty :: StdGen -> Int

rollsToGetTwenty g = go 0 0 g

where

go :: Int -> Int -> StdGen -> Int

go sum count gen

| sum >= 20 = count

| otherwise =

let (die, nextGen) =

randomR (1, 6) gen

in go (sum + die)

(count + 1) nextGen

Then seeing it in action:

Prelude> rollsToGetTwenty (mkStdGen 0)

5
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Prelude> rollsToGetTwenty (mkStdGen 0)

5

We can also use randomIO, which uses IO to get a new value
each time without needing to create a unique value for the
StdGen:

Prelude> :t randomIO

randomIO :: Random a => IO a

Prelude> (rollsToGetTwenty . mkStdGen) <$> randomIO

6

Prelude> (rollsToGetTwenty . mkStdGen) <$> randomIO

7

Under the hood, it’s the same interface and State Monad

driven mechanism, but it’s mutating a single globally used
StdGen to walk the generator forward on each use. See the
random library source code to see how this works.

Exercises: Roll Your Own

1. Refactor rollsToGetTwenty into having the limit be a func-
tion argument.

rollsToGetN :: Int -> StdGen -> Int

rollsToGetN = undefined

2. Change rollsToGetN to recording the series of die that oc-
curred in addition to the count.
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rollsCountLogged :: Int

-> StdGen

-> (Int, [Die])

rollsCountLogged = undefined

23.6 Write State for yourself

Use the datatype definition from the beginning of this chapter,
with the name changed to avoid conflicts in case you have
State imported from the libraries transformers or mtl. We’re
calling it Moi, because we enjoy allusions to famous quotations3;
feel free to change the name if you wish to protest absolute
monarchy, but change them consistently throughout.

newtype Moi s a =

Moi { runMoi :: s -> (a, s) }

State Functor

Implement the Functor instance for State.

instance Functor (Moi s) where

fmap :: (a -> b) -> Moi s a -> Moi s b

fmap f (Moi g) = ???

3 We are referring to the (possibly apocryphal) quotation attributed to the French
King Louis XIV, “L’Etat, c’est moi.” For those of you who do not speak French, it means,
“I am the State.” Cheers.
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Prelude> runMoi ((+1) <$> (Moi $ \s -> (0, s))) 0

(1,0)

State Applicative

Write the Applicative instance for State.

instance Applicative (Moi s) where

pure :: a -> Moi s a

pure a = ???

(<*>) :: Moi s (a -> b)

-> Moi s a

-> Moi s b

(Moi f) <*> (Moi g) =

???

State Monad

Write the Monad instance for State.
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instance Monad (Moi s) where

return = pure

(>>=) :: Moi s a

-> (a -> Moi s b)

-> Moi s b

(Moi f) >>= g =

???

23.7 Get a coding job with one weird
trick

Some companies will use FizzBuzz4 to screen (not so much
test) candidates applying to software positions. The problem
statement goes:

Write a program that prints the numbers from 1 to
100. But for multiples of three print “Fizz” instead of
the number and for the multiples of five print “Buzz”.
For numbers which are multiples of both three and
five print “FizzBuzz”.

A typical fizzbuzz solution in Haskell looks something like:
4 http://c2.com/cgi/wiki?FizzBuzzTest

http://c2.com/cgi/wiki?FizzBuzzTest
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fizzBuzz :: Integer -> String

fizzBuzz n | n `mod` 15 == 0 = "FizzBuzz"

| n `mod` 5 == 0 = "Buzz"

| n `mod` 3 == 0 = "Fizz"

| otherwise = show n

main :: IO ()

main =

mapM_ (putStrLn . fizzBuzz) [1..100]

A fizzbuzz using State is a suitable punishment for asking
a software candidate to write this in person after presumably
getting through a couple phone screens. Let’s look at what a
version with State might look like:

import Control.Monad

import Control.Monad.Trans.State

fizzBuzz :: Integer -> String

fizzBuzz n | n `mod` 15 == 0 = "FizzBuzz"

| n `mod` 5 == 0 = "Buzz"

| n `mod` 3 == 0 = "Fizz"

| otherwise = show n
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fizzbuzzList :: [Integer] -> [String]

fizzbuzzList list =

execState (mapM_ addResult list) []

addResult :: Integer -> State [String] ()

addResult n = do

xs <- get

let result = fizzBuzz n

put (result : xs)

Note that State is a type alias of StateT you imported.

main :: IO ()

main =

mapM_ putStrLn $

reverse $ fizzbuzzList [1..100]

The good part here is that we’re collecting data initially
before dumping the results to standard output via putStrLn.
The bad is that we’re reversing a list. Reversing singly-linked
lists is not great, even in Haskell, and won’t terminate on an
infinite list. One of the issues is that we’re accepting an input
that defines the numbers we’ll use fizzbuzz on linearly from
beginning to end.

There are a couple ways we could handle this. One is to
use a data structure with cheaper appending to the end. Using
(++) recursively can be very slow, so let’s use something that
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can append in constant time. The counterpart to [] which has
this property is the difference list5 which has O(1) append.

import Control.Monad

import Control.Monad.Trans.State

-- http://hackage.haskell.org/package/dlist

import qualified Data.DList as DL

fizzBuzz :: Integer -> String

fizzBuzz n | n `mod` 15 == 0 = "FizzBuzz"

| n `mod` 5 == 0 = "Buzz"

| n `mod` 3 == 0 = "Fizz"

| otherwise = show n

5 https://github.com/spl/dlist

https://github.com/spl/dlist
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fizzbuzzList :: [Integer] -> [String]

fizzbuzzList list =

let dlist =

execState (mapM_ addResult list)

DL.empty

-- convert back to normal list

in DL.apply dlist []

addResult :: Integer

-> State (DL.DList String) ()

addResult n = do

xs <- get

let result = fizzBuzz n

-- snoc appends to the end, unlike

-- cons which adds to the front

put (DL.snoc xs result)

main :: IO ()

main =

mapM_ putStrLn $ fizzbuzzList [1..100]

We can clean this up further. If you have GHC 7.10 or newer,
mapM_ will specify a Foldable type, not only a list:

Prelude> :t mapM_

mapM_ :: (Monad m, Foldable t) => (a -> m b) -> t a -> m ()
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By letting DList’s Foldable instance do the conversion to a
list for us, we can eliminate some code:

fizzbuzzList :: [Integer]

-> DL.DList String

fizzbuzzList list =

execState (mapM_ addResult list) DL.empty

addResult :: Integer

-> State (DL.DList String) ()

addResult n = do

xs <- get

let result = fizzBuzz n

put (DL.snoc xs result)

main :: IO ()

main =

mapM_ putStrLn $ fizzbuzzList [1..100]

DList’s Foldable instance converts to a list before folding
because of limitations specific to the datatype. You get cheap
appending, but you give up the ability to “see” what you’ve
built unless you’re willing to do all the work of building the
structure. We’ll discuss this in more detail in a forthcoming
chapter.
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One thing that may strike you here is that the use of State
was superfluous. That’s good! It’s not common you need State

as such in Haskell. You might use a different form of State

called ST as a selective optimization, but State itself is a stylistic
choice that falls out of what the code is telling you. Don’t
feel compelled to use or not use State. Please frighten some
interviewers with a spooky fizzbuzz. Make something even
weirder than what we’ve shown you here!

Fizzbuzz Differently

It’s an exercise! Rather than changing the underlying data
structure, fix our reversing fizzbuzz by changing the code in
the following way:

fizzbuzzFromTo :: Integer

-> Integer

-> [String]

fizzbuzzFromTo = undefined

Continue to use consing in the construction of the result
list, but have it come out in the right order to begin with by
enumerating the sequence backwards. This sort of tactic is
more commonly how you’ll want to fix your code when you’re
quashing unnecessary reversals.
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23.8 Chapter exercises

Write the following functions. You’ll want to use your own
State type for which you’ve defined the Functor, Applicative,
and Monad.

1. Construct a State where the state is also the value you
return.

get :: State s s

get = ???

Expected output

Prelude> runState get "curryIsAmaze"

("curryIsAmaze","curryIsAmaze")

2. Construct a Statewhere the resulting state is the argument
provided and the value is defaulted to unit.

put :: s -> State s ()

put s = ???

Prelude> runState (put "blah") "woot"

((),"blah")

3. Run the State with 𝑠 and get the state that results.
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exec :: State s a -> s -> s

exec (State sa) s = ???

Prelude> exec (put "wilma") "daphne"

"wilma"

Prelude> exec get "scooby papu"

"scooby papu"

4. Run the State with 𝑠 and get the value that results.

eval :: State s a -> s -> a

eval (State sa) = ???

Prelude> eval get "bunnicula"

"bunnicula"

Prelude> eval get "stake a bunny"

"stake a bunny"

5. Write a function which applies a function to create a new
State.

modify :: (s -> s) -> State s ()

modify = undefined

Should behave like the following:
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Prelude> runState (modify (+1)) 0

((),1)

Prelude> runState (modify (+1) >> modify (+1)) 0

((),2)

You don’t need to compose them, you can throw away the
result because it returns unit for 𝑎 anyway.

23.9 Follow-up resources

1. State Monad; All About Monads; Haskell Wiki
https://wiki.haskell.org/All_About_Monads

2. State Monad; Haskell Wiki
https://wiki.haskell.org/State_Monad

3. Understanding Monads; Haskell Wikibook

https://wiki.haskell.org/All_About_Monads
https://wiki.haskell.org/State_Monad


Chapter 24

Parser combinators

Within a computer,
natural language is
unnatural.

Alan Perlis

1395
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24.1 Parser combinators

The word parse comes from the Latin word for parts, and
means to analyze a sentence and label the syntactic role, or part
of speech, of each component. Language teachers once em-
phasized this ability because it forced students to think about
the structure of sentences, the relationships among the parts,
and the connection between the structure and the meaning of
the whole. Diagramming sentences was common because it
made parsing visual and somewhat concrete.

It is now common to represent grammatical structures of
natural languages as trees, so that a sentence such as

Boy plays with dog.

might be thought to have an underlying representation
such as

S(entence)

/ \

Boy plays (verb)

(subject) \

with (preposition)

\

dog (object)

We are not here to become linguists, but parsing in com-
puter science is related to the parsing of natural language
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sentences. The core idea of parsing in programming is to
accept serialized input in the form of a sequence of characters
(textual data) or bytes (raw binary data) and turn that into a
value of a structured datatype. Serialized data is data that has
been translated into a format, such as JSON or XML1, that can
be stored or transmitted across a network connection. Parsing
breaks up that chunk of data and allows you to find and process
the parts you care about.

If we wrote a computer program to parse a sentence into
a very simplified model of English grammar, it could look
something like the tree above. Often when we are parsing
things, the structured datatype that results will look something
like a tree. In Haskell, we can sometimes end up having a tree
because recursive types are so easy to express in Haskell.

In this chapter, we will

• use a parsing library to cover the basics of parsing;

• demonstrate the awesome power of parser combinators;

• marshall and unmarshall some JSON data;

• talk about tokenization.
1 If you do not know what JSON and XML are yet, try not to get too hung up on that.

All that matters at this point is that they are standard data formats. We’ll look at JSON in
more detail later in the chapter.



CHAPTER 24. PARSER COMBINATORS 1398

24.2 A few more words of introduction

In this chapter, we will not look too deeply into the types of
the parsing libraries we’re using, learn every sort of parser
there is, or artisanally handcraft all of our parsing functions
ourselves.

These are thoroughly considered decisions. Parsing is a
huge field of research in its own right with connections that
span natural language processing, linguistics, and program-
ming language theory. This topic could easily fill a book in
itself (in fact, it has). The underlying types and typeclasses of
the libraries we’ll be using are complicated. To be sure, if you
enjoy parsing and expect to do it a lot, those are things you’d
want to learn; they are simply out of the scope of this book.

This chapter takes a different approach than previous chap-
ters. The focus is on enabling you to use Haskell’s parsing
libraries — not to be a master of parsing and writing parsers
in general. This is not the bottom-up approach you may be
accustomed to; by necessity, we’re working outside-in and
trying to cover what you’re likely to need. Depending on your
specific interests, you may find this chapter too long or not
nearly long enough.
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24.3 Understanding the parsing process

A parser is a function that takes some textual input (it could
be a String, or another datatype such as ByteString or Text) and
returns some structure as an output. That structure might
be a tree, for example, or an indexed map of locations in the
parsed data. Parsers analyze structure in conformance with
rules specified in a grammar, whether it’s a grammar of a
human language, a programming language, or a format such
as JSON.

A parser combinator is a higher-order function that takes
parsers as input and returns a new parser as output. You may
remember our brief discussion of combinators way back in
the lambda calculus chapter. Combinators are expressions
with no free variables.

The standard for what constitutes a combinator with respect
to parser combinators is a little looser. Parsers are functions,
so parser combinators are higher-order functions that can take
parsers as arguments. Usually the argument passing is elided
because the interface of parsers will often be like the State

monad which permits Reader-style implicit argument passing.
Among other things, combinators allow for recursion and for
gluing together parsers in a modular fashion to parse data
according to complex rules.

For computers, parsing is something like reading when
you’re really young. Perhaps you were taught to trace the
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letters with your finger for phonetic pronunciation. Later, you
were able to follow word by word, then you started scanning
with your eyes. Eventually, you learned how to read with
subvocalization.

Since we didn’t use an analogy for Monad

We’re going to run through some code now that will demon-
strate the idea of parsing. Let’s begin by installing the parsing
library trifecta,2 then work through a short demonstration of
what it does. We’ll talk more about the design of trifecta in
a while. For now, we’re going to use it in a state of somewhat
ignorant bliss.

Let’s put up some code:

module LearnParsers where

import Text.Trifecta

stop :: Parser a

stop = unexpected "stop"

unexpected is a means of throwing errors in parsers like
trifecta which are an instance of the Parsing typeclass. Here

2We’ll be using this version of trifecta
http://hackage.haskell.org/package/trifecta-1.5.2

http://hackage.haskell.org/package/trifecta-1.5.2
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we’re using it to make the parser fail for demonstration pur-
poses.

What demonstration purposes?

We’re glad you asked! The basic idea behind a parser is that
you’re moving a sort of cursor around a linear stream of text.
It’s simplest to think of the individual units within the streamas
characters or ideographs, though you’ll want to start thinking
of your parsing problems in chunkier terms as you progress.
The idea is that this cursor is a bit like you’re reading the text
with your finger:

Julie bit Papuchon

^

Then let us say we parsed the word “Julie” — we’ve now
consumed that input, so the cursor will be at “bit”:

Julie bit Papuchon

^

If we weren’t expecting the word “bit,” our parser could fail
here, and we’d get an error at the word “bit” like that. However,
if we did parse the word “bit” successfully and thus consumed
that input, it might look something like this:

Julie bit Papuchon

^



CHAPTER 24. PARSER COMBINATORS 1402

The analogy we’re using here isn’t perfect. One of the hard-
est problems in writing parsers, especially the parser libraries
themselves, is making it easy to express things the way the
programmer would like, but still have the resulting parser be
fast.

Back to the code

With the cursor analogy in mind, let’s return to the module
we started.

We’ll first make a little function that only parses one charac-
ter, and then sequence that with stop to make it read that one
character and then die:

-- read a single character '1'

one = char '1'

-- read a single character '1', then die

one' = one >> stop

-- equivalent to char '1' >> stop

For one', we’re using the sequencing operator from Monad to
combine two parsers, stop and char '1'. Given the type of >>:

(>>) :: Monad m => m a -> m b -> m b

it’s safe to assume that whatever char '1' returns in the
expression
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char '1' >> stop

gets thrown away. Critically, any effect the m a action had
upon the monadic context remains. The result value of the
parse function gets thrown away, but the effect of “moving the
cursor” remains. Another possible effect is causing the parse
to fail.

A bit like…

State. Plus failure. No seriously, take a look at this definition
of the Parser type:

type Parser a = String -> Maybe (a, String)

You can read this as:

1. Await a string value

2. Produce a result which may or may not succeed. (A
Nothing value means the parse failed.)

3. Return a tuple of the value you wanted and whatever’s
left of the string that you didn’t consume to produce the
value of type 𝑎.

Then remind yourself of what Reader and State look like:
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newtype Reader r a =

Reader { runReader :: r -> a }

newtype State s a =

State { runState :: s -> (a, s) }

If you have convinced yourself that State is an elaboration
of Reader and that you can see how the Parser type looks sorta
like State, we can move on.

The idea here with the Parser type is that the State is han-
dling the fact that you need to await an eventual text input and
that having parsed something out of that text input results in
a new state of the input stream. It also lets you return a value
independent of the state, while Maybe handles the possibility
of the parser failure.

If we were to look at the underlying pattern of a parsing
function such as char, you can see the State-ish pattern. Please
understand that while this should work as a character-parsing
function, we are simplifying here and this is not what the
source code of any modern parsing library will look like:



CHAPTER 24. PARSER COMBINATORS 1405

-- rudimentary char

-- demo only, this won't work as is.

char :: Char -> Parser Char

char c =

Parser $ \s ->

case s of

(x:xs) -> if c == x

then [(c, xs)]

else []

_ -> []

We could encode the possibility of failure in that by adding
Maybe but at this point, that isn’t important because we’re using
a library that has encoded the possibility of failure for us. It has
also optimized the heck out of char for us. But we wanted to
show you how the underlying function is the s -> embedded
in the Parser data constructor.

Consider the type of a Hutton-Meijer parser:



CHAPTER 24. PARSER COMBINATORS 1406

-- from Text.ParserCombinators.HuttonMeijer

-- polyparse-1.11

type Token = Char

newtype Parser a =

P ([Token] -> [(a, [Token])])

-- Same thing, differently formatted:

type Parser' a = String -> [(a, String)]

This changes things from the previous, less common but
simpler variant, by allowing you to express a range of possibly
valid parses starting from the input provided. This is more
powerful than the Maybe variant, but this design isn’t used in
popular Haskell parser combinator libraries any longer. Al-
though the underlying implementation has changed dramati-
cally with new discoveries and designs, most parsing libraries
in Haskell are going to have an interface that behaves a bit like
State in that the act of parsing things has an observable effect
on one or more bits of state.

If we were talking about State, this means any put to the
State value would be observable to the next action in the same
Monad (you can verify what follows in your REPL by import-
ing Control.Monad.Trans.State). These examples use the trans-
former variant of State, but if you ignore the T, you should be
able to get the basic idea:
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get :: Monad m => StateT s m s

put :: Monad m => s -> StateT s m ()

runStateT :: StateT s m a -> s -> m (a, s)

Prelude> runStateT (put 8) 7

((),8)

Prelude> runStateT get 8

(8,8)

Prelude> runStateT (put 1 >> get) 8

(1,1)

Prelude> (runStateT $ put 1 >> get) 0

(1,1)

Prelude> (runStateT $ put 2 >> get) 10021490234890

(2,2)

Prelude> (runStateT $ put 2 >> return 9001) 0

(9001,2)

Now put returns a unit value, a throwaway value, so we’re
only evaluating it for effect anyway. It modifies the state but
doesn’t have any value of its own. So when we throw away its
value, we’re left with its effect on the state, although get puts
that value into both the 𝑎 and 𝑠 slots in the tuple.

This is an awful lot like what happens when we sequence a
parsing function such as char with stop, as above. There is no
real result of char, but it does change the state. The state here
is the location of the cursor in the input stream. In reality, a
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modern and mature parser design in Haskell will often look
about as familiar to you as the alien hellscape underneath the
frozen crust of one of the moons of Jupiter. Don’t take the
idea of there being an actual cursor too literally, but there may
be some utility in imagining it this way.

Back to our regularly scheduled coding

Onward with the code:

-- read two characters, '1', and '2'

oneTwo = char '1' >> char '2'

-- read two characters,

-- '1' and '2', then die

oneTwo' = oneTwo >> stop

testParse :: Parser Char -> IO ()

testParse p =

print $ parseString p mempty "123"

The 𝑝 argument is a parser. Specifically, it’s a character
parser. The functions one and oneTwo have the type Parser Char.
You can check the types of one' and oneTwo' yourself.

We needed to declare the type of testParse in order to Show

what we parsed because of ambiguity.
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The key thing to realize here is that we’re using parsers like
values and combining them using the same stuff we use with
ordinary functions or operators from the Applicative and Monad

typeclasses. The structure that makes up the Applicative or
Monad in this case is the Parser itself.

Next we’ll write a function to print a string to standard
output (stdout) with a newline prefixed, and then use that
function as part of a main that will show us what we’ve got so
far:

pNL s =

putStrLn ('\n' : s)

main = do

pNL "stop:"

testParse stop

pNL "one:"

testParse one

pNL "one':"

testParse one'

pNL "oneTwo:"

testParse oneTwo

pNL "oneTwo':"

testParse oneTwo'

Let’s run it and interpret the results. Since it’s text on a
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computer screen instead of tea leaves, we’ll call it science. If
you remain unconvinced, you have our permission to don a
white labcoat and print the output using a dot-matrix printer.
Some of you kids probably don’t even know what a dot-matrix
printer is.3

Run main and see what happens:

Prelude> main

stop:

Failure (interactive):1:1: error: unexpected

stop

123<EOF>

^

We failed immediately before consuming any input in the
above, so the caret in the error is at the beginning of our string
value.

Next result:

one:

Success '1'

We parsed a single character, the digit 1. The result is know-
ing we succeeded. But what about the rest of the input stream?
Well, the thing we used to run the parser dropped the rest of

3 shakes fist at sky
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the input on the floor. There are ways to change this behavior
which we’ll explain in the exercises.

Next up:

one':

Failure (interactive):1:2: error: unexpected

stop

123<EOF>

^

We parsed a single character successfully, then dropped it
because we used >> to sequence it with stop. This means the
cursor was one character forward due to the previous parser
succeeding. Helpfully, trifecta tells us where our parser failed.

And for our last result:

oneTwo:

Success '2'

oneTwo':

Failure (interactive):1:3: error: unexpected

stop

123<EOF>

^

It’s the same as before, but we parsed two characters indi-
vidually. What if we we don’t want to discard the first character
we parsed and instead parse “12?” See the exercises below!
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Exercises: Parsing Practice

1. There’s a combinator that’ll let us mark that we expect
an input stream to be finished at a particular point in our
parser. In the parsers library this is simply called eof (end-
of-file) and is in the Text.Parser.Combinators module. See
if you can make the one and oneTwo parsers fail because
they didn’t exhaust the input stream!

2. Use string to make a Parser that parses “1”, “12”, and “123”
out of the example input respectively. Try combining it
with stop too. That is, a single parser should be able to
parse all three of those strings.

3. Try writing a Parser that does what string does, but using
char.

Intermission: parsing free jazz

Let us play with these parsers! We typically use the parseString

function to run parsers, but if you figure some other way that
works for you, so be it! Here’s some parsing free jazz, if you
will, meant only to help develop your intuition about what’s
going on:

Prelude> import Text.Trifecta

Prelude> :t char

char :: CharParsing m => Char -> m Char
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Prelude> :t parseString

parseString

:: Parser a

-> Text.Trifecta.Delta.Delta

-> String

-> Result a

Prelude> let gimmeA = char 'a'

Prelude> :t parseString gimmeA mempty

parseString gimmeA mempty :: String -> Result Char

Prelude> parseString gimmeA mempty "a"

Success 'a'

Prelude> parseString gimmeA mempty "b"

Failure (interactive):1:1: error: expected: "a"

b<EOF>

^

Prelude> parseString (char 'b') mempty "b"

Success 'b'

Prelude> parseString (char 'b' >> char 'c') mempty "b"

Failure (interactive):1:2: error: unexpected

EOF, expected: "c"

b<EOF>

^

Prelude> parseString (char 'b' >> char 'c') mempty "bc"

Success 'c'
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Prelude> parseString (char 'b' >> char 'c') mempty "abc"

Failure (interactive):1:1: error: expected: "b"

abc<EOF>

^

Seems like we ought to have a way to say, “parse this string”
rather than having to sequence the parsers of individual char-
acters bit by bit, right? Turns out, we do:

Prelude> parseString (string "abc") mempty "abc"

Success "abc"

Prelude> parseString (string "abc") mempty "bc"

Failure (interactive):1:1: error: expected: "abc"

bc<EOF>

^

Prelude> parseString (string "abc") mempty "ab"

Failure (interactive):1:1: error: expected: "abc"

ab<EOF>

^

Importantly, it’s not a given that a single parser exhausts all
of its input — they only consume as much text as they need
to produce the value of the type requested.

Prelude> parseString (char 'a') mempty "abcdef"

Success 'a'

Prelude> let stop = unexpected "stop pls"
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Prelude> parseString (char 'a' >> stop) mempty "abcdef"

Failure (interactive):1:2: error: unexpected

stop pls

abcdef<EOF>

^

Prelude> parseString (string "abc") mempty "abcdef"

Success "abc"

Prelude> parseString (string "abc" >> stop) mempty "abcdef"

Failure (interactive):1:4: error: unexpected

stop pls

abcdef<EOF>

^

Note that we can also parse UTF-8 encoded ByteStrings with
trifecta:

Prelude> import Text.Trifecta

Prelude> :t parseByteString

parseByteString

:: Parser a

-> Text.Trifecta.Delta.Delta

-> Data.ByteString.Internal.ByteString

-> Result a

Prelude> parseByteString (char 'a') mempty "a"

Success 'a'
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This ends the free jazz session. We now return to serious
matters.

24.4 Parsing fractions

Now that we have some idea of what parsing is, what parser
combinators are, and what the monadic underpinnings of
parsing look like, let’s move on to parsing fractions. The top
of this module should look like this:

{-# LANGUAGE OverloadedStrings #-}

module Text.Fractions where

import Control.Applicative

import Data.Ratio ((%))

import Text.Trifecta

We named the module Text.Fractions because we’re pars-
ing fractions out of text input, and there’s no need to be more
clever about it than that. We’re going to be using String in-
puts with trifecta at first, but you’ll see why we threw an
OverloadedStrings extension in there later.

Now, on to parsing fractions! We’ll start with some test
inputs:
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badFraction = "1/0"

alsoBad = "10"

shouldWork = "1/2"

shouldAlsoWork = "2/1"

Then we’ll write our actual parser:

parseFraction :: Parser Rational

parseFraction = do

numerator <- decimal

-- [2] [1]

char '/'

-- [3]

denominator <- decimal

-- [ 4 ]

return (numerator % denominator)

-- [5] [6]

1. decimal :: Integral a => Parser a

This is the type of decimal within the context of those
functions. If you use GHCi to query the type of decimal,
you will see a more polymorphic type signature.

2. Here numerator has the type Integral a => a.

3. char :: Char -> Parser Char
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As with decimal, if you query the type of char in GHCi,
you’ll see a more polymorphic type, but this is the type
of char in context.

4. Same deal as numerator, but when we match an integral
number we’re binding the result to the name denominator.

5. The final result has to be a parser, so we embed our inte-
gral value in the Parser type by using return.

6. We construct ratios using the % infix operator:

(%) :: Integral a

=> a -> a -> GHC.Real.Ratio a

Then the fact that our final result is a Rational makes the
Integral a => a values into concrete Integer values.

type Rational = GHC.Real.Ratio Integer

We’ll put together a quick shim main function to run the
parser against the test inputs and see the results:
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main :: IO ()

main = do

let parseFraction' =

parseString parseFraction mempty

print $ parseFraction' shouldWork

print $ parseFraction' shouldAlsoWork

print $ parseFraction' alsoBad

print $ parseFraction' badFraction

Try not to worry about the mempty values; it might give you
a clue about what’s going on in trifecta under the hood, but
it’s not something we’re going to explore in this chapter.

We will briefly note the type of parseString, which is how
we’re running the parser we created:

parseString :: Parser a

-> Text.Trifecta.Delta.Delta

-> String

-> Result a

The first argument is the parser we’re going to run against
the input, the second is a Delta, the third is the String we’re
parsing, and then the final result is either the thing we wanted
of type 𝑎 or an error string to let us know something went
wrong. You can ignore the Delta thing — use mempty to provide
the do-nothing input. We won’t be covering deltas in this book
so consider it extra credit if you get curious.
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Anyway, when we run the code, the results look like this:

Prelude> main

Success (1 % 2)

Success (2 % 1)

Failure (interactive):1:3: error: unexpected

EOF, expected: "/", digit

10<EOF>

^

Success *** Exception: Ratio has zero denominator

The first two succeeded properly. The third failed because it
couldn’t parse a fraction out of the text “10”. The error is telling
us that it ran out of text in the input stream while still waiting
for the character '/'. The final error did not result from the
process of parsing; we know that because it is a Success data
constructor. The final error resulted from trying to construct
a ratio with a denominator that is zero — which makes no
sense. We can reproduce the issue in GHCi:

Prelude> 1 % 0

*** Exception: Ratio has zero denominator

-- So the parser result is which is tantamount to

Prelude> Success (1 % 0)

Success *** Exception: Ratio has zero denominator

This is sort of a problem because exceptions end our pro-
grams. Observe:
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main :: IO ()

main = do

let parseFraction' =

parseString parseFraction mempty

print $ parseFraction' badFraction

print $ parseFraction' shouldWork

print $ parseFraction' shouldAlsoWork

print $ parseFraction' alsoBad

We’ve put the expression that throws an exception in the
first line this time, when we run it we get:

Prelude> main

Success *** Exception: Ratio has zero denominator

So, our program halted on the error. This is not great. You
may be tempted to “handle” the error. Catching exceptions
is okay, but this is a particular class of exceptions that means
something is quite wrong with your program. You should elim-
inate the possibility of exceptions occurring in your programs
where possible.

We’ll talk more about error handling in a later chapter, but
the idea here is that a Parser type already explicitly encodes
the possibility of failure. It’s better for a value of type Parser

a to have only one vector for errors and that vector is the
parser’s ability to encode failure. There may be an edge case



CHAPTER 24. PARSER COMBINATORS 1422

that doesn’t suit this design preference, but it’s a very good
idea to not have exceptions or bottoms that aren’t explicitly
called out as a possibility in the types whenever possible.

We could modify our program to handle the 0 denominator
case and change it into a parse error:

virtuousFraction :: Parser Rational

virtuousFraction = do

numerator <- decimal

char '/'

denominator <- decimal

case denominator of

0 -> fail "Denominator cannot be zero"

_ -> return (numerator % denominator)

Here is our first explicit use of fail, which by historical ac-
cident is part of the Monad typeclass. Realistically, not all Monads
have a proper implementation of fail, so it will be moved out
into a MonadFail class eventually. For now, it suffices to know
that it is our means of returning an error for the Parser type
here.

Now for another run of our test inputs, but with our more
cautious parser:
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testVirtuous :: IO ()

testVirtuous = do

let virtuousFraction' =

parseString virtuousFraction mempty

print $ virtuousFraction' badFraction

print $ virtuousFraction' alsoBad

print $ virtuousFraction' shouldWork

print $ virtuousFraction' shouldAlsoWork

When we run this, we’re going to get a slightly different
result at the end:

Prelude> testVirtuous

Failure (interactive):1:4: error: Denominator

cannot be zero, expected: digit

1/0<EOF>

^

Failure (interactive):1:3: error: unexpected

EOF, expected: "/", digit

10<EOF>

^

Success (1 % 2)

Success (2 % 1)

Now we have no bottom causing the program to halt and
we get a Failure value which explains the cause for the failure.
Much better!
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Exercise: Unit of Success

This should not be unfamiliar at this point, even if you do not
understand all the details:

Prelude> parseString integer mempty "123abc"

Success 123

Prelude> parseString (integer >> eof) mempty "123abc"

Failure (interactive):1:4: error: expected: digit,

end of input

123abc<EOF>

^

Prelude> parseString (integer >> eof) mempty "123"

Success ()

You may have already deduced why it returns () as a Success

result here; it’s consumed all the input but there is no result
to return from having done so. The result Success () tells you
the parse was successful and consumed the entire input, so
there’s nothing to return.

What we want you to try now is rewriting the final example
so it returns the integer that it parsed instead of Success ().
It should return the integer successfully when it receives an
input with an integer followed by an EOF and fail in all other
cases:

Prelude> parseString (yourFuncHere) mempty "123"
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Success 123

Prelude> parseString (yourFuncHere) mempty "123abc"

Failure (interactive):1:4: error: expected: digit,

end of input

123abc<EOF>

^

24.5 Haskell’s parsing ecosystem

Haskell has several excellent parsing libraries available. parsec
and attoparsec are perhaps the two most well known parser
combinator libraries in Haskell, but there is also megaparsec

and others. aeson and cassava are among the libraries designed
for parsing specific types of data ( JSON data and CSV data,
respectively).

For this chapter, we opted to use trifecta, as you’ve seen.
One reason for that decision is that trifecta has error messages
that are very easy to read and interpret, unlike some other
libraries. Also, trifecta does not seem likely to undergo major
changes in its fundamental design. Its design is somewhat
unusual and complex, but most of the things that make it
unusual will be irrelevant to you in this chapter. If you intend
to do a lot of parsing in production, you may need to get
comfortable using attoparsec, as it is particularly known for
very speedy parsing; you will see some attoparsec (and aeson)
later in the chapter.
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The design of trifecta has evolved such that the API4 is split
across two libraries, parsers5 and trifecta. The reason for this
is that the trifecta package itself provides the concrete im-
plementation of the trifecta parser as well as trifecta-specific
functionality, but the parsers API is a collection of typeclasses
that abstract over different kinds of things parsers can do. The
Text.Trifecta module handles exporting what you need to get
started from each package, so this information is mostly so
you know where to look if you need to start spelunking.

Typeclasses of parsers

As we noted above, trifecta relies on the parsers library for
certain typeclasses. These typeclasses abstract over common
kinds of things parsers do. We’re only going to note a few
things here that we’ll be seeing in the chapter so that you have
a sense of their provenance.

Note that the following is a discussion of code provided for
you by the parsers library, you do not need to type this in!

1. The typeclass Parsing has Alternative as a superclass. We’ll
talk more about Alternative in a bit. The Parsing typeclass

4API stands for application programming interface. When we write software that
relies on libraries or makes requests to a service such as Twitter — basically, software
that relies on other software — we rely on a set of defined functions. The API is that set
of functions that we use to interface with that software without having to write those
functions or worry too much about their source code. When you look at a library on
Hackage, (unless you click to view the source code), you’re looking at the API of that
library.

5http://hackage.haskell.org/package/parsers

http://hackage.haskell.org/package/parsers
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provides for functionality needed to describe parsers in-
dependent of input type. A minimal complete instance of
this typeclass defines the following functions: try, (<?>),
and notFollowedBy. Let’s start with try:

-- Text.Parser.Combinators

class Alternative m => Parsing m where

try :: m a -> m a

This takes a parser thatmay consume input and, on failure,
goes back to where it started and fails if we didn’t consume
input.

It also gives us the function notFollowedBy which does not
consume input but allows us to match on keywords by
matching on a string of characters that is not followed by
some thing we do not want to match:

notFollowedBy :: Show a => m a -> m ()

-- > noAlpha = notFollowedBy alphaNum

-- > keywordLet =

-- try $ string "let" <* noAlpha

2. The Parsing typeclass also includes unexpected which is
used to emit an error on an unexpected token, as we saw
earlier, and eof. The eof function only succeeds at the end
of input:
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eof :: m ()

-- > eof =

-- notFollowedBy anyChar

-- <?> "end of input"

We’ll be seeing more of this one in upcoming sections.

3. The library also defines the typeclass CharParsing, which
has Parsing as a superclass. This handles parsing individ-
ual characters.

-- Text.Parser.Char

class Parsing m => CharParsing m where

We’ve already seen char from this class, but it also includes
these:

-- Parses any single character other

-- than the one provided. Returns

-- the character parsed.

notChar :: Char -> m Char

-- Parser succeeds for any character.

-- Returns the character parsed.

anyChar :: m Char
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-- Parses a sequence of characters, returns

-- the string parsed.

string :: String -> m String

-- Parses a sequence of characters

-- represented by a Text value,

-- returns the parsed Text fragment.

text :: Text -> m Text

The parsers library has much more than this, but for our
immediate purposes these will suffice. The important point is
that it defines for us some typeclasses and basic combinators
for common parsing tasks. We encourage you to explore the
documentation more on your own.

24.6 Alternative

Let’s say we had a parser for numbers and one for alphanu-
meric strings:

Prelude> import Text.Trifecta

Prelude> parseString (some letter) mempty "blah"

Success "blah"

Prelude> parseString integer mempty "123"

Success 123

What if we had a type that could be an Integer or a String?
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module AltParsing where

import Control.Applicative

import Text.Trifecta

type NumberOrString =

Either Integer String

a = "blah"

b = "123"

c = "123blah789"

parseNos :: Parser NumberOrString

parseNos =

(Left <$> integer)

<|> (Right <$> some letter)

main = do

let p f i =

parseString f mempty i

print $ p (some letter) a

print $ p integer b

print $ p parseNos a

print $ p parseNos b

print $ p (many parseNos) c

print $ p (some parseNos) c
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We can read <|> as being an or, or disjunction, of our two
parsers; many is zero or more and some is one or more.

Prelude> parseString (some integer) mempty "123"

Success [123]

Prelude> parseString (many integer) mempty "123"

Success [123]

Prelude> parseString (many integer) mempty ""

Success []

Prelude> parseString (some integer) mempty ""

Failure (interactive):1:1: error: unexpected

EOF, expected: integer

<EOF>

^

What we’re taking advantage of here with some, many, and
(<|>) is the Alternative typeclass:
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class Applicative f => Alternative f where

-- | The identity of '<|>'

empty :: f a

-- | An associative binary operation

(<|>) :: f a -> f a -> f a

-- | One or more.

some :: f a -> f [a]

some v = some_v

where

many_v = some_v <|> pure []

some_v = (fmap (:) v) <*> many_v

-- | Zero or more.

many :: f a -> f [a]

many v = many_v

where

many_v = some_v <|> pure []

some_v = (fmap (:) v) <*> many_v

If you use the :info command in the REPL after importing
Text.Trifecta or loading the above module, you’ll find some

and many are defined in GHC.Base because they come from this
typeclass rather than being specific to a particular parser or to
the parsers library, or even to this particular problem domain.
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What if we wanted to require that each value be separated
by newline? QuasiQuotes lets us have a multiline string without
the newline separators and use it as a single argument:

{-# LANGUAGE QuasiQuotes #-}

module AltParsing where

import Control.Applicative

import Text.RawString.QQ

import Text.Trifecta

type NumberOrString =

Either Integer String

eitherOr :: String

eitherOr = [r|

123

abc

456

def

|]
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QuasiQuotes

Above, the [r| is beginning a quasiquoted6 section, using the
quasiquoter named r. Note we had to enable the QuasiQuotes

language extension to use this syntax. At time of writing r is
defined in raw-strings-qq version 1.1 as follows:

r :: QuasiQuoter

r = QuasiQuoter {

-- Extracted from dead-simple-json.

quoteExp =

return . LitE . StringL

. normaliseNewlines,

-- error messages elided

quotePat =

\_ -> fail "some error message"

quoteType =

\_ -> fail "some error message"

quoteDec =

\_ -> fail "some error message"

The idea here is that this is a macro that lets us write ar-
bitrary text inside of the block that begins with [r| and ends

6 There’s a rather nice wiki page and tutorial example at: https://wiki.haskell.org/

Quasiquotation

https://wiki.haskell.org/Quasiquotation
https://wiki.haskell.org/Quasiquotation
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with |]. This specific quasiquoter exists to allow writing mul-
tiline strings without manual escaping. The quasiquoter is
generating the following for us:

"\n\

\123\n\

\abc\n\

\456\n\

\def\n"

Not as nice right? As it happens, if you want to see what
a quasiquoter or Template Haskell7 is generating at compile-
time, you can enable the -ddump-splices flag to see what it does.
Here’s an example using a minimal stub file:

7 https://wiki.haskell.org/Template_Haskell

https://wiki.haskell.org/Template_Haskell
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{-# LANGUAGE QuasiQuotes #-}

module Quasimodo where

import Text.RawString.QQ

eitherOr :: String

eitherOr = [r|

123

abc

456

def

|]

Then in GHCi we use the :set command to turn on the
splice dumping flag so we can see what the quasiquoter gener-
ated:

Prelude> :set -ddump-splices

Prelude> :l code/quasi.hs

[1 of 1] Compiling Quasimodo

code/quasi.hs:(8,12)-(12,2): Splicing expression

"\n\

\123\n\

\abc\n\

\456\n"
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======>

"\n\

\123\n\

\abc\n\

\456\n"

Right, so back to the parser we were going to write!

Return to Alternative

All right, we return now to our AltParsing module. We’re going
to use this fantastic function:

parseNos :: Parser NumberOrString

parseNos =

(Left <$> integer)

<|> (Right <$> some letter)

and rewrite main to apply that to the eitherOr value:

main = do

let p f i = parseString f mempty i

print $ p parseNos eitherOr

Note that we lifted Left and Right over their arguments.
This is because there is Parser structure between the (potential)
value obtained by running the parser and what the data con-
structor expects. A value of type Parser Char is a parser that
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will possibly produce a Char value if it is given an input that
doesn’t cause it to fail. The type of some letter is the following:

Prelude> import Text.Trifecta

Prelude> :t some letter

some letter :: CharParsing f => f [Char]

However, for our purposes we can say that the type is specif-
ically trifecta’s Parser type:

Prelude> let someLetter = some letter :: Parser [Char]

Prelude> let someLetter = some letter :: Parser String

If we try to mash a data constructor expecting a String and
our parser-of-string together like a kid playing with action
figures, we get a type error:

Prelude> data MyName = MyName String deriving Show

Prelude> MyName someLetter

Couldn't match type ‘Parser String’ with ‘[Char]’

Expected type: String

Actual type: Parser String

In the first argument of ‘MyName’, namely ‘someLetter’

In the expression: MyName someLetter

Unless we lift it over the Parser structure, since Parser is a
Functor!
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Prelude> :info Parser

{... content elided ...}

instance Monad Parser

instance Functor Parser

instance Applicative Parser

instance Monoid a => Monoid (Parser a)

instance Errable Parser

instance DeltaParsing Parser

instance TokenParsing Parser

instance Parsing Parser

instance CharParsing Parser

We should need an fmap right?

-- same deal

Prelude> :t MyName <$> someLetter

MyName <$> someLetter :: Parser MyName

Prelude> :t MyName `fmap` someLetter

MyName `fmap` someLetter :: Parser MyName

Then running either of them:

Prelude> parseString someLetter mempty "Chris"

Success "Chris"

Prelude> let mynameParser = MyName <$> someLetter

Prelude> parseString mynameParser mempty "Chris"
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Success (MyName "Chris")

Cool.
Back to our original code, which will spit out an error:

Prelude> main

Failure (interactive):1:1: error: expected: integer,

letter

It’s easier to see why if we look at the test string:

Prelude> eitherOr

"\n123\nabc\n456\ndef\n"

One way to fix this is to amend the quasiquoted string:

eitherOr :: String

eitherOr = [r|123

abc

456

def

|]

What if we wanted to permit a newline before attempting
to parse strings or integers?
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eitherOr :: String

eitherOr = [r|

123

abc

456

def

|]

parseNos :: Parser NumberOrString

parseNos =

skipMany (oneOf "\n")

>>

(Left <$> integer)

<|> (Right <$> some letter)

main = do

let p f i = parseString f mempty i

print $ p parseNos eitherOr

Prelude> main

Success (Left 123)

OK, but we’d like to keep parsing after each line. If we try
the obvious thing and use some to ask for one-or-more results,
we’ll get a somewhat mysterious error:
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Prelude> parseString (some parseNos) mempty eitherOr

Failure (interactive):6:1: error: unexpected

EOF, expected: integer, letter

<EOF>

^

The issue here is that while skipMany lets us skip zero or more
times, it means we started the next run of the parser before we
hit EOF. This means it expects us to match an integer or some
letters after having seen the newline character after “def”. We
can simply amend the input:

eitherOr :: String

eitherOr = [r|

123

abc

456

def|]

Our previous attempt will now work fine:

Prelude> parseString (some parseNos) mempty eitherOr

Success [Left 123,Right "abc",Left 456,Right "def"]

If we’re dissatisfied with simply changing the rules of the
game, there are a couple ways we can make our parser cope
with spurious terminal newlines. One is to add another skipMany
rule after we parse our value:
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parseNos :: Parser NumberOrString

parseNos = do

skipMany (oneOf "\n")

v <- (Left <$> integer)

<|> (Right <$> some letter)

skipMany (oneOf "\n")

return v

Another option is to keep the previous version of the parser
which skips a potential leading newline:

parseNos :: Parser NumberOrString

parseNos =

skipMany (oneOf "\n")

>>

(Left <$> integer)

<|> (Right <$> some letter)

But then tokenize it with the default token behavior:

Prelude> parseString (some (token parseNos)) mempty eitherOr

Success [Left 123,Right "abc",Left 456,Right "def"]

We’ll explain soon what this token stuff is about, but we
want to be a bit careful here as token parsers and character
parsers are different sorts of things. What applying token to
parseNos did for us here is make it optionally consume trailing
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whitespace we don’t care about, where whitespace includes
newline characters.

Exercise: Try Try

Make a parser, using the existing fraction parser plus a new dec-
imal parser, that can parse either decimals or fractions. You’ll
want to use <|> from Alternative to combine the…alternative
parsers. If you find this too difficult, write a parser that parses
straightforward integers or fractions. Make a datatype that
contains either an integer or a rational and use that datatype as
the result of the parser. Or use Either. Run free, grasshopper.

Hint: we’ve not explained it yet, but you may want to try
try.

24.7 Parsing configuration files

For our next examples, we’ll be using the INI8 configuration
file format, partly because it’s an informal standard so we can
play fast and loose for learning and experimentation purposes.
We’re also using INI because it’s relatively uncomplicated.

Here’s a teensy example of an INI config file:
8 INI is an informal standard for configuration files on some platforms. The name

comes from the file extension, .ini, short for “initialization.”
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; comment

[section]

host=wikipedia.org

alias=claw

The above contains a comment, which contributes noth-
ing to the data parsed out of the configuration file but which
may provide context to the settings being configured. It’s fol-
lowed by a section header named "section" which contains
two settings: one named "host" with the value "wikipedia.org",
another named "alias" with the value "claw".

We’ll begin this example with our pragmas, module decla-
ration, and imports:
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{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

module Data.Ini where

import Control.Applicative

import Data.ByteString (ByteString)

import Data.Char (isAlpha)

import Data.Map (Map)

import qualified Data.Map as M

import Data.Text (Text)

import qualified Data.Text.IO as TIO

import Test.Hspec

import Text.RawString.QQ

-- parsers 0.12.3, trifecta 1.5.2

import Text.Trifecta

OverloadedStrings and QuasiQuotes should be familiar by now.
When writing parsers in Haskell, it’s often easiest to work in

terms of smaller parsers that deal with a sub-problem of the
overall parsing problem you’re solving, then combine them
into the final parser. This isn’t a perfect recipe for understand-
ing your parser, but being able to compose them straightfor-
wardly like functions is pretty nifty. Let’s start by creating a
test input for an INI header, a datatype, and then the parser
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for it:

headerEx :: ByteString

headerEx = "[blah]"

-- "[blah]" -> Section "blah"

newtype Header =

Header String

deriving (Eq, Ord, Show)

parseBracketPair :: Parser a -> Parser a

parseBracketPair p =

char '[' *> p <* char ']'

-- these operators mean the brackets

-- will be parsed and then discarded

-- but the p will remain as our result

parseHeader :: Parser Header

parseHeader =

parseBracketPair (Header <$> some letter)

Here we’ve combined two parsers in order to parse a Header.
We can experiment with each of them in the REPL. First
we’ll examine the types of the some letter parser we passed to
parseBracketPair:
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Prelude> :t some letter

some letter :: CharParsing f => f [Char]

Prelude> :t Header <$> some letter

Header <$> some letter :: CharParsing f => f Header

Prelude> let slp = Header <$> some letter :: Parser Header

The first type is some parser that can understand characters
which will produce a String value if it succeeds. The second
type is the same, but produces a Header value instead of a String.
Parser types in Haskell almost always encode the possibility
of failure; we’ll cover how later in this chapter. The third type
gives us concrete Parser type from trifecta where there had
been the polymorphic type 𝑓 .

The letter function parses a single character, while some

letter parses one or more characters. We need to wrap the
Header constructor around that so that our result there — what-
ever lettersmight be inside the brackets, the 𝑝 of parseBracketPair
— will be labeled as the Header of the file in the final parse.

Next, assignmentEx is just some test input so we can begin
kicking around our parser. The type synonyms are to make
the types more readable as well. Nothing too special here:
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assignmentEx :: ByteString

assignmentEx = "woot=1"

type Name = String

type Value = String

type Assignments = Map Name Value

parseAssignment :: Parser (Name, Value)

parseAssignment = do

name <- some letter

_ <- char '='

val <- some (noneOf "\n")

skipEOL -- important!

return (name, val)

-- | Skip end of line and

-- whitespace beyond.

skipEOL :: Parser ()

skipEOL = skipMany (oneOf "\n")

Let us explain parseAssignment step by step. For parsing the
initial key or name of an assignment, we parse one or more
letters:

name <- some letter
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Then we parse and throw away the “=” used to separate keys
and values:

_ <- char '='

Then we parse one or more characters as long as they aren’t
a newline. This is so letters, numbers, and whitespace are
permitted:

val <- some (noneOf "\n")

We skip “end-of-line” until we stop getting newline charac-
ters:

skipEOL -- important!

This is so we can delineate the end of assignments and
parse more than one assignment in a straightforward manner.
Consider an alternative variant of this same parser that doesn’t
have skipEOL:

parseAssignment' :: Parser (Name, Value)

parseAssignment' = do

name <- some letter

_ <- char '='

val <- some (noneOf "\n")

return (name, val)
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Then trying out this variant of the parser:

Prelude> let spa' = some parseAssignment'

Prelude> let s = "key=value\nblah=123"

Prelude> parseString spa' mempty s

Success [("key","value")]

Pity. Can’t parse the second assignment. But the first ver-
sion that includes the skipEOL should work:

Prelude> let spa = some parseAssignment

Prelude> parseString spa mempty s

Success [("key","value"),("blah","123")]

Prelude> let d = "key=value\n\n\ntest=data"

Prelude> parseString spa mempty d

Success [("key","value"),("test","data")]

We have to skip the one-or-more newline characters sepa-
rating the first and second assignment in order for the rerun
of the assignment parser to begin successfully parsing the
letters that make up the key of the second assignment. Happy-
making, right?

We finish things off for parseAssignment by tupling name and
value together and re-embedding the result in the Parser type:

return (name, val)
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Then for dealing with INI comments, that is, skipping them
in the parser and discarding the data:

commentEx :: ByteString

commentEx =

"; last modified 1 April\

\ 2001 by John Doe"

commentEx' :: ByteString

commentEx' =

"; blah\n; woot\n \n;hah"

-- | Skip comments starting at the

-- beginning of the line.

skipComments :: Parser ()

skipComments =

skipMany (do _ <- char ';' <|> char '#'

skipMany (noneOf "\n")

skipEOL)

We made a couple of comment examples for testing the
parser. Note that comments can begin with # or ;.

Next, we need section parsing. We’ll make some data for
testing that out, as we did with comments above. This is also
where we’ll put that QuasiQuotes extension to use, allowing us
to make multiline strings nicer to write:
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sectionEx :: ByteString

sectionEx =

"; ignore me\n[states]\nChris=Texas"

sectionEx' :: ByteString

sectionEx' = [r|

; ignore me

[states]

Chris=Texas

|]

sectionEx'' :: ByteString

sectionEx'' = [r|

; comment

[section]

host=wikipedia.org

alias=claw

[whatisit]

red=intoothandclaw

|]

Then we get into the section parsing:
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data Section =

Section Header Assignments

deriving (Eq, Show)

newtype Config =

Config (Map Header Assignments)

deriving (Eq, Show)

skipWhitespace :: Parser ()

skipWhitespace =

skipMany (char ' ' <|> char '\n')

parseSection :: Parser Section

parseSection = do

skipWhitespace

skipComments

h <- parseHeader

skipEOL

assignments <- some parseAssignment

return $

Section h (M.fromList assignments)

Above, we defined datatypes for a section and an entire INI
config. You’ll notice that parseSection skips both whitespace
and comments now. And it returns the parsed section with
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the header (that’s the ℎ) and a map of assignments:

*Data.Ini> parseByteString parseSection mempty sectionEx

Success (Section (Header "states")

(fromList [("Chris","Texas")]))

So far, so good. Next, let’s roll the sections up into a Map

that keys section data by section name, with the values being
further more Maps of assignment names mapped to their
values. We use foldr to aggregate the list of sections into a
single Map value:

rollup :: Section

-> Map Header Assignments

-> Map Header Assignments

rollup (Section h a) m =

M.insert h a m

parseIni :: Parser Config

parseIni = do

sections <- some parseSection

let mapOfSections =

foldr rollup M.empty sections

return (Config mapOfSections)

After you load this code into your REPL, try running:
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parseByteString parseIni mempty sectionEx

and comparing it to the output of:

parseByteString parseSection mempty sectionEx

that you saw above.
Now we’ll put these things together. We’re interested in

whether our parsers do what they should do rather than pars-
ing an actual INI file, so we’ll have main run some hspec tests.
We’ll use a helper function, maybeSuccess, as part of the tests:

maybeSuccess :: Result a -> Maybe a

maybeSuccess (Success a) = Just a

maybeSuccess _ = Nothing

main :: IO ()

main = hspec $ do

describe "Assignment Parsing" $

it "can parse a simple assignment" $ do

let m = parseByteString

parseAssignment

mempty assignmentEx

r' = maybeSuccess m

print m

r' `shouldBe` Just ("woot", "1")
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describe "Header Parsing" $

it "can parse a simple header" $ do

let m =

parseByteString parseHeader

mempty headerEx

r' = maybeSuccess m

print m

r' `shouldBe` Just (Header "blah")

describe "Comment parsing" $

it "Skips comment before header" $ do

let p = skipComments >> parseHeader

i = "; woot\n[blah]"

m = parseByteString p mempty i

r' = maybeSuccess m

print m

r' `shouldBe` Just (Header "blah")
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describe "Section parsing" $

it "can parse a simple section" $ do

let m = parseByteString parseSection

mempty sectionEx

r' = maybeSuccess m

states =

M.fromList [("Chris", "Texas")]

expected' =

Just (Section (Header "states")

states)

print m

r' `shouldBe` expected'
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describe "INI parsing" $

it "Can parse multiple sections" $ do

let m =

parseByteString parseIni

mempty sectionEx''

r' = maybeSuccess m

sectionValues =

M.fromList

[ ("alias", "claw")

, ("host", "wikipedia.org")]

whatisitValues =

M.fromList

[("red", "intoothandclaw")]

expected' =

Just (Config

(M.fromList

[ (Header "section"

, sectionValues)

, (Header "whatisit"

, whatisitValues)]))

print m

r' `shouldBe` expected'

We leave it to you to run this and experiment with it.
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24.8 Character and token parsers

All right, that was a lot of code. Let’s all step back and take a
deep breath.

You probably have some idea by now of what we mean by
tokenizing, but the time has come for more detail. Tokeniza-
tion is a handy parsing tactic, so it’s baked into some of the
library functions we’ve been using. It’s worth diving in and
exploring what it means.

Traditionally, parsing has been done in two stages, lexing
and parsing. Characters from a stream will be fed into the
lexer, which will then emit tokens on demand to the parser
until it has no more to emit.9 The parser then structures the
stream of tokens into a tree, commonly called an “abstract
syntax tree” or AST:

-- hand-wavy types: Stream because

-- production-grade parsers in Haskell

-- won't use [] for performance reasons

lexer :: Stream Char -> Stream Token

parser :: Stream Token -> AST

Lexers are simpler, typically performing parses that don’t
require looking ahead into the input stream by more than

9Lexers and tokenizers are similar, separating a stream of text into tokens based on
indicators such as whitespace or newlines; lexers often attach some context to the tokens,
where tokenizers typically do not.
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one character or token at a time. Lexers are at times called
tokenizers. Lexing is sometimes done with regular expres-
sions, but a parsing library in Haskell will usually intend that
you do your lexing and parsing with the same API. Lexers (or
tokenizers) and parsers have a lot in common, being primarily
differentiated by their purpose and class of grammar.10

Insert tokens to play

Let’s play around with some things to see what tokenizing
does for us:

Prelude> parseString (some digit) mempty "123 456"

Success "123"

Prelude> parseString (some (some digit)) mempty "123 456"

Success ["123"]

Prelude> parseString (some integer) mempty "123"

Success [123]

Prelude> parseString (some integer) mempty "123456"

Success [123456]

The problem here is that if we wanted to recognize 123 and
456 as independent strings, we need some kind of separator.
Now we can go ahead and do that manually, but the tokenizers

10 Formal grammars — rules for generating strings in a formal language — are placed
in a hierarchy, often called the Chomsky hierarchy after the linguist Noam Chomsky.
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in parsers can do it for you too, also handling a mixture of
whitespace and newlines:

Prelude> parseString (some integer) mempty "123 456"

Success [123,456]

Prelude> parseString (some integer) mempty "123\n\n 456"

Success [123,456]

Or even space and newlines interleaved:

Prelude> parseString (some integer) mempty "123 \n \n 456"

Success [123,456]

But simply applying token to digit doesn’t do what you
think:

Prelude> let s = "123 \n \n 456"

Prelude> parseString (token (some digit)) mempty s

Success "123"

Prelude> parseString (token (some (token digit))) mempty s

Success "123456"

Prelude> parseString (some decimal) mempty s

Success [123]

Prelude> parseString (some (token decimal)) mempty s

Success [123,456]

Compare that to the integer function, which is already a
tokenizer:
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Prelude> parseString (some integer) mempty "1\n2\n 3\n"

Success [1,2,3]

We can write a tokenizing parser like some integer like this:

p' :: Parser [Integer]

p' = some $ do

i <- token (some digit)

return (read i)

And we can compare the output of that to the output of
applying token to digit:

Prelude> let s = "1\n2\n3"

Prelude> parseString p' mempty s

Success [1,2,3]

Prelude> parseString (token (some digit)) mempty s

Success "1"

Prelude> parseString (some (token (some digit))) mempty s

Success ["1","2","3"]

You’ll want to think carefully about the scope at which
you’re tokenizing as well:

Prelude> let tknWhole = token $ char 'a' >> char 'b'

Prelude> parseString tknWhole mempty "a b"

Failure (interactive):1:2: error: expected: "b"
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a b<EOF>

^

Prelude> parseString tknWhole mempty "ab ab"

Success 'b'

Prelude> parseString (some tknWhole) mempty "ab ab"

Success "bb"

If we wanted that first example to work, we need to tokenize
the parse of the first character, not the whole a-then-b parse:

Prelude> let tknCharA = (token (char 'a')) >> char 'b'

Prelude> parseString tknCharA mempty "a b"

Success 'b'

Prelude> parseString (some tknCharA) mempty "a ba b"

Success "bb"

Prelude> parseString (some tknCharA) mempty "a b a b"

Success "b"

The last example stops at the first 𝑎 𝑏 parse because the
parser doesn’t say anything about a space after 𝑏 and the tok-
enization behavior only applies to what followed 𝑎. We can
tokenize both character parsers though:

Prelude> let tknBoth = token (char 'a') >> token (char 'b')

Prelude> parseString (some tknBoth) mempty "a b a b"

Success "bb"
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A mild warning: don’t get too tokenization happy. Try to
make it coarse-grained and selective. Overuse of tokenizing
parsers ormixturewith character parsers canmake your parser
slow or hard to understand. Use your judgment. Keep in mind
that tokenization isn’t exclusively about whitespace; it’s about
ignoring noise so you can focus on the structures you are
parsing.

24.9 Polymorphic parsers

If we take the time to assert polymorphic types for our parsers,
we can get parsers that can be run using attoparsec, trifecta,
parsec, or anything else that has implemented the necessary
typeclasses. Let’s give it a whirl, shall we?

{-# LANGUAGE OverloadedStrings #-}

module Text.Fractions where

import Control.Applicative

import Data.Attoparsec.Text (parseOnly)

import Data.Ratio ((%))

import Data.String (IsString)

import Text.Trifecta
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badFraction :: IsString s => s

badFraction = "1/0"

alsoBad :: IsString s => s

alsoBad = "10"

shouldWork :: IsString s => s

shouldWork = "1/2"

shouldAlsoWork :: IsString s => s

shouldAlsoWork = "2/1"

parseFraction :: (Monad m, TokenParsing m)

=> m Rational

parseFraction = do

numerator <- decimal

_ <- char '/'

denominator <- decimal

case denominator of

0 -> fail "Denominator cannot be zero"

_ -> return (numerator % denominator)

We’ve left some typeclass-constrained polymorphism in
our type signatures for flexibility. Our main will run both
attoparsec and trifecta versions for us so we can compare the
outputs directly:



CHAPTER 24. PARSER COMBINATORS 1467

main :: IO ()

main = do

-- parseOnly is Attoparsec

let attoP = parseOnly parseFraction

print $ attoP badFraction

print $ attoP shouldWork

print $ attoP shouldAlsoWork

print $ attoP alsoBad

-- parseString is Trifecta

let p f i =

parseString f mempty i

print $ p parseFraction badFraction

print $ p parseFraction shouldWork

print $ p parseFraction shouldAlsoWork

print $ p parseFraction alsoBad

Prelude> main

Left "Failed reading: Denominator cannot be zero"

Right (1 % 2)

Right (2 % 1)

Left "\"/\": not enough input"

Failure (interactive):1:4: error: Denominator

cannot be zero, expected: digit

1/0<EOF>
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^

Success (1 % 2)

Success (2 % 1)

Failure (interactive):1:3: error: unexpected

EOF, expected: "/", digit

10<EOF>

^

See what we meant earlier about the error messages?

It’s not perfect and could bite you

While the polymorphic parser combinators in the parsers li-
brary enable you to write parsers which can then be run with
various parsing libraries, this doesn’t free you of understand-
ing the particularities of each. In general, trifecta tries to
match parsec’s behaviors in most respects, the latter of which
is more extensively documented.

Failure and backtracking

Returning to our cursor model of parsers, backtracking is
returning the cursor to where it was before a failing parser
consumed input. In some cases, it can be a little confusing
to debug the same error in two different runs of the same
parser doing essentially the same things in trifecta, parsec,
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and attoparsec, but the errors themselves might be different.
Let’s consider an example of this.

{-# LANGUAGE OverloadedStrings #-}

We use OverloadedStrings so that we can use string literals as
if they were ByteStrings when testing attoparsec:

module BT where

import Control.Applicative

import qualified Data.Attoparsec.ByteString

as A

import Data.Attoparsec.ByteString

(parseOnly)

import Data.ByteString (ByteString)

import Text.Trifecta hiding (parseTest)

import Text.Parsec (Parsec, parseTest)

trifP :: Show a

=> Parser a

-> String -> IO ()

trifP p i =

print $ parseString p mempty i

Helper function to run a trifecta parser and print the result:
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parsecP :: (Show a)

=> Parsec String () a

-> String -> IO ()

parsecP = parseTest

Helper function to run a parsec parser and print the result:

attoP :: Show a

=> A.Parser a

-> ByteString -> IO ()

attoP p i =

print $ parseOnly p i

Helper function for attoparsec — same deal as before:

nobackParse :: (Monad f, CharParsing f)

=> f Char

nobackParse =

(char '1' >> char '2')

<|> char '3'

Here’s our first parser. It attempts to parse '1' followed by
'2' or '3'. This parser does not backtrack:
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tryParse :: (Monad f, CharParsing f)

=> f Char

tryParse =

try (char '1' >> char '2')

<|> char '3'

This parser has similar behavior to the previous one, except
it backtracks if the first parse fails. Backtracking means that the
input cursor returns to where it was before the failed parser
consumed input.

main :: IO ()

main = do

-- trifecta

trifP nobackParse "13"

trifP tryParse "13"

-- parsec

parsecP nobackParse "13"

parsecP tryParse "13"

-- attoparsec

attoP nobackParse "13"

attoP tryParse "13"

The error messages you get from each parser are going
to vary a bit. This isn’t because they’re wildly different, but
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is mostly due to how they attribute errors. You should see
something like:

Prelude> main

Failure (interactive):1:2:

error: expected: "2"

13<EOF>

^

Failure (interactive):1:1: error:

expected: "3"

13<EOF>

^

parse error at (line 1, column 2):

unexpected "3"

expecting "2"

parse error at (line 1, column 2):

unexpected "3"

expecting "2"

Left "\"3\": satisfyElem"

Left "\"3\": satisfyElem"

Conversely, if you try the valid inputs "12" and "3" with
nobackParse and each of the three parsers, you should see all of
them succeed.

This can be confusing. When you add backtracking to a
parser, error attribution can become more complicated at
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times. To avoid this, consider using the <?> operator to anno-
tate parse rules any time you use try.11

tryAnnot :: (Monad f, CharParsing f)

=> f Char

tryAnnot =

(try (char '1' >> char '2')

<?> "Tried 12")

<|> (char '3' <?> "Tried 3")

Then running this in the REPL:

Prelude> trifP tryAnnot "13"

Failure (interactive):1:1: error: expected: Tried 12,

Tried 3

13<EOF>

^

Now the error will list the parses it attempted before it failed.
You’ll want to make the annotations more informative than
what we demonstrated in your own parsers.

11Parsec “try a <|> b” considered harmful; Edward Z. Yang
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24.10 Marshalling from an AST to a
datatype

Fair warning: This section relies on a little more background
knowledge from you than previous sections have. If you are
not a person who already has some programming experience,
the following may not seem terribly useful to you, and there
may be some unfamiliar terminology and concepts.

The act of parsing, in a sense, is a means of necking down
the cardinality of our inputs to the set of things our programs
have a sensible answer for. It’s unlikely you can do some-
thing meaningful and domain-specific when your input type
is String, Text, or ByteString. However, if you can parse one of
those types into something structured, rejecting bad inputs,
then you might be able to write a proper program. One of the
mistakes programmers make in writing programs handling
text is in allowing their data to stay in the textual format, doing
mind-bending backflips to cope with the unstructured nature
of textual inputs.

In some cases, the act of parsing isn’t enough. You might
have a sort of AST or structured representation of what was
parsed, but from there, you might expect that AST or repre-
sentation to take a particular form. This means we want to
narrow the cardinality and get even more specific about how
our data looks. Often this second step is called unmarshalling
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our data. Similarly, marshalling is the act of preparing data
for serialization, whether via memory alone (foreign function
interface boundary) or over a network interface.

The whole idea here is that you have two pipelines for your
data:

Text -> Structure -> Meaning

-- parse -> unmarshall

Meaning -> Structure -> Text

-- marshall -> serialize

There isn’t only one way to accomplish this, but we’ll show
you a commonly used library and how it has this two-stage
pipeline in the API.

Marshalling and unmarshalling JSON data

aeson is presently the most popular JSON12 library in Haskell.
One of the things that’ll confuse programmers coming to
Haskell from Python, Ruby, Clojure, JavaScript, or similar
languages, is that there’s usually no unmarshall/marshall step.
Instead, the raw JSON AST will be represented directly as an
untyped blob of data. Users of typed languages are more likely

12 JSON stands for JavaScript Object Notation. JSON is, for better or worse, a very
common open-standard data format used to transmit data, especially between browsers
and servers. As such, dealing with JSON is a common programming task, so you might
as well get used to it now.
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to have encountered something like this. We’ll be using aeson

0.10.0.0 for the following examples.

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

module Marshalling where

import Data.Aeson

import Data.ByteString.Lazy (ByteString)

import Text.RawString.QQ

sectionJson :: ByteString

sectionJson = [r|

{ "section": {"host": "wikipedia.org"},

"whatisit": {"red": "intoothandclaw"}

}

|]

Note thatwe’re saying the type of sectionJson is a lazy ByteString.
If you get strict and lazy ByteString types mixed up you’ll get
errors.

Provided a strict ByteString when a lazy one was expected:

<interactive>:10:8:

Couldn't match expected type
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Data.ByteString.Lazy.Internal.ByteString

with actual type ByteString

NB:

Data.ByteString.Lazy.Internal.ByteString

is defined in

Data.ByteString.Lazy.Internal

ByteString

is defined in

Data.ByteString.Internal

The actual type is what we provided; the expected type is
what the types wanted. The NB: in the type error stands for
nota bene. Either we used the wrong code (so expected type
needs to change), or we provided the wrong values (actual
type, our types/values, need to change). You can reproduce
this error by making the following mistake in the marshalling
module:

-- Change the import of the ByteString

-- type constructor from:

import Data.ByteString.Lazy (ByteString)

-- Into:

import Data.ByteString (ByteString)
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Provided a lazy ByteString when a strict one was expected:

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

module WantedStrict where

import Data.Aeson

import Data.ByteString.Lazy (ByteString)

import Text.RawString.QQ

sectionJson :: ByteString

sectionJson = [r|

{ "section": {"host": "wikipedia.org"},

"whatisit": {"red": "intoothandclaw"}

}

|]

main = do

let blah :: Maybe Value

blah = decodeStrict sectionJson

print blah

You’ll get the following type error if you load that up:

code/wantedStrictGotLazy.hs:19:27:
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Couldn't match expected type

‘Data.ByteString.Internal.ByteString’

with actual type ‘ByteString’

NB:

‘Data.ByteString.Internal.ByteString’

is defined in ‘Data.ByteString.Internal’

‘ByteString’ is defined in ‘Data.ByteString.Lazy.Internal’

In the first argument of ‘decodeStrict’,

namely ‘sectionJson’

In the expression: decodeStrict sectionJson

The more useful information is in the NB: or nota bene,
where the internal modules are mentioned. The key is to re-
member actual type means “your code”, expected type means
“what they expected,” and that the ByteString module that
doesn’t have Lazy in the name is the strict version. We can
modify our code a bit to get nicer type errors:
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-- replace the (ByteString)

-- import with these

import qualified Data.ByteString as BS

import qualified Data.ByteString.Lazy

as LBS

-- edit the type sig for this one

sectionJson :: LBS.ByteString

Then we’ll get the following type error instead:

Couldn't match expected type ‘BS.ByteString’

with actual type ‘LBS.ByteString’

NB: ‘BS.ByteString’ is defined in

‘Data.ByteString.Internal’

‘LBS.ByteString’ is defined in

‘Data.ByteString.Lazy.Internal’

In the first argument of ‘decodeStrict’,

namely ‘sectionJson’

In the expression: decodeStrict sectionJson

This is helpful because we have both versions available as
qualified modules. You may not always be so fortunate and
will need to remember which is which.
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Back to the JSON

Let’s get back to handling JSON. The most common functions
for using aeson are the following:

Prelude> import Data.Aeson

Prelude> :t encode

encode :: ToJSON a => a -> LBS.ByteString

Prelude> :t decode

decode :: FromJSON a => LBS.ByteString -> Maybe a

These functions are sort of eliding the intermediate step
that passes through the Value type in aeson, which is a datatype
JSON AST — “sort of,” because you can decode the raw JSON
data into a Value anyway:

Prelude> decode sectionJson :: Maybe Value

Just (Object (fromList [

("whatisit",

Object (fromList [("red",

String "intoothandclaw")])),

("section",

Object (fromList [("host",

String "wikipedia.org")]))]))

Not, uh, super pretty. We’ll figure out something nicer in
a moment. Also do not forget to assert a type, or the type-
defaulting in GHCi will do silly things:
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Prelude> decode sectionJson

Nothing

Now what if we do want a nicer representation for this JSON
noise? Well, let’s define our datatypes and see if we can decode
the JSON into our type:
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{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

module Marshalling where

import Control.Applicative

import Data.Aeson

import Data.ByteString.Lazy (ByteString)

import qualified Data.Text as T

import Data.Text (Text)

import Text.RawString.QQ

sectionJson :: ByteString

sectionJson = [r|

{ "section": {"host": "wikipedia.org"},

"whatisit": {"red": "intoothandclaw"}

}

|]

data TestData =

TestData {

section :: Host

, what :: Color

} deriving (Eq, Show)

newtype Host =

Host String

deriving (Eq, Show)

type Annotation = String

data Color =

Red Annotation

| Blue Annotation

| Yellow Annotation

deriving (Eq, Show)

main = do

let d :: Maybe TestData

d = decode sectionJson

print d
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This will in fact net you a type error complaining about
there not being an instance of FromJSON for TestData. Which is
true! GHC has no idea how to unmarshall JSON data (in the
form of a Value) into a TestData value. Let’s add an instance so
it knows how:
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instance FromJSON TestData where

parseJSON (Object v) =

TestData <$> v .: "section"

<*> v .: "whatisit"

parseJSON _ =

fail "Expected an object for TestData"

instance FromJSON Host where

parseJSON (Object v) =

Host <$> v .: "host"

parseJSON _ =

fail "Expected an object for Host"

instance FromJSON Color where

parseJSON (Object v) =

(Red <$> v .: "red")

<|> (Blue <$> v .: "blue")

<|> (Yellow <$> v .: "yellow")

parseJSON _ =

fail "Expected an object for Color"

Also note that you can use quasiquotes to avoid having to
escape quotation marks in the REPL as well:

Prelude> :set -XOverloadedStrings

Prelude> decode "{\"blue\": \"123\"}" :: Maybe Color
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Just (Blue "123")

Prelude> :set -XQuasiQuotes

Prelude> decode [r|{"red": "123"}|] :: Maybe Color

Just (Red "123")

To relate what we just did back to the relationship between
parsing and marshalling, the idea is that our FromJSON instance
is accepting the Value type and ToJSON instances generate the
Value type, closing the following loop:

-- FromJSON

ByteString -> Value -> yourType

-- parse -> unmarshall

-- ToJSON

yourType -> Value -> ByteString

-- marshall -> serialize

The definition of Value at time of writing is the following:
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-- | A JSON value represented

-- as a Haskell value.

data Value = Object !Object

| Array !Array

| String !Text

| Number !Scientific

| Bool !Bool

| Null

deriving (Eq, Read, Show,

Typeable, Data)

What if we want to unmarshall something that could be a
Number or a String?

data NumberOrString =

Numba Integer

| Stringy Text

deriving (Eq, Show)

instance FromJSON NumberOrString where

parseJSON (Number i) = return $ Numba i

parseJSON (String s) = return $ Stringy s

parseJSON _ =

fail "NumberOrString must\

\ be number or string"
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This won’t quite work at first. The trouble is that JSON (and
JavaScript, as it happens) only has one numeric type and that
type is a IEEE-754 float. JSON (and JavaScript, terrifyingly)
have no integral types or integers, so aeson has to pick one
representation that works for all possible JSON numbers. The
most precise way to do that is the Scientific type which is an
arbitrarily precise numerical type (you may remember this
from way back in Chapter 4, Basic Datatypes). So we need to
convert from a Scientific to an Integer:

import Control.Applicative

import Data.Aeson

import Data.ByteString.Lazy (ByteString)

import qualified Data.Text as T

import Data.Text (Text)

import Text.RawString.QQ

import Data.Scientific (floatingOrInteger)

data NumberOrString =

Numba Integer

| Stringy Text

deriving (Eq, Show)
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instance FromJSON NumberOrString where

parseJSON (Number i) =

case floatingOrInteger i of

(Left _) ->

fail "Must be integral number"

(Right integer) ->

return $ Numba integer

parseJSON (String s) = return $ Stringy s

parseJSON _ =

fail "NumberOrString must\

\ be number or string"

-- so it knows what we want to parse

dec :: ByteString

-> Maybe NumberOrString

dec = decode

eitherDec :: ByteString

-> Either String NumberOrString

eitherDec = eitherDecode

main = do

print $ dec "blah"

Now let’s give it a whirl:
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Prelude> main

Nothing

Butwhat happened? We can rewrite the code to use eitherDec

to get a slightly more helpful type error:

main = do

print $ dec "blah"

print $ eitherDec "blah"

Then reloading the code and trying again in the REPL:

Prelude> main

Nothing

Left "Error in $: Failed reading:

not a valid json value"

By that means, we are able to get more informative errors
from aeson. If we wanted some examples that worked, we
could try things like the following:

Prelude> dec "123"

Just (Numba 123)

Prelude> dec "\"blah\""

Just (Stringy "blah")

It’s worth getting comfortable with aeson even if you don’t
plan to work with much JSON because many serialization
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libraries in Haskell follow a similar API pattern. Play with the
example and see how you need to change the type of dec to
be able to parse a list of numbers or strings.

24.11 Chapter Exercises

1. Write a parser for semantic versions as defined by http:

//semver.org/. After making a working parser, write an Ord

instance for the SemVer type that obeys the specification
outlined on the SemVer website.

http://semver.org/
http://semver.org/
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-- Relevant to precedence/ordering,

-- cannot sort numbers like strings.

data NumberOrString =

NOSS String

| NOSI Integer

type Major = Integer

type Minor = Integer

type Patch = Integer

type Release = [NumberOrString]

type Metadata = [NumberOrString]

data SemVer =

SemVer Major Minor Patch Release Metadata

parseSemVer :: Parser SemVer

parseSemVer = undefined

Expected results:

Prelude> parseString parseSemVer mempty "2.1.1"

Success (SemVer 2 1 1 [] [])

Prelude> parseString parseSemVer mempty "1.0.0-x.7.z.92"

Success (SemVer 1 0 0

[NOSS "x", NOSI 7, NOSS "z", NOSI 92] [])
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Prelude> SemVer 2 1 1 [] [] > SemVer 2 1 0 [] []

True

2. Write a parser for positive integer values. Don’t reuse the
pre-existing digit or integer functions, but you can use
the rest of the libraries we’ve shown you so far. You are
not expected to write a parsing library from scratch.

parseDigit :: Parser Char

parseDigit = undefined

base10Integer :: Parser Integer

base10Integer = undefined

Expected results:

Prelude> parseString parseDigit mempty "123"

Success '1'

Prelude> parseString parseDigit mempty "abc"

Failure (interactive):1:1: error: expected: parseDigit

abc<EOF>

^

Prelude> parseString base10Integer mempty "123abc"

Success 123

Prelude> parseString base10Integer mempty "abc"

Failure (interactive):1:1: error: expected: integer
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abc<EOF>

^

Hint: Assume you’re parsing base-10 numbers. Use arith-
metic as a cheap “accumulator” for your final number as
you parse each digit left-to-right.

3. Extend the parser you wrote to handle negative and pos-
itive integers. Try writing a new parser in terms of the
one you already have to do this.

Prelude> parseString base10Integer' mempty "-123abc"

Success (-123)

4. Write a parser for US/Canada phone numbers with vary-
ing formats.
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-- aka area code

type NumberingPlanArea = Int

type Exchange = Int

type LineNumber = Int

data PhoneNumber =

PhoneNumber NumberingPlanArea

Exchange LineNumber

deriving (Eq, Show)

parsePhone :: Parser PhoneNumber

parsePhone = undefined

With the following behavior:

Prelude> parseString parsePhone mempty "123-456-7890"

Success (PhoneNumber 123 456 7890)

Prelude> parseString parsePhone mempty "1234567890"

Success (PhoneNumber 123 456 7890)

Prelude> parseString parsePhone mempty "(123) 456-7890"

Success (PhoneNumber 123 456 7890)

Prelude> parseString parsePhone mempty "1-123-456-7890"

Success (PhoneNumber 123 456 7890)

Cf. Wikipedia’s article on “National conventions for writ-
ing telephone numbers”. You are encouraged to adapt the
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exercise to your locality’s conventions if they are not part
of the NNAP scheme.

5. Write a parser for a log file format and sum the time
spent in each activity. Additionally, provide an alterna-
tive aggregation of the data that provides average time
spent per activity per day. The format supports the use
of comments which your parser will have to ignore. The
# characters followed by a date mark the beginning of a
particular day.

Log format example:

-- wheee a comment

# 2025-02-05

08:00 Breakfast

09:00 Sanitizing moisture collector

11:00 Exercising in high-grav gym

12:00 Lunch

13:00 Programming

17:00 Commuting home in rover

17:30 R&R

19:00 Dinner

21:00 Shower

21:15 Read

22:00 Sleep
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# 2025-02-07 -- dates not nececessarily sequential

08:00 Breakfast -- should I try skippin bfast?

09:00 Bumped head, passed out

13:36 Wake up, headache

13:37 Go to medbay

13:40 Patch self up

13:45 Commute home for rest

14:15 Read

21:00 Dinner

21:15 Read

22:00 Sleep

You are to derive a reasonable datatype for represent-
ing this data yourself. For bonus points, make this bi-
directional bymaking a Show representation for the datatype
which matches the format you are parsing. Then write a
generator for this data using QuickCheck’s Gen and see if
you can break your parser with QuickCheck.

6. Write a parser for IPv4 addresses.

import Data.Word

data IPAddress =

IPAddress Word32

deriving (Eq, Ord, Show)



CHAPTER 24. PARSER COMBINATORS 1498

A 32-bit word is a 32-bit unsigned int. Lowest value is 0
rather than being capable of representing negative num-
bers, but the highest possible value in the same number
of bits is twice as high. Note:

Prelude> import Data.Int

Prelude> import Data.Word

Prelude> maxBound :: Int32

2147483647

Prelude> maxBound :: Word32

4294967295

Prelude> div 4294967295 2147483647

2

Word32 is an appropriate and compact way to represent
IPv4 addresses. You are expected to figure out not only
how to parse the typical IP address format, but how IP
addresses work numerically insofar as is required to write
a working parser. This will require using a search engine
unless you have an appropriate book on internet network-
ing handy.

Example IPv4 addresses and their decimal representa-
tions:

172.16.254.1 -> 2886794753

204.120.0.15 -> 3430416399
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7. Same as before, but IPv6.

import Data.Word

data IPAddress6 =

IPAddress6 Word64 Word64

deriving (Eq, Ord, Show)

Example IPv6 addresses and their decimal representa-
tions:

0:0:0:0:0:ffff:ac10:fe01 -> 281473568538113

0:0:0:0:0:ffff:cc78:f -> 281474112159759

FE80:0000:0000:0000:0202:B3FF:FE1E:8329 ->

338288524927261089654163772891438416681

2001:DB8::8:800:200C:417A ->

42540766411282592856906245548098208122

One of the trickier parts about IPv6 will be full vs. col-
lapsed addresses and the abbrevations. See this Q&A
thread13 about IPv6 abbreviations for more.

Ensure you can parse abbreviated variations of the earlier
examples like:

13 http://answers.google.com/answers/threadview/id/770645.html

http://answers.google.com/answers/threadview/id/770645.html
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FE80::0202:B3FF:FE1E:8329

2001:DB8::8:800:200C:417A

8. Remove the derived Show instances from the IPAddress/IPAd-
dress6 types, and write your own Show instance for each
type that renders in the typical textual format appropriate
to each.

9. Write a function that converts between IPAddress and
IPAddress6.

10. Write a parser for the DOT language14 that Graphviz uses
to express graphs in plain-text.

We suggest you look at the AST datatype in Haphviz15 for
ideas on how to represent the graph in a Haskell datatype.
If you’re feeling especially robust, you can try using fgl16.

24.12 Definitions

1. A parser parses.

You read the chapter right?

2. A parser combinator combines two or more parsers to
produce a new parser. Good examples of this are things

14http://www.graphviz.org/doc/info/lang.html
15http://hackage.haskell.org/package/haphviz
16http://hackage.haskell.org/package/fgl

http://www.graphviz.org/doc/info/lang.html
http://hackage.haskell.org/package/haphviz
http://hackage.haskell.org/package/fgl
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like using <|> from Alternative to produce a new parser
from the disjunction of two parser arguments to <|>. Or
some. Or many. Or mappend. Or (>>).

3. Marshalling is transforming a potentially nonlinear rep-
resentation of data in memory into a format that can be
stored on disk or transmitted over a network socket. Go-
ing in the opposite direction is called unmarshalling. Cf.
serialization and deserialization.

4. A token(izer) converts text, usually a stream of characters,
into more meaningful or “chunkier” structures such as
words, sentences, or symbols. The lines and words func-
tions you’ve used earlier in this book are like very unso-
phisticated tokenizers.

5. Lexer — see tokenizer.

24.13 Follow-up resources

1. Parsec try a-or-b considered harmful; Edward Z. Yang

2. Code case study: parsing a binary data format; Real World
Haskell

3. The Parsec parsing library; Real World Haskell
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4. An introduction to parsing text in Haskell with Parsec;
James Wilson;
http://unbui.lt/#!/post/haskell-parsec-basics

5. Parsing CSS with Parsec; Jakub Arnold

6. Parsec: A practical parser library; Daan Leijen, Erik Mei-
jer;
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.

5200

7. How to Replace Failure by a List of Successes; Philip
Wadler;
http://dl.acm.org/citation.cfm?id=5288

8. How to Replace Failure by a Heap of Successes; Edward
Kmett

9. Two kinds of backtracking; Samuel Gélineau (gelisam);
http://gelisam.blogspot.ca/2015/09/two-kinds-of-backtracking.

html

10. LL and LR in Context: Why Parsing Tools Are Hard; Josh
Haberman
http://blog.reverberate.org/2013/09/ll-and-lr-in-context-why-parsing-tools.

html

11. Parsing Techniques, a practical guide; second edition;
Grune & Jacobs

http://unbui.lt/#!/post/haskell-parsec-basics
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.5200
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.5200
http://dl.acm.org/citation.cfm?id=5288
http://gelisam.blogspot.ca/2015/09/two-kinds-of-backtracking.html
http://gelisam.blogspot.ca/2015/09/two-kinds-of-backtracking.html
http://blog.reverberate.org/2013/09/ll-and-lr-in-context-why-parsing-tools.html
http://blog.reverberate.org/2013/09/ll-and-lr-in-context-why-parsing-tools.html
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12. Parsing JSON with Aeson; School of Haskell

13. aeson; 24 days of Hackage; Oliver Charles



Chapter 25

Composing types

The last thing one
discovers in composing a
work is what to put first.

T. S. Eliot

1504
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25.1 Composing types

This chapter and the next are about monad transformers, both
the principles behind them and the practicalities of using them.
For many programmers, monad transformers are indistin-
guishable from magick, so we want to approach them from
both angles and demonstrate that they are both comprehen-
sible via their types and practical in normal programming.

Functors and applicatives are both closed under composi-
tion: this means that you can compose two functors (or two
applicatives) and return another functor (or applicative, as the
case may be). This is not true of monads, however; when you
compose two monads, the result is not necessarily another
monad. We will see this soon.

However, there are times when composing monads is desir-
able. Different monads allow us to work with different effects.
Composing monads allows you to build up computations with
multiple effects. By stacking, for example, a Maybe monad with
an IO, you can be performing IO actions while also building up
computations that have a possibility of failure, handled by the
Maybe monad.

A monad transformer is a variant of an ordinary type that
takes an additional type argument which is assumed to have a
Monad instance. For example, MaybeT is the transformer variant
of the Maybe type. The transformer variant of a type gives us
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a Monad instance that binds over both bits of structure. This
allows us to compose monads and combine their effects. Get-
ting comfortable with monad transformers is important to
becoming proficient in Haskell, so we’re going to take it pretty
slowly and go step by step. You won’t necessarily want to start
out early on defining a bunch of transformer stacks yourself,
but familiarity with them will help a great deal in using other
people’s libraries.

In this chapter, we will

• demonstrate why composing two monads does not give
you another monad;

• examine the Identity and Compose types;

• manipulate types until we can make monads compose;

• meet some common monad transformers;

• work through an Identity crisis.

25.2 Common functions as types

We’ll start in a place that may seem a little strange and point-
less at first, with newtypes that correspond to some very basic
functions. We can construct types that are like those func-
tions because we have types that can take arguments — that
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is, type constructors. In particular, we’ll be using types that
correspond to id and (.).

You’ve seen some of the types we’re going to use in the
following sections before, but we’ll be putting them to some
novel uses. The idea here is to use these datatypes as helpers in
order to demonstrate the problems with composing monads,
and we’ll see how these type constructors can also serve as
monad transformers, because a monad transformer is a type
constructor that takes a monad as an argument.

Identity is boring

You’ve seen this type in previous chapters, sometimes as a
datatype and sometimes as a newtype. We’ll construct the
type differently this time, as a newtype with a helper function
of the sort we saw in Reader and State:

newtype Identity a =

Identity { runIdentity :: a }

We’ll be using the newtype in this chapter because the
monad transformer version, IdentityT, is usually written as
a newtype. The use of the prefixes run or get indicates that
these accessor functions are means of extracting the underly-
ing value from the type. There is no real difference in meaning
between run and get. You’ll see these accessor functions often,
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particularly with utility types like Identity or transformer vari-
ants reusing an original type.

Anote aboutnewtypes Whilemonad transformer types could
be written using the data keyword, they are most commonly
written as newtypes, and we’ll be sticking with that pattern
here. They are only newtyped to avoid unnecessary overhead,
as newtypes, as we recall, have an underlying representation
identical to the type they contain. The important thing is that
monad transformers are never sum or product types; they are
always a means of wrapping one extra layer of (monadic) struc-
ture around a type, so there is never a reason they couldn’t
be newtypes. Haskellers have a general tendency to avoid
adding additional runtime overhead if they can, so if they can
newtype it, they most often will.

Another thing we want to notice about Identity is the sim-
ilarity of the kind of our Identity type to the type of the id

function, although the fidelity of the comparison isn’t perfect
given the limitations of type-level computation in Haskell:

Prelude> :t id

id :: a -> a

Prelude> :k Identity

Identity :: * -> *

The kind signature of the type resembles the type signature
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of the function, which we hope isn’t too much of a surprise.
Fine, so far — not much new here. Yet.

Compose

We mentioned above that we can also construct a datatype
that corresponds to function composition.

Here is the Compose type. It should look to you much like
function composition, but in this case, the 𝑓 and 𝑔 represent
type constructors, not term-level functions:

newtype Compose f g a =

Compose { getCompose :: f (g a) }

deriving (Eq, Show)

So, we have a type constructor that takes three type argu-
ments: 𝑓 and 𝑔 must be type constructors themselves, while 𝑎
will be a concrete type (consider the relationship between type
constructors and term-level functions on the one hand, and
values and type constants on the other). As we did above, let’s
look at the kind of Compose — note the kinds of the arguments
to the type constructor:

Compose :: (* -> *) -> (* -> *) -> * -> *

Does that remind you of anything?

(.) :: (b -> c) -> (a -> b) -> a -> c
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So, what does that look like in practice? Something like this:

Prelude> Compose [Just 1, Nothing]

Compose {getCompose = [Just 1,Nothing]}

Prelude> let xs = [Just (1::Int), Nothing]

Prelude> :t Compose xs

Compose [Just (1 :: Int), Nothing]

:: Compose [] Maybe Int

Given the above value, the type variables get bound accord-
ingly:

Compose [Just (1 :: Int), Nothing]

Compose { getCompose :: f (g a) }

Compose [] Maybe Int

f ~ []

g ~ Maybe

a ~ Int

We have one bit of structure wrapped around another, then
a value type (the 𝑎) because the whole thing still has to be kind
* in the end.

We’ve made the point in previous chapters that type con-
structors are functions. Type constructors can take other type
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constructors as arguments, too, just as functions can take other
functions as arguments. This is what allows us to compose
types.

25.3 Two little functors sittin’ in a tree,
L-I-F-T-I-N-G

Let’s start with composing functors, using the types we saw
above. We know we can lift over Identity; you’ve seen this
Functor before:

instance Functor Identity where

fmap f (Identity a) = Identity (f a)

Identity here gives us a sort of vanilla Functor that doesn’t do
anything interesting but captures the essence of what Functor is
about. The function gets lifted into the context of the Identity

type and then mapped over the 𝑎 value.
It turns out we can get a Functor instance for Compose, too, if

we ask that the 𝑓 and 𝑔 both have Functor instances:

instance (Functor f, Functor g) =>

Functor (Compose f g) where

fmap f (Compose fga) =

Compose $ (fmap . fmap) f fga
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Now the 𝑓 and the 𝑔 both have to be part of the structure
that we’re lifting over, so they both have to be Functors them-
selves. We need to be able to jump over both those layers in
order to apply to the value that’s ultimately inside. We have
to fmap twice to get to that value inside because of the layered
structures.

To return to the example we used above, we have this type:

newtype Compose f g a =

Compose { getCompose :: f (g a) }

deriving (Eq, Show)

Compose { getCompose :: f (g a) }

Compose [] Maybe Int

And if we use our Functor instance, we can apply a function
to the Int value wrapped up in all that structure:

Prelude> let xs = [Just 1, Nothing]

Prelude> Compose xs

Compose {getCompose = [Just 1,Nothing]}

Prelude> fmap (+1) (Compose xs)

Compose {getCompose = [Just 2,Nothing]}
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We can generalize this to different amounts of structure,
such as with one less bit of structure. You may remember this
from a previous chapter:

newtype One f a =

One (f a)

deriving (Eq, Show)

instance Functor f =>

Functor (One f) where

fmap f (One fa) = One $ fmap f fa

Or one more layer of structure than Compose:

newtype Three f g h a =

Three (f (g (h a)))

deriving (Eq, Show)

instance (Functor f, Functor g, Functor h)

=> Functor (Three f g h) where

fmap f (Three fgha) =

Three $ (fmap . fmap . fmap) f fgha

As with the anonymous product (,) and the anonymous
sum Either, the Compose type allows us to express arbitrarily
nested types:
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v :: Compose []

Maybe

(Compose Maybe [] Integer)

v = Compose [Just (Compose $ Just [1])]

The way to think about this is that the composition of two
datatypes that have a Functor instance gives rise to a new Functor

instance. You’ll sometimes see people refer to this as functors
being closed under composition which means that when you
compose two Functors, you get another Functor.

25.4 Twinplicative

You probably guessed this was our next step in Compose-landia.
Applicatives, it turns out, are also closed under composition.
We can compose two types that have Applicative instances and
get a new Applicative instance. But you’re going to write it.
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GOTCHA! Exercise time

-- instance types provided as

-- they may help.

{-# LANGUAGE InstanceSigs #-}

instance (Applicative f, Applicative g)

=> Applicative (Compose f g) where

pure :: a -> Compose f g a

pure = undefined

(<*>) :: Compose f g (a -> b)

-> Compose f g a

-> Compose f g b

(Compose f) <*> (Compose a) = undefined

We mentioned in an earlier chapter that Applicative is a
weaker algebra than Monad, and that sometimes there are bene-
fits to preferring an Applicative when you don’t need the full
power of the Monad. This is one of those benefits. To compose
Applicatives, you don’t need to do the legwork that Monads re-
quire in order to compose and still have a Monad. Oh, yes, right
— we still haven’t quite made it to monads composing, but
we’re about to.
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25.5 Twonad?

What about Monad? There’s no problem composing two arbi-
trary datatypes that have Monad instances. We saw this already
when we used Compose with Maybe and list, which both have Monad

instances defined. However, the result of having done so does
not give you a Monad.

The issue comes down to a lack of information. Both types
Compose is working with are polymorphic, so when you try to
write bind for the Monad, you’re trying to combine two poly-
morphic binds into a single combined bind. This, it turns out,
is not possible:

{-# LANGUAGE InstanceSigs #-}

-- impossible.

instance (Monad f, Monad g)

=> Monad (Compose f g) where

return = pure

(>>=) :: Compose f g a

-> (a -> Compose f g b)

-> Compose f g b

(>>=) = ???
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These are the types we’re trying to combine, because 𝑓 and
𝑔 are necessarily both monads with their own Monad instances:

Monad f => f a -> (a -> f b) -> f b

Monad g => g a -> (a -> g b) -> g b

From those, we are trying to write this bind:

(Monad f, Monad g)

=> f (g a) -> (a -> f (g b)) -> f (g b)

Or formulated differently:

(Monad f, Monad g)

=> f (g (f (g a))) -> f (g a)

And this is not possible. There’s not a good way to join that
final 𝑓 and 𝑔. It’s a great exercise to try to make it work, because
the barriers you’ll run into are instructive in their own right.
You can also read Composing monads1 by Mark P. Jones and
Luc Duponcheel to see why it’s not possible.

No free burrito lunches

Since getting another Monad given the composition of two arbi-
trary types that have a Monad instance is impossible, what can
we do to get a Monad instance for combinations of types? The

1 http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


CHAPTER 25. E PLURIBUS MONAD 1518

answer is, monad transformers. We’ll get to that after a little
break for some exercises.

25.6 Exercises: Compose Instances

1. Write the Compose Foldable instance.

The foldMap = undefined bit is a hint to make it easier and
look more like what you’ve seen already.

instance (Foldable f, Foldable g) =>

Foldable (Compose f g) where

foldMap = undefined

2. Write the Compose Traversable instance.

instance (Traversable f, Traversable g) =>

Traversable (Compose f g) where

traverse = undefined

And now for something completely different

This has nothing to do with anything else in this chapter, but
it makes for a fun exercise.
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class Bifunctor p where

{-# MINIMAL bimap | first, second #-}

bimap :: (a -> b)

-> (c -> d)

-> p a c

-> p b d

bimap f g = first f . second g

first :: (a -> b) -> p a c -> p b c

first f = bimap f id

second :: (b -> c) -> p a b -> p a c

second = bimap id

It’s a functor that can map over two type arguments instead
of one. Write Bifunctor instances for the following types:

1. The less you think, the easier it’ll be.

data Deux a b = Deux a b

2. data Const a b = Const a

3. data Drei a b c = Drei a b c

4. data SuperDrei a b c = SuperDrei a b
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5. data SemiDrei a b c = SemiDrei a

6. data Quadriceps a b c d =

Quadzzz a b c d

7. data Either a b =

Left a

| Right b

25.7 Monad transformers

We’ve now seen what the problem with Monad is: you can put
two together but you don’t get a new Monad instance out of it.
When we need to get a new Monad instance, we need a monad
transformer. It’s not magic; the answer is in the types.

We said above that a monad transformer is a type construc-
tor that takes a Monad as an argument and returns a Monad as
a result. We also noted that the fundamental problem with
composing two monads lies in the impossibility of joining two
unknown monads. In order to make that join happen, we need
to reduce the polymorphism and get concrete information
about one of the monads that we’re working with. The other
monad remains polymorphic as a variable type argument to
our type constructor. Transformers help you make a monad
out of multiple (2, 3, 4...) types that each have a Monad instance



CHAPTER 25. E PLURIBUS MONAD 1521

by wrapping around existing monads that provide each bit of
wanted functionality.

The types are tricky here, so we’re going to be walking
through writing monad transformers very slowly. Parts of
what follows may seem tedious, so work through it as slowly
or quickly as you need to.

Monadic stacking

Applicative allows us to apply functions of more than one ar-
gument in the presence of functorial structure, enabling us to
cope with this transition:

-- from this:

fmap (+1) (Just 1)

-- to this:

(,,)

<$> Just 1

<*> Just "lol"

<*> Just [1, 2]

Sometimes we want a (>>=) which can address more than
one Monad at once. You’ll often see this in applications that have
multiple things going on, such as a web app where combining
Reader and IO is common. You want IO so you can perform ef-
fectful actions like talking to a database and also Reader for the
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database connection(s) and/or HTTP request context. Some-
times you may even want multiple Readers (app-specific data
vs. what the framework provides by default), although usually
there’s a way to add only the data you want to a product type
of a single Reader.

So the question becomes, how do we get one big bind over
a type like the following?

IO (Reader String [a])

-- where the Monad instances involved

-- are that of IO, Reader, and []

Doing it badly

We could make one-off types for each combination, but this
will get tiresome quickly. For example:

newtype MaybeIO a =

MaybeIO { runMaybeIO :: IO (Maybe a) }

newtype MaybeList a =

MaybeList { runMaybeList :: [Maybe a] }

We don’t need to resort to this; we can get a Monad for two
types, as long as we know what one of the types is. Transform-
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ers are a means of avoiding making a one-off Monad for every
possible combination of types.

25.8 IdentityT

Much as Identity helps show off the most basic essence of
Functor, Applicative, and Monad, IdentityT is going to help you
begin to understand monad transformers. Using this type that
doesn’t have a lot of interesting stuff going on with it will help
keep us focused on the types and the important fundamentals
of transformers. What we see here will be applicable to other
transformers as well, but types like Maybe and list introduce
other possibilities (failure cases, empty lists) that complicate
things a bit.

First, let’s compare the Identity type you’ve seen up to this
point and our new IdentityT datatype:

-- Plain old Identity. 'a' can be

-- something with more structure,

-- but it's not required and Identity

-- won't know anything about it.

newtype Identity a =

Identity { runIdentity :: a }

deriving (Eq, Show)
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-- The identity monad transformer, serving

-- only to to specify that additional

-- structure should exist.

newtype IdentityT f a =

IdentityT { runIdentityT :: f a }

deriving (Eq, Show)

What changed here is that we added an extra type argument.
Thenwewant Functor instances for both Identity and IdentityT:

instance Functor Identity where

fmap f (Identity a) = Identity (f a)

instance (Functor m)

=> Functor (IdentityT m) where

fmap f (IdentityT fa) =

IdentityT (fmap f fa)

The IdentityT instance here should look similar to the Functor

instance for the One datatype above — the 𝑓𝑎 argument is the
value inside the IdentityT with the (untouchable) structure
wrapped around it. All we know about that additional layer of
structure wrapped around the 𝑎 value is that it is a Functor.

We also want Applicative instances for each:
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instance Applicative Identity where

pure = Identity

(Identity f) <*> (Identity a) =

Identity (f a)

instance (Applicative m)

=> Applicative (IdentityT m) where

pure x = IdentityT (pure x)

(IdentityT fab) <*> (IdentityT fa) =

IdentityT (fab <*> fa)

The Identity instance should be familiar. In the IdentityT

instance, the 𝑓𝑎𝑏 variable represents the f (a -> b) that is the
first argument of (<*>). Since this can rely on the Applicative

instance for 𝑚 to handle that bit, this instance defines how
to applicatively apply in the presence of that outer IdentityT

layer.
Finally, we want some Monad instances:
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instance Monad Identity where

return = pure

(Identity a) >>= f = f a

instance (Monad m)

=> Monad (IdentityT m) where

return = pure

(IdentityT ma) >>= f =

IdentityT $ ma >>= runIdentityT . f

The Monad instance is tricky, so we’re going to do a few things
to break it down. Keep in mind that Monad is where we have to
really use concrete type information from IdentityT in order
to make the types fit.

The bind breakdown

We’ll start with a closer look at the instance as written above:
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instance (Monad m)

=> Monad (IdentityT m) where

return = pure

(IdentityT ma) >>= f =

-- [ 1 ] [2] [3]

IdentityT $ ma

-- [8] [4]

>>= runIdentityT . f

-- [5] [7] [6]

1. First we pattern match or unpack the m a value of IdentityT
m a via the data constructor. Doing this has the type
IdentityT m a -> m a and the type of ma is m a. This nomen-
clature doesn’t mean anything beyond mnemonic signal-
ing, but it is intended to be helpful.

2. The type of the bind we are implementing is the follow-
ing:

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

This is the instance we are defining.

3. The function we’re binding over is IdentityT m a. It has
the following type:
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(a -> IdentityT m b)

4. Here ma is the same one we unpacked out of the IdentityT

data constructor and has the type m a. Removed from its
IdentityT context, this is now the m a that this bind takes
as its first argument.

5. This is a different bind! The first bind is the bind we’re
trying to implement; this bind is its definition or imple-
mentation. We’re now using the Monad we asked for in the
instance declaration with the constraint Monad m =>. This
will have the type:

(>>=) :: m a -> (a -> m b) -> m b

This is with respect to the 𝑚 in the type IdentityT m a, not
the class of Monad instances in general. In other words,
since we have already unpacked the IdentityT bit and, in
a sense, gotten it out of the way, this bind will be the bind
for the type 𝑚 in the type IdentityT m. We don’t know
what Monad that is yet, and we don’t need to; since it has
the Monad typeclass constraint on that variable, we know it
already has a Monad instance defined for it, and this second
bind will be the bind defined for that type. All we’re doing
here is defining how to use that bind in the presence of
the additional IdentityT structure.
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6. This is the same 𝑓 which was an argument to the Monad

instance we are defining, of type:

(a -> IdentityT m b)

7. We need runIdentityT because 𝑓 returns IdentityT m b, but
the >>= for the Monad m => has the type m a -> (a -> m b)

-> m b. It’ll end up trying to join m (IdentityT m b), which
won’t work because m and IdentityT m are not the same
type. We use runIdentityT to unpack the value. Doing
this has the type IdentityT m b -> m b and the composition
runIdentityT . f in this context has the type a -> m b. You
can use undefined in GHCi to demonstrate this for yourself:

Prelude> :{

*Main| let f :: (a -> IdentityT m b)

*Main| f = undefined

*Main| :}

Prelude> :t f

f :: a -> IdentityT m b

Prelude> :t runIdentityT

runIdentityT :: IdentityT f a -> f a

Prelude> :t (runIdentityT . f)

(runIdentityT . f) :: a1 -> f a
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OK, the type variables don’t have the same name, but you
can see how a1 -> f a and a -> m b are the same type.

8. To satisfy the type of the outer bind we are implementing
for the Monad of IdentityT m, which expects a final result
of the type IdentityT m b, we must take the m b which the
expression ma >>= runIdentityT . f returns and repack it
in IdentityT. Note:

Prelude> :t IdentityT

IdentityT :: f a -> IdentityT f a

Prelude> :t runIdentityT

runIdentityT :: IdentityT f a -> f a

Now we have a bind we can use with IdentityT and some
other Monad — in this example, a list:

Prelude> let sumR = return . (+1)

Prelude> IdentityT [1, 2, 3] >>= sumR

IdentityT {runIdentityT = [2,3,4]}

Implementing the bind, step by step

Now we’re going to backtrack and go through implementing
that bind step by step. The goal here is to demystify what
we’ve done and enable you to write your own instances for
whatever monad transformer you might need to implement
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yourself. We’ll go ahead and start back at the beginning, but
with InstanceSigs turned on so we can see the type:

{-# LANGUAGE InstanceSigs #-}

instance (Monad m)

=> Monad (IdentityT m) where

return = pure

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

undefined

Let’s leave the undefined as our final return expression, then
use let bindings and contradiction to see the types of our
attempts at making a Monad instance. We’re going to use the
bottom value (undefined) to defer the parts of the proof we’re
obligated to produce until we’re ready. First, let’s get a let

binding in place and see it load, even if the code doesn’t work:
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(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb = ma >>= f

in undefined

We’re using 𝑎𝑖𝑚𝑏 as a mnemonic for the parts of the whole
thing that we’re trying to implement.

Here we get an error:

Couldn't match type ‘m’ with ‘IdentityT m’

That type error isn’t the most helpful thing in the world.
It’s hard to know what’s wrong from that. So, we’ll poke at this
a bit in order to get a more helpful type error.

First, we’ll do something we know should work. We’ll use
fmap instead. Because that will typecheck (but not give us the
same result as (>>=)), we need to do something to give the
compiler a chance to contradict us and tell us the real type.
We force that type error by asserting a fully polymorphic type
for 𝑎𝑖𝑚𝑏:
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(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb :: a

aimb = fmap f ma

in undefined

The type we asserted for 𝑎𝑖𝑚𝑏 is impossible; we’ve said it
could be every type, and it can’t. The only thing that can have
that type is bottom, as bottom inhabits all types.

Conveniently, GHC will let us know what 𝑎𝑖𝑚𝑏 is:

Couldn't match expected type ‘a1’

with actual type ‘m (IdentityT m b)’

With the current implementation, 𝑎𝑖𝑚𝑏 has the type m (IdentityT

m b). Now we can see the real problem: there is an IdentityT

layer in between the two bits of 𝑚 that we need to join in order
to have a monad.

Here’s a breakdown:

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

The pattern match on IdentityT comes from having lifted
over it:
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(a -> IdentityT m b)

The problem is, we used >>= over

m a

-- and got

m (IdentityT m b)

It doesn’t typecheck because (>>=) merges structure of the
same type after lifting (remember: it’s fmap composed with
join under the hood). Had our type been m (m b) after binding
f over ma it would’ve worked fine. As it is, we need to find a
way to get the two bits of 𝑚 together without an intervening
IdentityT layer.

We’re going to continue with having separate fmap and join

instead of using (>>=) because it makes the step-wise manip-
ulation of structure easier to see. How do we get rid of the
IdentityT in the middle of the two 𝑚 structures? Well, we know
𝑚 is a Monad, which means it’s also a Functor. So, we can use
runIdentityT to get rid of the IdentityT structure in the middle
of the stack of types:
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-- Change m (IdentityT m b)

-- into m (m b)

-- Note:

runIdentityT :: IdentityT f a -> f a

fmap runIdentityT :: Functor f

=> f (IdentityT f1 a) -> f (f1 a)

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb :: a

aimb = fmap runIdentityT (fmap f ma)

in undefined

And when we load this code, we get an encouraging type
error:

Couldn't match expected type ‘a1’

with actual type ‘m (m b)’

It’s telling us we have achieved the type m (m b), so now we
know how to get where we want. The 𝑎1 here is the 𝑎 we had
assigned to 𝑎𝑖𝑚𝑏, but it’s telling us that our actual type is not
what we asserted but this other type. Thus we have discovered
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what our actual type is, which gives us a clue about how to fix
it.

We’ll use join from Control.Monad to merge the nested 𝑚
structure:

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb :: a

aimb =

join (fmap runIdentityT (fmap f ma))

in undefined

And when we load it, the compiler tells us we finally have
an m b that we can return:

Couldn't match expected type ‘a1’

with actual type ‘m b’

In fact, before we begin cleaning up our code, we can verify
this is the case real quick:
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(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb =

join (fmap runIdentityT (fmap f ma))

in aimb

We removed the type declaration for aimb and also changed
the in undefined. But we know that 𝑎𝑖𝑚𝑏 has the actual type m

b, so this won’t work. Why? If we take a look at the type error:

Couldn't match type ‘m’ with ‘IdentityT m’

The (>>=) we are implementing has a final result of type
IdentityT m b, so the type of 𝑎𝑖𝑚𝑏 doesn’t match it yet. We need
to wrap m b in IdentityT to make it typecheck:
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-- Remember:

IdentityT :: f a -> IdentityT f a

instance (Monad m)

=> Monad (IdentityT m) where

return = pure

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

let aimb =

join (fmap runIdentityT

(fmap f ma))

in IdentityT aimb

This should compile. We rewrap m b back in the IdentityT

type and we should be good to go.

Refactoring

Now that we have something that works, let’s refactor. We’d
like to improve our implementation of (>>=). Taking things
one step at a time is usually more successful than trying to
rewrite all at once, especially once you have a baseline version
that you know should work. How should we improve this line?
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IdentityT $

join (fmap runIdentityT (fmap f ma))

Well, one of the Functor laws tells us something about fmapping
twice:

-- Functor law:

fmap (f . g) == fmap f . fmap g

Indeed! So we can change that line to the following and it
should be identical:

IdentityT $

join (fmap (runIdentityT . f) ma)

Now it seems suspicious that we’re fmapping and also us-
ing join on the result of having fmapped the two functions we
composed. Isn’t join composed with fmap just (>>=)?

x >>= f = join (fmap f x)

Accordingly, we can change our Monad instance to the fol-
lowing:
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instance (Monad m)

=> Monad (IdentityT m) where

return = pure

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

IdentityT $ ma >>= runIdentityT . f

And that should work still! We have a type constructor now
(IdentityT) that takes a monad as an argument and returns a
monad as a result.

This implementation can be written other ways. In the
transformers library, for example, it’s written like this:

m >>= k =

IdentityT $ runIdentityT . k

=<< runIdentityT m

Take a moment and work out for yourself how that is func-
tionally equivalent to our implementation.

The essential extra of monad transformers

It may not seem like it, but the IdentityT monad transformer
captures the essence of transformers generally. We only em-
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barked on this quest because we couldn’t be guaranteed a Monad

instance given the composition of two types. Given that, we
know having Functor, Applicative, and Monad at our disposal isn’t
enough to make that new Monad instance. So what was novel in
the following code?

(>>=) :: IdentityT m a

-> (a -> IdentityT m b)

-> IdentityT m b

(IdentityT ma) >>= f =

IdentityT $ ma >>= runIdentityT . f

It wasn’t the pattern match on IdentityT; we get that from
the Functor anyway:

-- Not this

(IdentityT ma) ...

It wasn’t the ability to (>>=) functions over the ma value of
type 𝑚𝑎, we get that from the Monad constraint on 𝑚 anyway.

-- Not this

... ma >>= ...

We needed to know one of the types concretely so that
we could use runIdentityT (essentially fmapping a fold of the
IdentityT structure) and then repack the value in IdentityT:
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-- We need to know IdentityT

-- concretely to do this

IdentityT .. runIdentityT ...

As you’ll recall, until we used runIdentityT we couldn’t get
the types to fit because IdentityT was wedged in the middle of
two bits of 𝑚. It turns out to be impossible to fix that using
only Functor, Applicative, and Monad. This is an example of why
we can’t make a Monad instance for the Compose type, but we
can make a transformer type like IdentityT where we leverage
information specific to the type and combine it with any other
type that has a Monad instance. In general, in order to make the
types fit, we’ll need some way to fold and reconstruct the type
we have concrete information for.

25.9 Finding a pattern

Transformers are bearers of single-type concrete information
that let you create ever-bigger monads in a sense. Nesting
such as

(Monad m) => m (m a)

is addressed by join already. We use transformers when
we want a >>= operation over 𝑓 and 𝑔 of different types (but
both have Monad instances). You have to create new types called
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monad transformers and write Monad instances for those types
to have a way of dealing with the extra structure generated.

The general pattern is this: You want to compose two poly-
morphic types, 𝑓 and 𝑔, that each have a Monad instance. But
you’ll end up with this pattern:

f (g (f b))

Monad’s bind can’t join those types, not with that intervening
𝑔. So you need to get to this:

f (f b)

You won’t be able to unless you have some way of folding
the 𝑔 in the middle. You can’t do that with Monad. The essence
of Monad is join, but here you have only one bit of 𝑔 structure,
not g (g ...), so that’s not enough. The straightforward thing
to do is to make 𝑔 concrete. With concrete type information
for the inner bit of structure, we can fold out the 𝑔 and get on
with it. The good news is that transformers don’t require 𝑓 be
concrete; 𝑓 can remain polymorphic so long as it has a Monad

instance, so we only write a transformer once for each type.
We can see this pattern with IdentityT as well. You may

recall this step in our process of writing IdentityT’s Monad:

(IdentityT ma) >>= f =

let aimb :: m (IdentityT m b)

aimb = fmap f ma
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We have something that’ll typecheck, but it’s not quite in
the shape we would like. Of course, the underlying type once
we throw away the IdentityT data constructor is m (m b)which’ll
suit us just fine, but we have to fold out the IdentityT before we
can use the join from Monad m => m. That leads us to the next
step:

let aimb :: m (m b)

aimb = fmap runIdentityT (fmap f ma)

Now we finally have something we can join because we lifted
the record accessor for IdentityT over the 𝑚! Since IdentityT

is so simple, the record accessor is sufficient to fold up the
structure. From there the following transitions become easy:

m (m b) -> m b -> IdentityT m b

The final type is what our definition of (>>=) for IdentityT

must result in.
The basic pattern that many monad transformers are en-

abling us to cope with is the following type transitions, where
𝑚 is the polymorphic, outer structure and 𝑇 is some concrete
type the transformer is for. For example, in the above, 𝑇 would
be IdentityT.
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m (T m b)

-> m (m b)

-> m b

-> T m b

Don’t consider this a hard and fast rule for what types you’ll
encounter in implementing transformers, but rather some
intuition for why transformers are necessary to begin with.
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Monad transformers

I do not say such things
except insofar as I
consider this to permit
some transformation of
things. Everything I do, I
do in order that it may be
of use.

Michel Foucault
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26.1 Monad transformers

The last chapter demonstrated why we need monad transform-
ers and the basic type manipulation that’s going on to make
that bit of magick happen. Monad transformers are important
in a lot of everyday Haskell code, though, so we want to dive
deeper and make sure we have a good understanding of how
to use them in practice. Even after you know how to write all
the transformer instances, managing stacks of transformers
in an application can be tricky. The goal of this chapter is to
get comfortable with it.

In this chapter, we will

• work through more monad transformer types and in-
stances;

• look at the ordering and wrapping of monad transformer
stacks;

• lift, lift, lift, and lift some more.

26.2 MaybeT

In the last chapter, we worked through an extended break-
down of the IdentityT transformer. IdentityT is, as you might
imagine, not the most useful of the monad transformers, al-
though it is not without practical applications (more on this
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later). As we’ve seen, though, the Maybe Monad can be useful, and
so it is that the tranformer variant, MaybeT, finds its way into
the pantheon of important transformers.

The MaybeT transformer is a bit more complex than IdentityT.
If you worked through all the exercises of the previous chapter,
then this section will not be too surprising, because this will
rely on things you’ve seen with IdentityT and the Compose type
already. However, to ensure that transformers are thoroughly
demystified for you, it’s worth working through them carefully.

We begin with the newtype for our transformer:

newtype MaybeT m a =

MaybeT { runMaybeT :: m (Maybe a) }

The structure of our MaybeT type and the Compose type are
similar so we can reuse the basic patterns of the Compose type
for the Functor and Applicative instances:
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-- Remember the Functor for Compose?

instance (Functor f, Functor g)

=> Functor (Compose f g) where

fmap f (Compose fga) =

Compose $ (fmap . fmap) f fga

-- compare to the instance for MaybeT

instance (Functor m)

=> Functor (MaybeT m) where

fmap f (MaybeT ma) =

MaybeT $ (fmap . fmap) f ma

We don’t need to do anything different for the Functor in-
stance, because transformers are needed for the Monad, not the
Functor.

Spoiler alert!

If you haven’t yet written the Applicative instance for Compose

from the previous chapter, you may want to stop right here.
We’ll start with what might seem like an obvious way to

write the MaybeT Applicative and find out why it doesn’t work.
This does not compile:
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instance (Applicative m)

=> Applicative (MaybeT m) where

pure x = MaybeT (pure (pure x))

(MaybeT fab) <*> (MaybeT mma) =

MaybeT $ fab <*> mma

The 𝑓𝑎𝑏 represents the function m (Maybe (a -> b)) and the
𝑚𝑚𝑎 represents the m (Maybe a).

You’ll get this error if you try it:

Couldn't match type ‘Maybe (a -> b)’

with ‘Maybe a -> Maybe b’

Here is the Applicative instance for Compose as a comparison
with the MaybeT instance we’re trying to write:

instance (Applicative f, Applicative g)

=> Applicative (Compose f g) where

pure x = Compose (pure (pure x))

Compose f <*> Compose x =

Compose ((<*>) <$> f <*> x)

Let’s break this down a bit in case you felt confused when
you wrote this for the last chapter’s exercise. Because you did
that exercise…right?
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The idea here is that we have to lift an Applicative apply
over the outer structure 𝑓 to get the g (a -> b) into g a -> g b

so that the Applicative instance for 𝑓 can be leveraged. We can
stretch this idea a bit and use concrete types:

innerMost

:: [Maybe (Identity (a -> b))]

-> [Maybe (Identity a -> Identity b)]

innerMost = (fmap . fmap) (<*>)

second'

:: [Maybe (Identity a -> Identity b)]

-> [ Maybe (Identity a)

-> Maybe (Identity b) ]

second' = fmap (<*>)

final'

:: [ Maybe (Identity a)

-> Maybe (Identity b) ]

-> [Maybe (Identity a)]

-> [Maybe (Identity b)]

final' = (<*>)

The function that could be the Applicative instance for such
a hypothetical type would look like:
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lmiApply :: [Maybe (Identity (a -> b))]

-> [Maybe (Identity a)]

-> [Maybe (Identity b)]

lmiApply f x =

final' (second' (innerMost f)) x

The Applicative instance for our MaybeT type will employ this
same idea, because applicatives are closed under composition,
as we noted in the last chapter. We only need to do something
different from the Compose instances once we get to Monad.

So, we took the long way around to this:

instance (Applicative m)

=> Applicative (MaybeT m) where

pure x = MaybeT (pure (pure x))

(MaybeT fab) <*> (MaybeT mma) =

MaybeT $ (<*>) <$> fab <*> mma

MaybeT Monad instance

At last, on to the Monad instance! Note that we’ve given some of
the intermediate types:

instance (Monad m)

=> Monad (MaybeT m) where

return = pure
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(>>=) :: MaybeT m a

-> (a -> MaybeT m b)

-> MaybeT m b

(MaybeT ma) >>= f =

-- [2] [3]

MaybeT $ do

-- [ 1 ]

-- ma :: m (Maybe a)

-- v :: Maybe a

v <- ma

-- [4]

case v of

-- [5]

Nothing -> return Nothing

-- [ 6 ]

Just y -> runMaybeT (f y)

-- [7] [8]

-- y :: a

-- f :: a -> MaybeT m b

-- f y :: MaybeT m b

-- runMaybeT (f y) :: m (Maybe b)

Explaining it step by step:
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1. We have to return a MaybeT value at the end, so the do block
has the MaybeT data constructor in front of it. This means
the final value of our do block expression must be of type
m (Maybe b) in order to typecheck because our goal is to
go from MaybeT m a to MaybeT m b.

2. The first argument to bind here is MaybeT m a. We unbun-
dled that from MaybeT by pattern matching on the MaybeT

newtype data constructor.

3. The second argument to bind is (a -> MaybeT m b).

4. In the definition of MaybeT, notice something:

newtype MaybeT m a =

MaybeT { runMaybeT :: m (Maybe a) }

-- ^---------^

It’s a Maybe value wrapped in some other type for which
all we know is that it has a Monad instance. Accordingly, we
begin in our do block by using the left arrow bind syntax.
This gives us a reference to the hypothetical Maybe value
out of the 𝑚 structure which is unknown.

5. Since using <- to bind Maybe a out of m (Maybe a) left us
with a Maybe value, we use a case expression on the Maybe

value.
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6. If we get Nothing, we kick Nothing back out, but we have to
embed it in the 𝑚 structure. We don’t know what 𝑚 is, but
being a Monad (and thus also an Applicative) means we can
use return (pure) to perform that embedding.

7. If we get Just, we now have a value of type 𝑎 that we can
pass to our function f of type a -> MaybeT m b.

8. We have to fold the m (Maybe b) value out of the MaybeT

since the MaybeT constructor is already wrapped around
the whole do block, then we’re done.

Don’t be afraid to get a pen and paper and work all that out
until you understand how things are happening before you
move on.

26.3 EitherT

Just as Maybe has a transformer variant in the form of MaybeT, we
can make a transformer variant of Either. We’ll call it EitherT.
Your task is to implement the instances for the transformer
variant:

newtype EitherT e m a =

EitherT { runEitherT :: m (Either e a) }



CHAPTER 26. STACK ‘EM UP 1556

Exercises: EitherT

1. Write the Functor instance for EitherT:

instance Functor m

=> Functor (EitherT e m) where

fmap = undefined

2. Write the Applicative instance for EitherT:

instance Applicative m

=> Applicative (EitherT e m) where

pure = undefined

f <*> a = undefined

3. Write the Monad instance for EitherT:

instance Monad m

=> Monad (EitherT e m) where

return = pure

v >>= f = undefined

4. Write the swapEitherT helper function for EitherT.
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-- transformer version of swapEither.

swapEitherT :: (Functor m)

=> EitherT e m a

-> EitherT a m e

swapEitherT = undefined

Hint: write swapEither first, then swapEitherT in terms of
the former.

5. Write the transformer variant of the either catamorphism.

eitherT :: Monad m =>

(a -> m c)

-> (b -> m c)

-> EitherT a m b

-> m c

eitherT = undefined

26.4 ReaderT

ReaderT is one of the most commonly used transformers in
conventional Haskell applications. It is like Reader, except in
the transformer variant we’re generating additional structure
in the return type of the function:

newtype ReaderT r m a =

ReaderT { runReaderT :: r -> m a }
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The value inside the ReaderT is a function. Type constructors
such as Maybe are also functions in some senses, but we have
to handle this case a bit differently. The first argument to the
function inside ReaderT is part of the structure we’ll have to
bind over.

This time we’re going to give you the instances. If you want
to try writing them yourself, do not read on!
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instance (Functor m)

=> Functor (ReaderT r m) where

fmap f (ReaderT rma) =

ReaderT $ (fmap . fmap) f rma

instance (Applicative m)

=> Applicative (ReaderT r m) where

pure a = ReaderT (pure (pure a))

(ReaderT fmab) <*> (ReaderT rma) =

ReaderT $ (<*>) <$> fmab <*> rma

instance (Monad m)

=> Monad (ReaderT r m) where

return = pure

(>>=) :: ReaderT r m a

-> (a -> ReaderT r m b)

-> ReaderT r m b

(ReaderT rma) >>= f =

ReaderT $ \r -> do

-- [1]

a <- rma r

-- [3] [ 2 ]

runReaderT (f a) r

-- [5] [ 4 ] [6]
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1. Again, the type of the value in a ReaderTmust be a function,
so the act of binding a function over a ReaderT must itself
be a function awaiting the argument of type 𝑟, which we’ve
chosen to name 𝑟 as a convenience in our terms. Also note
that we’re repacking our lambda inside the ReaderT data
constructor.

2. Wepattern-matched the r -> m a (represented in our terms
by 𝑟𝑚𝑎) out of the ReaderT data constructor. Now we’re ap-
plying it to the 𝑟 that we’re expecting in the body of the
anonymous lambda.

3. The result of applying r -> m a to a value of type 𝑟 is m

a. We need a value of type 𝑎 in order to apply our a ->

ReaderT r m b function. To be able to write code in terms
of that hypothetical 𝑎, we bind (<-) the 𝑎 out of the 𝑚
structure. We’ve bound that value to the name 𝑎 as a
mnemonic to remember the type.

4. Applying 𝑓 , which has type a -> ReaderT r m b, to the value
𝑎 results in a value of type ReaderT r m b.

5. We unpack the r -> m b out of the ReaderT structure.

6. Finally, we apply the resulting r -> m b to the 𝑟 we had at
the beginning of our lambda, that eventual argument that
Reader abstracts for us. We have to return m b as the final
expression in this anonymous lambda or the function is
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not valid. To be valid, it must be of type r -> m b which
expresses the constraint that if it is applied to an argument
of type 𝑟, it must produce a value of type m b.

No exercises this time. You deserve a break.

26.5 StateT

Similar to Reader and ReaderT, StateT is State but with additional
monadic structure wrapped around the result. StateT is some-
what more useful and common than the State Monad you saw
earlier. Like ReaderT, its value is a function:

newtype StateT s m a =

StateT { runStateT :: s -> m (a,s) }

Exercises: StateT

If you’re familiar with the distinction, you’ll be implementing
the strict variant of StateT here. To make the strict variant,
you don’t have to do anything special. Write the most obvious
thing that could work. The lazy (lazier, anyway) variant is
the one that involves adding a bit extra. We’ll explain the
difference in the chapter on nonstrictness.

1. You’ll have to do the Functor and Applicative instances
first, because there aren’t Functor and Applicative instances
ready to go for the type Monad m => s -> m (a, s).
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instance (Functor m)

=> Functor (StateT s m) where

fmap f m = undefined

2. As with Functor, you can’t cheat and reuse an underlying
Applicative instance, so you’ll have to do the work with
the s -> m (a, s) type yourself.

instance (Monad m)

=> Applicative (StateT s m) where

pure = undefined

(<*>) = undefined

Also note that the constraint on 𝑚 is not Applicative as you
expect, but rather Monad. This is because you can’t express
the order-dependent computation you’d expect the StateT

Applicative to have without having a Monad for 𝑚. To
learn more, see this Stack Overflow question1 about this
issue. Also see this Github issue2 on the NICTA Course
Github repository. Beware! The NICTA course issue
gives away the answer. In essence, the issue is that without
Monad, you’re feeding the initial state to each computation
in StateT rather than threading it through as you go. This

1Is it possible to implement ‘(Applicative m) => Applica-
tive (StateT s m)‘? http://stackoverflow.com/questions/18673525/

is-it-possible-to-implement-applicative-m-applicative-statet-s-m
2https://github.com/NICTA/course/issues/134

http://stackoverflow.com/questions/18673525/is-it-possible-to-implement-applicative-m-applicative-statet-s-m
http://stackoverflow.com/questions/18673525/is-it-possible-to-implement-applicative-m-applicative-statet-s-m
https://github.com/NICTA/course/issues/134
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is a general pattern contrasting Applicative and Monad and
is worth contemplating.

3. The Monad instance should look fairly similar to the Monad

instance you wrote for ReaderT.

instance (Monad m)

=> Monad (StateT s m) where

return = pure

sma >>= f = undefined

ReaderT, WriterT, StateT

We’d like to point something out about these three types:

newtype Reader r a =

Reader { runReader :: r -> a }

newtype Writer w a =

Writer { runWriter :: (a, w) }

newtype State s a =

State { runState :: s -> (a, s) }

and their transformer variants:
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newtype ReaderT r m a =

ReaderT { runReaderT :: r -> m a }

newtype WriterT w m a =

WriterT { runWriterT :: m (a, w) }

newtype StateT s m a =

StateT { runStateT :: s -> m (a, s) }

You’re already familiar with Reader and State. We haven’t
shown you Writer or WriterT up to this point because, quite
frankly, you shouldn’t use it. We’ll explain why not in a section
later in this chapter.

For the purposes of the progression we’re trying to demon-
strate here, it suffices to know that the Writer Applicative and
Monad work by combining the 𝑤 values monoidally. With that
in mind, what we can see is that Reader lets us talk about val-
ues we need, Writer lets us deal with values we can emit and
combine (but not read), and State lets us both read and write
values in any manner we desire — including monoidally, like
Writer. This is one reason you needn’t bother with Writer since
State can replace it anyway. That’s why you don’t need Writer;
we’ll talk more about why you don’t want Writer later.

In fact, there is a type in the transformers library that com-
bines Reader, Writer, and State into one big type:
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newtype RWST r w s m a =

RWST { runRWST :: r -> s -> m (a, s, w) }

Because of the Writer component, you probably wouldn’t
want to use that in most applications either, but it’s good to
know it exists.

Correspondence between StateT and Parser

You may recall what a simple parser type looks like:

type Parser a = String -> Maybe (a, String)

You may remember our discussion about the similarities
between parsers and State in the Parsers chapter. Now, we
could choose to define a Parser type in the following manner:

newtype StateT s m a =

StateT { runStateT :: s -> m (a,s) }

type Parser = StateT String Maybe

Nobody does this in practice, but it’s useful to consider the
similarity to get a feel for what StateT is all about.
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26.6 Types you probably don’t want to
use

Not every type will necessarily be performant or make sense.
ListT and Writer/WriterT are examples of this.

Why not use Writer or WriterT?

It’s a bit too easy to get into a situation where Writer is either
too lazy or too strict for the problem you’re solving, and then
it’ll use more memory than you’d like. Writer can accumulate
unevaluated thunks, causing memory leaks. It’s also inappro-
priate for logging long-running or ongoing programs due to
the fact that you can’t retrieve any of the logged values until
the computation is complete.3

Usually when Writer is used in an application, it’s not called
Writer. Instead a one-off is created for a specific type 𝑤. Given
that, it’s still useful to know when you’re looking at something
that’s a Reader, Writer, or State, even if the author didn’t use
the types by those names from the transformers library. Some-
times this is because they wanted a stricter Writer than the one
already available.

Determining and measuring when more strictness (more
eagerly evaluating your thunks) is needed in your programs is

3 If you’d like to understand this better, Gabriel Gonzalez has a helpful blog post on
the subject. http://www.haskellforall.com/2014/02/streaming-logging.html

http://www.haskellforall.com/2014/02/streaming-logging.html
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the topic of the upcoming chapter on nonstrictness.

The ListT you want isn’t made from the List type

The most obvious way to implement ListT is generally not
recommended for a variety of reasons, including:

1. Most people’s first attempt won’t pass the associativity law.
We’re not going to show you a way to write it that does
pass that law because it’s not worth it for the reasons listed
below.

2. It’s not very fast.

3. Streaming libraries like pipes4 and conduit5 do it better for
most use cases.

Prior art for “ListT done right” also includes AmbT6 by Conal
Elliott, although you may find it challenging to understand if
you aren’t familiar with ContT and the motivation behind Amb.

Lists in Haskell are as much a control structure as a data
structure, so streaming libraries such as pipes generally suffice
if you need a transformer. This is less of a sticking point in
writing applications than you’d think.

4 http://hackage.haskell.org/package/pipes
5 http://hackage.haskell.org/package/conduit
6https://wiki.haskell.org/Amb

http://hackage.haskell.org/package/pipes
http://hackage.haskell.org/package/conduit
https://wiki.haskell.org/Amb
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26.7 Recovering an ordinary type from
a transformer

If you have a transformer variant of a type and want to use
it as if it was the non-transformer version, you need some 𝑚
structure that doesn’t do anything. Have we seen anything like
that? What about Identity?

Prelude> runMaybeT $ (+1) <$> MaybeT (Identity (Just 1))

Identity {runIdentity = Just 2}

Prelude> runMaybeT $ (+1) <$> MaybeT (Identity Nothing)

Identity {runIdentity = Nothing}

Given that, we can get Identity from IdentityT and so on in
the following manner:

type MyIdentity a = IdentityT Identity a

type Maybe a = MaybeT Identity a

type Either e a = EitherT e Identity a

type Reader r a = ReaderT e Identity a

type State s a = StateT s Identity a

This works fine for recovering the non-transformer variant
of each type as the Identity type is acting as a bit of do-nothing
structural paste for filling in the gap.
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Yeah, but why? You don’t ordinarily need to do this if you’re
working with a transformer that has a corresponding non-
transformer type you can use. For example, it’s less common
to need (ExceptT Identity) because the Either type is already
there, so you don’t need to retrieve that type from the trans-
former. However, if you’re writing something with, say, scotty,
where a ReaderT is part of the environment, you can’t easily
retrieve the Reader type out of that because Reader is not a type
that exists on its own and you can’t modify that ReaderT with-
out essentially rewriting all of scotty, and, wow, nobody wants
that for you. You might then have a situation where what
you’re doing only needs a Reader, not a ReaderT, so you could
use (ReaderT Identity) to be compatible with scotty without hav-
ing to rewrite everything but still being able to keep your own
code a bit tighter and simpler.

The transformers library In general, don’t use hand-rolled
versions of these transformer types without good reason. You
can find many of them in base or the transformers library, and
that library should have come with your GHC installation.

A note on ExceptT Although a library called either exists on
Hackage and provides the EitherT type, most Haskellers are
moving to the identical ExceptT type in the transformers library.
Again, this has mostly to do with the fact that transformers
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comes packaged with GHC already, so ExceptT is ready-to-
hand; the underlying type is the same.

26.8 Lexically inner is structurally
outer

One of the trickier parts of monad transformers is that the
lexical representation of the types will violate your intuitions
with respect to the relationship it has with the structure of
your values. Let us note something in the definitions of the
following types:

-- definition in transformers may look

-- slightly different. It's not important.

newtype ExceptT e m a =

ExceptT { runExceptT :: m (Either e a) }

newtype MaybeT m a =

MaybeT { runMaybeT :: m (Maybe a) }

newtype ReaderT r m a =

ReaderT { runReaderT :: r -> m a }

A necessary byproduct of how transformers work is that
the additional structure 𝑚 is always wrapped around our value.
One thing to note is that it’s only wrapped around things
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we can have, not things we need, such as with ReaderT. The
consequence of this is that a series of monad transformers in a
type will begin with the innermost type structurally speaking.
Consider the following:

module OuterInner where

import Control.Monad.Trans.Except

import Control.Monad.Trans.Maybe

import Control.Monad.Trans.Reader

-- We only need to use return once

-- because it's one big Monad

embedded :: MaybeT

(ExceptT String

(ReaderT () IO))

Int

embedded = return 1

We can sort of peel away the layers one by one:
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maybeUnwrap :: ExceptT String

(ReaderT () IO) (Maybe Int)

maybeUnwrap = runMaybeT embedded

-- Next

eitherUnwrap :: ReaderT () IO

(Either String (Maybe Int))

eitherUnwrap = runExceptT maybeUnwrap

-- Lastly

readerUnwrap :: ()

-> IO (Either String

(Maybe Int))

readerUnwrap = runReaderT eitherUnwrap

Then if we’d like to evaluate this code, we feed the unit
value to the function:

Prelude> readerUnwrap ()

Right (Just 1)

Why is this the result? Consider that we used return for a
Monad comprising Reader, Either, and Maybe:
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instance Monad ((->) r) where

return = const

instance Monad (Either e) where

return = Right

instance Monad Maybe where

return = Just

We can treat having used return for the Reader/Either/Maybe
stack as composition, consider how we get the same result as
readerUnwrap () here:

Prelude> (const . Right . Just $ 1) ()

Right (Just 1)

A terminological point to keep in mind when reading about
monad transformers is that when Haskellers say base monad
they usually mean what is structurally outermost.

type MyType a = IO [Maybe a]

In MyType, the base monad is IO.

Exercise: Wrap It Up

Turn readerUnwrap from the previous example back into embedded

through the use of the data constructors for each transformer.
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-- Modify it to make it work.

embedded :: MaybeT

(ExceptT String

(ReaderT () IO))

Int

embedded = ??? (const (Right (Just 1)))

26.9 MonadTrans

We often want to lift functions into a larger context. We’ve
been doing this for a while with Functor, which lifts a function
into a context and applies it to the value inside. The facility
to do this also undergirds Applicative, Monad, and Traversable.
However, fmap isn’t always enough, so we have some functions
that are essentially fmap for different contexts:

fmap :: Functor f

=> (a -> b) -> f a -> f b

liftA :: Applicative f

=> (a -> b) -> f a -> f b

liftM :: Monad m

=> (a -> r) -> m a -> m r
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You might notice the latter two examples have lift in the
function name. While we’ve encouraged you not to get too
excited about the meaning of function names, in this case they
do give you a clue of what they’re doing. They are lifting,
just as fmap does, a function into some larger context. The
underlying structure of the bind function from Monad is also a
lifting function — fmap again! — composed with the crucial
join function.

In some cases, we want to talk about more or different
structure than these types permit. In other cases, we want
something that does as much lifting as is necessary to reach
some (structurally) outermost position in a stack of monad
transformers. Monad transformers can be nested in order
to compose various effects into one monster function, but to
manage those stacks, we need to lift more.

The typeclass that lifts

MonadTrans is a typeclass with one core method: lift. Speaking
generally, it is about lifting actions in some Monad over a trans-
former type which wraps itself in the original Monad. Fancy!



CHAPTER 26. STACK ‘EM UP 1576

class MonadTrans t where

-- | Lift a computation from

-- the argument monad to

-- the constructed monad.

lift :: (Monad m) => m a -> t m a

Here the 𝑡 is a (constructed) monad transformer type that
has an instance of MonadTrans defined.

We’re going to work through a relatively uncomplicated
example from scotty now.

Motivating MonadTrans

You may remember from previous chapters that scotty is a
web framework for Haskell. One thing to know about scotty,
without getting into all the gritty details of how it works, is that
the monad transformers the framework relies on are them-
selves newtypes for monad transformer stacks. Wait, what?
Well, look:
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newtype ScottyT e m a =

ScottyT

{ runS :: State (ScottyState e m) a }

deriving (Functor, Applicative, Monad)

newtype ActionT e m a =

ActionT

{ runAM

:: ExceptT

(ActionError e)

(ReaderT ActionEnv

(StateT ScottyResponse m))

a

}

deriving ( Functor, Applicative )

type ScottyM = ScottyT Text IO

type ActionM = ActionT Text IO

We’ll use ActionM and ActionT and ScottyM and ScottyT as if
they were the same thing, but the M variants are type synonyms
for the transformers with the inner types already set. This
roughly translates to the errors (the left side of the ExceptT) in
ScottyM or ActionM being returned as Text, while the right side
of the ExceptT, whatever it does, is IO. ExceptT is the transformer
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version of Either, and a ReaderT and a StateT are stacked up
inside that as well. These internal mechanics don’t matter that
much to you, as a user of the scotty API, but it’s useful to see
how much is packed up in there.

Now, back to our example. This is the “hello, world” exam-
ple using scotty, but the following will cause a type error:

-- scotty.hs

{-# LANGUAGE OverloadedStrings #-}

module Scotty where

import Web.Scotty

import Data.Monoid (mconcat)

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

putStrLn "hello"

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]
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Reminder: in your terminal, you can follow along with this
like so:

$ stack build scotty

$ stack ghci

Prelude> :l scotty.hs

When you try to load it, you should get a type error:

Couldn't match expected type

‘Web.Scotty.Internal.Types.ActionT

Data.Text.Internal.Lazy.Text IO a0’

with actual type ‘IO ()’

In a stmt of a 'do' block: putStrLn "hello"

In the second argument of ‘($)’, namely

‘do { beam <- param "word";

putStrLn "hello";

html $ mconcat ["<h1>Scotty, ", beam, ....] }’

The reason for this type error is that putStrLn has the type
IO (), but it is inside a do block inside our get, and the monad
that code is in is therefore ActionM/ActionT:

get :: RoutePattern

-> ActionM ()

-> ScottyM ()
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Our ActionT type eventually reaches IO, but there’s addi-
tional structure we need to lift over first. To fix this, we’ll start
by adding an import:

import Control.Monad.Trans.Class

And amend that line with putStrLn to the following:

lift (putStrLn "hello")

It should work.
You can assert a type for the lift embedded in the scotty

action:

let hello = putStrLn "hello"

(lift :: IO a -> ActionM a) hello

Let’s see what it does. Load the file again and call the main

function. You should see this message:

Setting phasers to stun... (port 3000) (ctrl-c to quit)

In the address bar of your web browser, type localhost:3000.
You should notice two things: one is that there is nothing in
the beam slot of the text that prints to your screen, and the other
is that it prints ‘hello’ to your terminal where the program is
running. Try adding a word to the end of the address:

localhost:3000/beam
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The text on your screen should change, and ‘hello’ should
print in your terminal again. That /:word parameter is what has
been bound via the variable beam into that html line at the end
of the do block, while the ‘hello’ has been lifted over the ActionM

so that it can print in your terminal. It will print another ‘hello’
to your terminal every time something happens on the web
page.

We can concretize our use of lift in the following steps.
Please follow along by asserting the types for the application
of lift in the scotty application above:

lift :: (Monad m, MonadTrans t)

=> m a -> t m a

lift :: (MonadTrans t)

=> IO a -> t IO a

lift :: IO a -> ActionM a

lift :: IO () -> ActionM ()

We go from (t IO a) to (ActionM a) because the IO is inside
the ActionM.

Let’s examine ActionM more carefully:

Prelude> import Web.Scotty

Prelude> import Web.Scotty.Trans

Prelude> :info ActionM

type ActionM = ActionT Data.Text.Internal.Lazy.Text IO

-- Defined in ‘Web.Scotty’
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We can see for ourselves what this lift did by looking at
the MonadTrans instance for ActionT, which is what ActionM is a
type alias of:

instance MonadTrans (ActionT e) where

lift = ActionT . lift . lift . lift

Part of the niceness here is that ActionT is itself defined in
terms of three more monad transformers. We can see this in
the definition of ActionT:

newtype ActionT e m a =

ActionT {

runAM

:: ExceptT

(ActionError e)

(ReaderT ActionEnv

(StateT ScottyResponse m))

a

} deriving (Functor, Applicative)

Let’s first replace the lift for ActionT with its definition and
see if it still works:
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{-# LANGUAGE OverloadedStrings #-}

module Scotty where

import Web.Scotty

import Web.Scotty.Internal.Types

(ActionT(..))

import Control.Monad.Trans.Class

import Data.Monoid (mconcat)

All the (..) means is that we want to import all the data
constructors of the ActionT type, rather than none or a partic-
ular list of them. You can look into the syntax in more detail
independently if you like. Now for the scotty application itself:

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

(ActionT . lift . lift . lift)

(putStrLn "hello")

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]
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This should still work! Note that we had to ask for the data
constructor for ActionT from an Internal module because the
implementation is hidden by default. We’ve got three lifts,
one each for ExceptT, ReaderT, and StateT.

Next we’ll do ExceptT:

instance MonadTrans (ExceptT e) where

lift = ExceptT . liftM Right

To use that in our code, add the following import:

import Control.Monad.Trans.Except

And our app changes into the following:

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

(ActionT

. (ExceptT . liftM Right)

. lift

. lift) (putStrLn "hello")

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]
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Then for ReaderT, we take a gander at Control.Monad.Trans.Reader
in the transformers library and see the following:

instance MonadTrans (ReaderT r) where

lift = liftReaderT

liftReaderT :: m a -> ReaderT r m a

liftReaderT m = ReaderT (const m)

For reasons, liftReaderT isn’t exported by transformers, but
we can redefine it ourselves. Add the following to the module:

import Control.Monad.Trans.Reader

liftReaderT :: m a -> ReaderT r m a

liftReaderT m = ReaderT (const m)

Then our app can be defined as follows:
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main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

(ActionT

. (ExceptT . fmap Right)

. liftReaderT

. lift

) (putStrLn "hello")

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]

Or instead of liftReaderT, we could’ve done:

. (\m -> ReaderT (const m))

Or:

(ActionT

. (ExceptT . fmap Right)

. ReaderT . const

. lift

) (putStrLn "hello")
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Now for that last lift over StateT! Remembering that it was
the lazy StateT that the type of ActionT mentioned, we see the
following MonadTrans instance:

instance MonadTrans (StateT s) where

lift m = StateT $ \s -> do

a <- m

return (a, s)

First, let’s get our import in place:

import Control.Monad.Trans.State.Lazy

hiding (get)

We needed to hide get because scotty already has a different
get function defined and we don’t need the one from StateT.
Then inlining that into our app code:
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main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

(ActionT

. (ExceptT . fmap Right)

. ReaderT . const

. \m -> StateT (\s -> do

a <- m

return (a, s))

) (putStrLn "hello")

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]

Note that we needed an outer lambda before the StateT

in order to get the monadic action we were lifting. At this
point, we’re in the outermost position we can be, and since
ActionM defines ActionT’s outermost monadic type as being IO,
that means our putStrLn works fine after all this lifting.

Typically a MonadTrans instance lifts over only one layer at
a time, but scotty abstracts away the underlying structure so
that you don’t have to care. That’s why it goes ahead and does
the next three lifts for you. The critical thing to realize here is
that lifting means you’re embedding an expression in a larger
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context by adding structure that doesn’t do anything.

MonadTrans instances

Now you see why we have MonadTrans and have a picture of
what lift, the only method of MonadTrans, does.

Here are some examples of MonadTrans instances:

1. IdentityT

instance MonadTrans IdentityT where

lift = IdentityT

2. MaybeT

instance MonadTrans MaybeT where

lift = MaybeT . liftM Just
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lift

:: (Monad m)

=> m a -> t m a

(MaybeT . liftM Just)

:: Monad m

=> m a -> MaybeT m a

MaybeT

:: m (Maybe a) -> MaybeT m a

(liftM Just)

:: Monad m

=> m a -> m (Maybe a)

Roughly speaking, this has taken an m a and lifted it into
a MaybeT context.

The general patternwith MonadTrans instances demonstrated
by MaybeT is that you’re usually going to lift the injection
of the known structure (with MaybeT, the known structure
is Maybe) over some Monad. Injection of structure usually
means return, but since with MaybeTwe know we want Maybe
structure, we use Just. That transforms an m a into m (T a)

where capital T is some concrete type you’re lifting the m

a into. Then to cap it all off, you use the data constructor
for your monad transformer, and the value is now lifted
into the larger context. Here’s a summary of the stages
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the type of the value goes through:

v :: Monad m => m a

liftM Just :: Monad m => m a -> m (Maybe a)

liftM Just v :: m (Maybe a)

MaybeT (liftM Just v) :: MaybeT m a

See if you can work out the types of this one:

3. ReaderT

instance MonadTrans (ReaderT r) where

lift = ReaderT . const

And now, write some instances!

Exercises: Lift More

Keep in mind what these are doing, follow the types, lift till
you drop.

1. You thought you were done with EitherT.

instance MonadTrans (EitherT e) where

lift = undefined

2. Or StateT. This one’ll be more obnoxious. It’s fine if you’ve
seen this before.
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instance MonadTrans (StateT s) where

lift = undefined

Prolific lifting is the failure mode

Apologies to the original authors, but sometimes with the use
of concretely and explicitly typed monad transformers you’ll
see stuff like this:

addSubWidget :: (YesodSubRoute sub master)

=> sub

-> WidgetT sub master a

-> WidgetT sub' master a

addSubWidget sub w =

do master <- liftHandler getYesod

let sr = fromSubRoute sub master

i <- WidgetT $ lift $ lift $ lift

$ lift $ lift $ lift

$ lift get
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w' <- liftHandler

$ toMasterHandlerMaybe sr

(const sub) Nothing

$ flip runStateT i $ runWriterT

$ runWriterT $ runWriterT

$ runWriterT $ runWriterT

$ runWriterT $ runWriterT

$ unWidgetT w

let ((((((((a,

body),

title),

scripts),

stylesheets),

style),

jscript),

h),

i') = w'
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WidgetT $ do

tell body

lift $ tell title

lift $ lift $ tell scripts

lift $ lift $ lift

$ tell stylesheets

lift $ lift $ lift $ lift

$ tell style

lift $ lift $ lift $ lift $ lift

$ tell jscript

lift $ lift $ lift $ lift $ lift

$ lift $ tell h

lift $ lift $ lift $ lift

$ lift $ lift $ lift $ put i'

return a

Do not write code like this. Especially, do not write code
like this and then proceed to blog about how terrible monad
transformers are.

Wrap it, smack it, pre-lift it

OK, so how do we avoid that horror show? Well, there are a lot
of ways, but one of the most robust and common is newtyp-
ing your Monad stack and abstracting away the representation.
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From there, you provide the functionality leveraging the rep-
resentation as part of your API. A good example of this comes
to us from…scotty.

Let’s take a gander at the ActionM type we mentioned earlier:

Prelude> import Web.Scotty

-- again, to make the type read more nicely

-- we import some other modules.

Prelude> import Data.Text.Lazy

Prelude> :info ActionM

type ActionM = Web.Scotty.Internal.Types.ActionT Text IO

-- Defined in ‘Web.Scotty’

scotty hides the underlying type by default because you
ordinarily wouldn’t care or think about it in the course of writ-
ing your application. What scotty does here is good practice.
This design keeps the underlying implementation hidden by
default but lets us import an Internal module to get at the
representation in case we need to:

Prelude> import Web.Scotty.Internal.Types

-- more modules to clean up the types

Prelude> import Control.Monad.Trans.Reader

Prelude> import Control.Monad.Trans.State.Lazy

Prelude> import Control.Monad.Trans.Except

Prelude> :info ActionT



CHAPTER 26. STACK ‘EM UP 1596

type role ActionT nominal representational nominal

newtype ActionT e (m :: * -> *) a

= ActionT

{runAM :: ExceptT

(ActionError e)

(ReaderT ActionEnv

(StateT ScottyResponse m))

a}

instance (Monad m, ScottyError e) => Monad (ActionT e m)

instance Functor m => Functor (ActionT e m)

instance Monad m => Applicative (ActionT e m)

What’s nice about this approach is that it subjects the con-
sumers (which could include yourself) of your type to less
noise within an application. It also doesn’t require reading
papers written by people trying very hard to impress a thesis
advisor, although poking through prior art for ideas is rec-
ommended. It can reduce or eliminate manual lifting within
the Monad as well. Note that we only had to use lift once to
perform an I/O action in ActionM even though the underly-
ing implementation has more than one transformer flying
around.
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26.10 MonadIO aka zoom-zoom

There’s more than one way to skin a cat and there’s more than
one way to lift an action over additional structure. MonadIO is
a different design than MonadTrans because rather than lifting
through one layer at a time, MonadIO is intended to keep lifting
your IO action until it is lifted over all structure embedded in
the outermost IO type. The idea here is that you’d write liftIO

once and it would instantiate to all of the following types:

liftIO :: IO a -> ExceptT e IO a

liftIO :: IO a -> ReaderT r IO a

liftIO :: IO a -> StateT s IO a

-- As Sir Mix-A-Lot once said,

-- stack 'em up deep

liftIO :: IO a -> StateT s (ReaderT r IO) a

liftIO :: IO a

-> ExceptT

e

(StateT s (ReaderT r IO))

a

You don’t have to lift multiple times if you’re trying to reach
a base (outermost) Monad that happens to be IO, because you
have liftIO.
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In the transformers library, the MonadIO class resides in the
module Control.Monad.IO.Class:

class (Monad m) => MonadIO m where

-- | Lift a computation

-- from the 'IO' monad.

liftIO :: IO a -> m a

The commentary within the module is reasonably helpful,
though it doesn’t highlight what makes MonadIO different from
MonadTrans:

Monads in which IO computations may be embed-
ded. Any monad built by applying a sequence of
monad transformers to the IO monad will be an in-
stance of this class.

Instances should satisfy the following laws, which
state that liftIO is a transformer of monads:

1. liftIO . return = return

2. liftIO (m >>= f) =

liftIO m >>= (liftIO . f)

Let us modify the scotty example app to print a string:
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{-# LANGUAGE OverloadedStrings #-}

module Main where

import Web.Scotty

import Control.Monad.IO.Class

import Data.Monoid (mconcat)

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

liftIO (putStrLn "hello")

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]

If you then run main in a REPL or build a binary and execute
it, you’ll be able to request a response from the server using
your web browser (as we showed you earlier) or a command
line application like curl. If you used a browser and see “hello”
printed more than once, it’s likely your browser made the
request more than once. You shouldn’t see this behavior if
you test it with curl.
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Example MonadIO instances

1. IdentityT

instance (MonadIO m)

=> MonadIO (IdentityT m) where

liftIO = IdentityT . liftIO

2. EitherT

instance (MonadIO m)

=> MonadIO (EitherT e m) where

liftIO = lift . liftIO

Exercises: Some Instances

1. MaybeT

instance (MonadIO m)

=> MonadIO (MaybeT m) where

liftIO = undefined

2. ReaderT

instance (MonadIO m)

=> MonadIO (ReaderT r m) where

liftIO = undefined

3. StateT
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instance (MonadIO m)

=> MonadIO (StateT s m) where

liftIO = undefined

Hint: your instances should be simple.

26.11 Monad transformers in use

MaybeT in use

These are some example of MaybeT in use; we will not comment
upon them and instead let you research them further yourself
if you want. Origins of the code are noted in the samples.

-- github.com/wavewave/hoodle-core

recentFolderHook

:: MainCoroutine (Maybe FilePath)

recentFolderHook = do

xstate <- get

(r :: Maybe FilePath) <- runMaybeT $ do

hset <- hoist (view hookSet xstate)

rfolder <-

hoist (H.recentFolderHook hset)

liftIO rfolder

return r
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-- github.com/devalot/hs-exceptions

-- src/maybe.hs

addT :: FilePath

-> FilePath

-> IO (Maybe Integer)

addT f1 f2 = runMaybeT $ do

s1 <- sizeT f1

s2 <- sizeT f2

return (s1 + s2)
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-- wavewave/ghcjs-dom-delegator

-- example/Example.hs

main :: IO ()

main = do

clickbarref <-

asyncCallback1 AlwaysRetain clickbar

clickbazref <-

asyncCallback1 AlwaysRetain clickbaz

r <- runMaybeT $ do

doc <- MaybeT currentDocument

bar <- lift . toJSRef

=<< MaybeT

(documentQuerySelector doc

(".bar" :: JSString))

baz <- lift . toJSRef

=<< MaybeT

(documentQuerySelector doc

(".baz" :: JSString))

lift $ do

ref <- newObj

del <-delegator ref

addEvent bar "click" clickbarref

addEvent baz "click" clickbazref

case r of

Nothing -> print "something wrong"

Just _ -> print "welldone"
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Temporary extension of structure

Although we commonly think of monad transformers as being
used to define one big context for an application, particularly
with things like ReaderT, there are other ways. One pattern that
is often useful is temporarily extending additional structure
to avoid boilerplate. Here’s an example using plain old Maybe

and scotty:
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{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad.IO.Class

import Data.Maybe (fromMaybe)

import Data.Text.Lazy (Text)

import Web.Scotty

param' :: Parsable a

=> Text -> ActionM (Maybe a)

param' k = rescue (Just <$> param k)

(const (return Nothing))

main = scotty 3000 $ do

get "/:word" $ do

beam' <- param' "word"

let beam = fromMaybe "" beam'

i <- param' "num"

liftIO $ print (i :: Maybe Integer)

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]
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This works well enough but could get tedious in a hurry if
we had a bunch of stuff that returned ActionM (Maybe ...) and
we wanted to short-circuit the moment any of them failed.
So, we do something similar but with MaybeT and building up
more data in one go:
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{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad.IO.Class

import Control.Monad.Trans.Class

import Control.Monad.Trans.Maybe

import Data.Maybe (fromMaybe)

import Data.Text.Lazy (Text)

import Web.Scotty

param' :: Parsable a

=> Text -> MaybeT ActionM a

param' k = MaybeT $

rescue (Just <$> param k)

(const (return Nothing))

type Reco =

(Integer, Integer, Integer, Integer)

main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

reco <- runMaybeT $ do

a <- param' "1"

liftIO $ print a

b <- param' "2"

c <- param' "3"

d <- param' "4"

(lift . lift) $ print b

return ((a, b, c, d) :: Reco)

liftIO $ print reco

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]
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Some important things to note here:

1. We only had to use liftIO once, even in the presence of
additional structure, whereas with lift we had to lift twice
to address MaybeT and ActionM.

2. The one big bind of the MaybeT means we could take the
existence of 𝑎, 𝑏, 𝑐, and 𝑑 for granted in that context, but
the reco value itself is Maybe Reco because any part of the
computation could fail in the absence of the needed pa-
rameter.

3. It knows what monad we mean for that do block because
of the runMaybeT in front of the do. This serves the dual
purpose of unpacking the MaybeT into an ActionM (Maybe

Reco) which we can bind out into Maybe Reco.

ExceptT aka EitherT in use

The example with Maybe and scotty may not have totally satis-
fied because the failure mode isn’t helpful to an end-user —
all they know is “Nothing.” Accordingly, Maybe is usually some-
thing that should get handled early and often in a place local
to where it was produced so that you avoid mysterious Nothing
values floating around and short-circuiting your code. They’re
not something you want to return to end-users either. Fortu-
nately, we have Either for more descriptive short-circuiting
computations!
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Scotty, again

We’ll use scotty again to demonstrate this. Once again, we’ll
show you a plain example:

{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad.IO.Class

import Data.Text.Lazy (Text)

import Web.Scotty

param' :: Parsable a

=> Text -> ActionM (Either String a)

param' k =

rescue (Right <$> param k)

(const

(return

(Left $ "The key: "

++ show k

++ " was missing!")))
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main = scotty 3000 $ do

get "/:word" $ do

beam <- param "word"

a <- param' "1"

let a' = either (const 0) id a

liftIO $ print (a :: Either String Int)

liftIO $ print (a' :: Int)

html $

mconcat ["<h1>Scotty, ",

beam,

" me up!</h1>"]

Note that we had to manually fold the Either if we wanted
to address the desired Int value. Try to avoid having default
fallback values in real code though. This could get nutty in
a hurry if we had many things we were pulling out of the
parameters.

Let’s do that but with ExceptT from transformers. Remember,
ExceptT is another name for EitherT:
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{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad.IO.Class

import Control.Monad.Trans.Class

import Control.Monad.Trans.Except

import Data.Text.Lazy (Text)

import qualified Data.Text.Lazy as TL

import Web.Scotty
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param' :: Parsable a

=> Text -> ExceptT String ActionM a

param' k =

ExceptT $

rescue (Right <$> param k)

(const

(return

(Left $ "The key: "

++ show k

++ " was missing!")))

type Reco =

(Integer, Integer, Integer, Integer)

tshow = TL.pack . show
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main = scotty 3000 $ do

get "/" $ do

reco <- runExceptT $ do

a <- param' "1"

liftIO $ print a

b <- param' "2"

c <- param' "3"

d <- param' "4"

(lift . lift) $ print b

return ((a, b, c, d) :: Reco)

case reco of

(Left e) -> text (TL.pack e)

(Right r) ->

html $

mconcat ["<h1>Success! Reco was: ",

tshow r,

"</h1>"]

If you pass it a request like:

http://localhost:3000/?1=1

It’ll ask for the parameter 2 because that was the next param
you asked for after 1.

If you pass it a request like:

http://localhost:3000/?1=1&2=2&3=3&4=4
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You should see the response in your browser or terminal
of:

Success! Reco was: (1,2,3,4)

As before, we get to benefit from one big bind under the
ExceptT.

Slightly more advanced code

From some code7 by Sean Chalmers8.
Some context for the EitherT application you’ll see:

type Et a = EitherT SDLErr IO a

mkWindow :: HasSDLErr m =>

String

-> CInt -> CInt

-> m SDL.Window

mkRenderer :: HasSDLErr m

=> SDL.Window -> m SDL.Renderer

7https://github.com/mankyKitty/Meteor/
8http://mankykitty.github.io/

https://github.com/mankyKitty/Meteor/
http://mankykitty.github.io/
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hasSDLErr :: (MonadIO m, MonadError e m)

=> (a -> b)

-> (a -> Bool)

-> e -> IO a -> m b

hasSDLErr g f e a =

liftIO a

>>= \r ->

bool (return $ g r)

(throwError e) $ f r

class (MonadIO m, MonadError SDLErr m)

=> HasSDLErr m where

decide :: (a -> Bool)

-> SDLErr -> IO a -> m a

decide' :: (Eq n, Num n)

=> SDLErr -> IO n -> m ()

instance HasSDLErr

(EitherT SDLErr IO) where

decide = hasSDLErr id

decide' = hasSDLErr (const ()) (/= 0)

Then in use:
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initialise :: Et (SDL.Window,SDL.Renderer)

initialise = do

initSDL [SDL.SDL_INIT_VIDEO]

win <-

mkWindow "Meteor!"

screenHeight

screenWidth

rdr <- mkRenderer win

return (win,rdr)

createMeteor :: IO (Either SDLErr MeteorS)

createMeteor = do

eM <- runEitherT initialise

return $ mkMeteor <$> eM

where

emptyBullets = V.empty

mkMeteor (w,r) = MeteorS w r

getInitialPlayer

emptyBullets

getInitialMobs

False
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26.12 Monads do not commute

Remember that monads in general do not commute, and
you aren’t guaranteed something sensible for every possible
combination of types. The kit we have for constructing and
using monad transformers is useful but is not a license to not
think!

Hypothetical Exercise

Consider ReaderT r Maybe and MaybeT (Reader r) — are these
types equivalent? Do they do the same thing? Try writing
otherwise similar bits of code with each and see if you can
prove they’re the same or different.

26.13 Transform if you want to

If you find monad transformers difficult or annoying, then
don’t bother! Most of the time you can get by with liftIO and
plain IO actions, functions, Maybe values, etc. Do the simplest
(for you) thing first when mapping out something new or un-
familiar. It’s better to let more structured formulations of
programs fall out naturally from having kicked around some-
thing uncomplicated than to blow out your working memory
budget in one go. Don’t worry about seeming unsophisticated;
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in our opinion, being happy and productive is better than
being fancy.

Keep it basic in your first attempt. Never make it more
elaborate initially than is strictly necessary. You’ll figure out
when the transformer variant of a type will save you complex-
ity in the process of writing your programs. We have taken
you through these topics because you’ll need at least a passing
familiarity to use modern Haskell libraries or frameworks, but
it’s not a design dictate you must follow.

26.14 Chapter Exercises

Write the code

1. rDec is a function that should get its argument in the con-
text of Reader and return a value decremented by one.

rDec :: Num a => Reader a a

rDec = undefined

Prelude> import Control.Monad.Trans.Reader

Prelude> runReader rDec 1

0

Prelude> fmap (runReader rDec) [1..10]

[0,1,2,3,4,5,6,7,8,9]
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Note that “Reader” from transformers is ReaderT of Identity
and that runReader is a convenience function throwing
away themeaningless structure for you. Playwith runReaderT

if you like.

2. Once you have an rDec that works, make it and any inner
lambdas pointfree if that’s not already the case.

3. rShow is show, but in Reader.

rShow :: Show a

=> ReaderT a Identity String

rShow = undefined

Prelude> runReader rShow 1

"1"

Prelude> fmap (runReader rShow) [1..10]

["1","2","3","4","5","6","7","8","9","10"]

4. Once you have an rShow that works, make it pointfree.

5. rPrintAndInc will first print the input with a greeting, then
return the input incremented by one.

rPrintAndInc :: (Num a, Show a)

=> ReaderT a IO a

rPrintAndInc = undefined
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Prelude> runReaderT rPrintAndInc 1

Hi: 1

2

Prelude> traverse (runReaderT rPrintAndInc) [1..10]

Hi: 1

Hi: 2

Hi: 3

Hi: 4

Hi: 5

Hi: 6

Hi: 7

Hi: 8

Hi: 9

Hi: 10

[2,3,4,5,6,7,8,9,10,11]

6. sPrintIncAccum first prints the input with a greeting, then
puts the incremented input as the new state, and returns
the original input as a String.

sPrintIncAccum :: (Num a, Show a)

=> StateT a IO String

sPrintIncAccum = undefined

Prelude> runStateT sPrintIncAccum 10

Hi: 10
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("10",11)

Prelude> mapM (runStateT sPrintIncAccum) [1..5]

Hi: 1

Hi: 2

Hi: 3

Hi: 4

Hi: 5

[("1",2),("2",3),("3",4),("4",5),("5",6)]

Fix the code

The code won’t typecheck as written; fix it so that it does. Feel
free to add imports if it provides something useful. Functions
will be used that we haven’t introduced. You’re not allowed
to change the types asserted. You may have to fix the code in
more than one place.

import Control.Monad.Trans.Maybe

import Control.Monad

isValid :: String -> Bool

isValid v = '!' `elem` v
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maybeExcite :: MaybeT IO String

maybeExcite = do

v <- getLine

guard $ isValid v

return v

doExcite :: IO ()

doExcite = do

putStrLn "say something excite!"

excite <- maybeExcite

case excite of

Nothing -> putStrLn "MOAR EXCITE"

Just e ->

putStrLn

("Good, was very excite: " ++ e)

Hit counter

We’re going to provide an initial scaffold of a scotty application
which counts hits to specific URIs. It also prefixes the keys
with a prefix defined on app initialization, retrieved via the
command line arguments.
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{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad.Trans.Class

import Control.Monad.Trans.Reader

import Data.IORef

import qualified Data.Map as M

import Data.Maybe (fromMaybe)

import Data.Text.Lazy (Text)

import qualified Data.Text.Lazy as TL

import System.Environment (getArgs)

import Web.Scotty.Trans

data Config =

Config {

-- that's one, one click!

-- two...two clicks!

-- Three BEAUTIFUL clicks! ah ah ahhhh

counts :: IORef (M.Map Text Integer)

, prefix :: Text

}

Stuff inside ScottyT is, except for things that escape via IO,
effectively read-only so we can’t use StateT. It would overcom-
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plicate things to attempt to do so and you should be using a
proper database for production applications.

type Scotty =

ScottyT Text (ReaderT Config IO)

type Handler =

ActionT Text (ReaderT Config IO)

bumpBoomp :: Text

-> M.Map Text Integer

-> (M.Map Text Integer, Integer)

bumpBoomp k m = undefined

app :: Scotty ()

app =

get "/:key" $ do

unprefixed <- param "key"

let key' = mappend undefined unprefixed

newInteger <- undefined

html $

mconcat [ "<h1>Success! Count was: "

, TL.pack $ show newInteger

, "</h1>"

]
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main :: IO ()

main = do

[prefixArg] <- getArgs

counter <- newIORef M.empty

let config = undefined

runR = undefined

scottyT 3000 runR app

Code is missing and broken. Your task is to make it work,
whatever is necessary.

You should be able to run the server from inside of GHCi,
passing arguments like so:

Prelude> :main lol

Setting phasers to stun... (port 3000) (ctrl-c to quit)

You could also build a binary and pass the arguments from
your shell, but do what you like. Once it’s running, you should
be able to bump the counts like so:

$ curl localhost:3000/woot

<h1>Success! Count was: 1</h1>

$ curl localhost:3000/woot

<h1>Success! Count was: 2</h1>

$ curl localhost:3000/blah

<h1>Success! Count was: 1</h1>



CHAPTER 26. STACK ‘EM UP 1626

Note that the underlying “key” used in the counter when
you GET /woot is "lolwoot" because we passed ”lol” to main. For
a giggle, try the URI for one of the keys in your browser and
mash refresh a bunch.

If you get stuck, consider checking for examples such as the
reader file in scotty’s examples directory of the git repository.

Morra

1. Write the game Morra9 using StateT and IO. The state
being accumulated is the score of the player and the com-
puter AI the player is playing against. To start, make the
computer choose its play randomly.

On exit, report the scores for the player and the computer,
congratulating the winner.

2. Add a human vs. human mode to the game with inter-
stitial screens between input prompts so the players can
change out of the hotseat without seeing the other player’s
answer.

3. Improve the computer AI slightly by making it remem-
ber 3-grams of the player’s behavior, adjusting its answer
instead of deciding randomly when the player’s behavior
matches a known behavior. For example:

9 You can find descriptions of the rules and gameplay of the Morra game online.
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-- p is Player

-- c is Computer

-- Player is odds, computer is evens.

P: 1

C: 1

- C wins

P: 2

C: 1

- P wins

P: 2

C: 1

- P wins

At this point, the computer should register the pattern (1,
2, 2) player picked 2 after 1 and 2. Next time the player
picks 1 followed by 2, the computer should assume the
next play will be 2 and pick 2 in order to win.

4. The 3-gram thing is pretty simple and dumb. Humans are
still bad at being random; they often have sub-patterns
in their moves.

26.15 Defintion

In general, the term leak refers to something that consumes
a resource in a way that renders it unusable or irrecoverable;
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specifically, when we talk about a memory leak, we’re talking
about consuming memory in a way that renders it not usable
or recoverable by other programs or parts of a program. This
can happen if your program is written in such a way that it
accumulates large amounts of unevaluated thunks or holds in
memory a reference to something that it’s not using anymore.
The garbage collector cannot sweep those things away, so the
amount of memory a program is using can increase, some-
times rapidly and alarmingly, while the amount of available
or free memory decreases.

26.16 Follow-up resources

1. Parallel and Concurrent Programming in Haskell; Simon
Marlow; http://chimera.labs.oreilly.com/books/1230000000929

http://chimera.labs.oreilly.com/books/1230000000929


Chapter 27

Nonstrictness

Progress doesn’t come
from early risers —
progress is made by lazy
men looking for easier
ways to do things.

Robert A. Heinlein

1629
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27.1 Laziness

This chapter concerns the ways in which Haskell programs are
evaluated. We’ve addressed this a bit in previous chapters, for
example, in the Folds chapter where we went into some detail
about how folds evaluate. In this chapter, our goal is to give
you enough information about Haskell’s evaluation strategy
that you’ll be able to reason confidently about the reduction
process of your expressions and introduce stricter evaluation
where that is wanted.

Most programming languages have strict evaluation seman-
tics. Haskell technically has nonstrict — not lazy — evaluation,
but the difference between lazy and nonstrict is not practi-
cally relevant, so you’ll hear Haskell referred to as either a lazy
language or a nonstrict one.

A very rough outline of Haskell’s evaluation strategy is this:
most expressions are only reduced, or evaluated, when neces-
sary. When the evaluation process begins, a thunk is created
for each expression. We’ll go into more detail about this in
the chapter, but a thunk is like a placeholder in the underly-
ing graph of the program. Whatever expression the thunk is
holding a place for can be evaluated when necessary, but if
it’s never needed, it never gets reduced, and then the garbage
collector comes along and sweeps it away. If it is evaluated,
because it’s in a graph, it can be often shared between expres-
sions — that is, once x = 1 + 1 has been evaluated, anytime 𝑥
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is forced it does not have to be re-computed.
This is the laziness of Haskell: don’t do more work than

needed. Don’t evaluate until necessary. Don’t re-evaluate if
you don’t have to. We’ll go through the details of how this
works, exceptions to the general principles, and how to control
the evaluation by adding strictness where desired.

Specifically, we will:

• define call-by-name and call-by-need evaluation;

• explain the main effects of nonstrict evaluation;

• live the Thunk Life1;

• consider the runtime behavior of non-strict code in terms
of sharing;

• developmethods for observing sharing behavior andmea-
suring program efficiency;

• bottom out with the bottoms.

27.2 Observational Bottom Theory

In our discussion about nonstrictness in Haskell, we’re going
to be talking about bottom2 a lot. This is partly because non-
strictness is defined by the ability to evaluate expressions that

1We love you, Jesse!
2Observational bottom theory is not a real thing. Do not email us about this.
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have bindings which are bottom in them, as long as the bot-
tom itself is never forced. Bottoms also give us a convenient
method of observing evaluation in Haskell. By causing the
program to halt immediately with an error, bottom serves as
our first means of understanding nonstrictness in Haskell. You
probably recall we have used this trick before.

Standards and obligations

Technically Haskell is only obligated to be nonstrict, not lazy.
A truly lazy language memoizes, or holds in memory, the
results of all the functions it does evaluate, and, outside of toy
programs, this tends to use unacceptably large amounts of
memory. Implementations of Haskell, such as GHC Haskell,
are only obligated to be nonstrict such that they have the same
behavior with respect to bottom; they are not required to take
a particular approach to how the program executes or how
efficiently it does so.

The essence of nonstrictness is that you can have an expres-
sion which results in a value, even if bottom or infinite data
lurks within. For example, the following would only work in a
nonstrict language:

Prelude> fst (1, undefined)

1

Prelude> snd (undefined, 2)

2
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The idea is that any given implementation of nonstrictness
is acceptable as long as it respects when it’s supposed to return
a value successfully or bottom out.

27.3 Outside in, inside out

Strict languages evaluate inside out; nonstrict languages like
Haskell evaluate outside in. Outside in means that evaluation
proceeds from the outermost parts of expressions and works
inward based on what values are forced. This means the order
of evaluation and what gets evaluated can vary depending on
inputs.

The following example is written in a slightly arcane way
to make the evaluation order more obvious:

possiblyKaboom =

\f -> f fst snd (0, undefined)

-- booleans in lambda form

true :: a -> a -> a

true = \a -> (\b -> a)

false :: a -> a -> a

false = \a -> (\b -> b)

When we apply possiblyKaboom to true, true is the 𝑓 , fst is
the 𝑎, and snd is the 𝑏. Semantically, case matches, guards
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expressions, and if-then-else expressions could all be rewritten
in this manner (they are not in fact decomposed this way by the
compiler), by nesting lambdas and reducing from the outside
in:

(\f ->

f fst snd (0, undefined))

(\a -> (\b -> a))

(\a -> (\b -> a)) fst snd (0, undefined)

(\b -> fst) snd (0, undefined)

fst (0, undefined)

0

The next example is written in more normal Haskell but
will return the same result. When we apply the function to
True here, we case on the True to return the first value of the
tuple:

possiblyKaboom b =

case b of

True -> fst tup

False -> snd tup

where tup = (0, undefined)

The bottom is inside a tuple, and the tuple is bound inside
of a lambda that cases on a boolean value and returns either the
first or second element of the tuple. Since we start evaluating
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from the outside, as long as this function is only ever applied
to True, that bottom will never cause a problem. However, at
the risk of stating the obvious, we do not encourage you to
write programs with bottoms lying around willy-nilly.

When we say evaluation works outside in, we’re talking
about evaluating a series of nested expressions, and not only
are we starting from the outside and working in, but we’re also
only evaluating some of the expressions some of the time. In
Haskell, we evaluate expressions when we need them rather
than when they are first referred to or constructed. This is one
of the ways in which nonstrictness makes Haskell expressive
— we can refer to values before we’ve done the work to create
them.

This pattern applies to data structures and lambdas alike.
You’ve already seen the effects of outside-in evaluation in the
chapter on folds. Outside-in evaluation is why we can take the
length of a list without touching any of the contents. Consider
the following:

-- using an old definition of foldr

foldr k z xs = go xs

where

go [] = z

go (y:ys) = y `k` go ys

c = foldr const 'z' ['a'..'e']
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Expanding the foldr in 𝑐:

c = const 'z' "abcde" = go "abcde"

where

go [] = 'z'

go ('a':"bcde") = 'a' `const` go "bcde"

-- So the first step of evaluating

-- of the fold here is:

const 'a' (go "bcde")

const x y = x

const 'a' (go "bcde") = 'a'

The second argument and step of the fold is never evalu-
ated:

const 'a' _ = 'a'

It doesn’t even matter if the next value is bottom:

Prelude> foldr const 'z' ['a', undefined]

'a'

This is outside-in showing itself. The const function was in
the outermost position so it was evaluated first.
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27.4 What does the other way look like?

In strict languages, you cannot ordinarily bind a computa-
tion to a name without having already done all the work to
construct it.

We’ll use this example program to compare inside-out and
outside-in (strict and non-strict) evaluation strategies:

module OutsideIn where

hypo :: IO ()

hypo = do

let x :: Int

x = undefined

s <- getLine

case s of

"hi" -> print x

_ -> putStrLn "hello"

For a strict language, this is a problem. A strict language
cannot evaluate hypo successfully unless the 𝑥 isn’t bottom.
This is because strict languages will force the bottom before
binding 𝑥. A strict language is evaluating each binding as it
comes into scope, not when a binding is used.

In nonstrict Haskell, you can probably guess how this’ll go:

Prelude> hypo
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s

hello

Prelude> hypo

hi

*** Exception: Prelude.undefined

The idea is that evaluation is driven by demand, not by
construction. We don’t get the exception unless we’re forcing
evaluation of 𝑥 — outside in.

27.5 Can we make Haskell strict?

Let’s see if we can replicate the results of a strict language,
though, which will give us a good picture of how Haskell is
different. We can add strictness here in the following manner:

hypo' :: IO ()

hypo' = do

let x :: Integer

x = undefined

s <- getLine

case x `seq` s of

"hi" -> print x

_ -> putStrLn "hello"

Running it will give this result:
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Prelude> hypo'

asd

*** Exception: Prelude.undefined

Why? Because this little seq function magically forces eval-
uation of the first argument if and when the second argument
has to be evaluated. Adding seq means that anytime 𝑠 is evalu-
ated, 𝑥 must also be evaluated. We’ll get into more detail in a
moment.

One thing to note before we investigate seq is that we man-
aged to run getLine before the bottom got evaluated, so this
still isn’t quite what a strict language would’ve done. Case
expressions are in general going to force evaluation. This
makes sense if you realize it has to evaluate the expression to
discriminate on the cases. A small example to demonstrate:

let b = ???

case b of

True -> ...

False

Here 𝑏 could be pretty much anything. It must evaluate 𝑏
to find out if the expression results in True or False.
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seq and ye shall find

Before we move any further with making Haskell stricter, let’s
talk about seq a little bit. One thing is that the type is, uh, a bit
weird:

seq :: a -> b -> b

Clearly there’s more going on here than flip const. It might
help to know that in some old versions of Haskell, it used to
have the type:

seq :: Eval a => a -> b -> b

Eval is short for evaluation to weak head normal form, and
it provided a method for forcing evaluation. Instances were
provided for all the types in base. It was elided in part so you
could use seq in your code without churning your polymor-
phic type variables and forcing a bunch of changes. With
respect to bottom, seq is defined as behaving in the following
manner:

seq bottom b = bottom

seq literallyAnythingNotBottom b = b

Now why does seq look like const’s gawky cousin? Because
evaluation in Haskell is demand driven, we can’t guarantee that
something will ever be evaluated period. Instead we have to
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create links between nodes in the graph of expressions where
forcing one expression will force yet another expression. Let’s
look at another example:

Prelude> :{

*Main| let wc x z =

*Main| let y =

*Main| undefined `seq` 'y' in x

*Main| :}

Prelude> foldr wc 'z' ['a'..'e']

'a'

Prelude> foldr (flip wc) 'z' ['a'..'e']

'z'

We never evaluated 𝑦, so we never forced the bottom. How-
ever, we can lash yet another data dependency from 𝑦 to 𝑥:

Prelude> let bot = undefined

Prelude> :{

*Main| let wc x z =

*Main| let y =

*Main| bot `seq` 'y'

*Main| in y `seq` x

*Main| :}

Prelude> foldr wc 'z' ['a'..'e']

*** Exception: Prelude.undefined

Prelude> foldr (flip wc) 'z' ['a'..'e']
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*** Exception: Prelude.undefined

Previously the evaluation dependency was between the
bottom value and 𝑦:

undefined `seq` y

-- forcing y necessarily forces undefined

y -> undefined

Changing the expression as we did caused the following to
happen:

undefined `seq` y `seq` x

-- forcing x necessarily forces y

-- forcing y necessarily forces undefined

x -> y -> undefined

We think of this as a chain reaction.
All we can do is chuck a life raft from one value to another

as a means of saying, “if you want to get him, you gotta get
through me!” We can even set our life-raft buddies adrift!
Check it out:
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notGonnaHappenBru :: Int

notGonnaHappenBru =

let x = undefined

y = 2

z = (x `seq` y `seq` 10, 11)

in snd z

The above will not bottom out! Our life-raft buddies are
bobbing in the ocean blue, with no tugboat evaluator to pull
them in.

seq and weak head normal form

What seq does is evaluate your expression up to weak head nor-
mal form. We’ve discussed it before, but if you’d like a deeper
investigation and contrast of weak head normal form and nor-
mal form, we strongly recommend Simon Marlow’s Parallel
and Concurrent Programming in Haskell3. WHNF evaluation
means it stops at the first data constructor or lambda. Let’s
test that hypothesis!

Prelude> let dc = (,) undefined undefined

Prelude> let noDc = undefined

Prelude> let lam = \_ -> undefined

Prelude> dc `seq` 1

1

3http://chimera.labs.oreilly.com/books/1230000000929

http://chimera.labs.oreilly.com/books/1230000000929
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Prelude> noDc `seq` 1

*** Exception: Prelude.undefined

Prelude> lam `seq` 1

1

Right-o. No surprises, right? Right? Okay.
Since dc has a data constructor, seq doesn’t need to care

about the values inside that constructor; weak head normal
form evaluation only requires it to evaluate the constructor.
On the other hand, noDc has no data constructor or lambda
outside the value, so there’s no head for the evaluation to stop
at. Finally, lam has a lambda outside the expression which has
the same effect on evaluation as a data constructor does.

Case matching also chains evaluation

This forcing behavior happens already without seq! For ex-
ample, when you case or pattern match on something, you’re
forcing the value you pattern matched on because it doesn’t
know which data constructor is relevant until it is evaluated
to the depth required to yield the depth of data constructors
you pattern matched. Let’s look at an example:
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data Test =

A Test2

| B Test2

deriving (Show)

data Test2 =

C Int

| D Int

deriving (Show)

forceNothing :: Test -> Int

forceNothing _ = 0

forceTest :: Test -> Int

forceTest (A _) = 1

forceTest (B _) = 2

forceTest2 :: Test -> Int

forceTest2 (A (C i)) = i

forceTest2 (B (C i)) = i

forceTest2 (A (D i)) = i

forceTest2 (B (D i)) = i

We’ll test forceNothing first:

Prelude> forceNothing undefined
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0

Prelude> forceNothing (A undefined)

0

It’ll never bottom out because it never forces anything. It’s
just a constant value that drops its argument on the floor. What
about forceTest?

Prelude> forceTest (A undefined)

1

Prelude> forceTest (B undefined)

2

Prelude> forceTest undefined

*** Exception: Prelude.undefined

We only get a bottom when the outermost Test value is
bottom because that’s the only value whose data constructors
we’re casing on. And then with forceTest2:

Prelude> forceTest2 (A (C 0))

0

Prelude> forceTest2 (A (C undefined))

*** Exception: Prelude.undefined

Prelude> forceTest2 (A undefined)

*** Exception: Prelude.undefined
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Prelude> forceTest2 undefined

*** Exception: Prelude.undefined

There we go: outside -> in.

Core Dump

Not the usual core dump you might be thinking of. In this
case, we’re talking about the underlying language that GHC
Haskell gets simplified to after the compiler has desugared our
code.

Our first means of determining strictness was by injecting
bottoms into our expressions and observing the evaluation.
Injecting bottoms everywhere allows us to see clearly what’s
being evaluated strictly and what’s not. Our second means of
determining strictness in Haskell is examining GHC Core4.

Here’s the example we’ll be working with:

module CoreDump where

discriminatory :: Bool -> Int

discriminatory b =

case b of

False -> 0

True -> 1

4https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType
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Load this up in GHCi in the following manner:

Prelude> :set -ddump-simpl

Prelude> :l code/coreDump.hs

[1 of 1] Compiling CoreDump

================ Tidy Core ==============

... some noise...

You should then get the following GHC Core output:

discriminatory :: Bool -> Int

[GblId, Arity=1,

Caf=NoCafRefs,

Str=DmdType]

discriminatory =

\ (b_aZJ :: Bool) ->

case b_aZJ of _ [Occ=Dead] {

False -> GHC.Types.I# 0;

True -> GHC.Types.I# 1

}

We’re not going to dissemble: GHC Core is a bit ugly. How-
ever, there are some means of cleaning it up. One is to use the
-dsuppress-all flag:

Prelude> :set -dsuppress-all



CHAPTER 27. NONSTRICTNESS 1649

Prelude> :r

Note that you may need to poke the file to force it to reload.
This then outputs:

discriminatory

discriminatory =

\ b_aZY ->

case b_aZY of _ {

False -> I# 0;

True -> I# 1

}

A titch more readable. The idea here is that the simpler
Core language gives us a clearer idea of when precisely some-
thing will be evaluated. For the sake of simplicity, we’ll revisit
a previous example:

forceNothing _ = 0

In Core, it looks like this:

forceNothing = \ _ -> I# 0#

We’re looking for case expressions in GHC Core to find out
where the strictness is in our code, because case expressions
must be evaluated. There aren’t any cases here, so it forces
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strictly5 nothing! The I# O# is the underlying representation
of an Int literal which is exposed in GHC Core. On with the
show!

Let’s see what the Core for forceTest looks like:

forceTest =

\ ds_d2oX ->

case ds_d2oX of _ {

A ds1_d2pI -> I# 1#;

B ds1_d2pJ -> I# 2#

}

From the GHC Core for this we can see that we force one
value, the outermost data constructors of the Test type. The
contents of those data constructors are given a name but never
used and so are never evaluated.

5HAAAAAAAAAAAA
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forceTest2 =

\ ds_d2n2 ->

case ds_d2n2 of _ {

A ds1_d2oV ->

case ds1_d2oV of _ {

C i_a1lo -> i_a1lo;

D i_a1lq -> i_a1lq

};

B ds1_d2oW ->

case ds1_d2oW of _ {

C i_a1lp -> i_a1lp;

D i_a1lr -> i_a1lr

}

}

With forceTest2 the outsideness and insideness shows more
clearly. In the outer part of the function, we do the same as
forceTest, but the difference is that we end up also forcing the
contents of the outer Test data constructors. The function has
four possible results that aren’t bottom and if it isn’t passed bot-
tom it’ll always force twice — once for Test and once for Test2.
It returns but does not itself force or evaluate the contents of
the Test2 data constructor.

In Core, a case expression always evaluates what it cases
on — even if no pattern matching is performed — whereas in
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Haskell proper, values are forced when matching on data con-
structors. We recommend reading the GHC documentation
on the Core language in the footnote above if you’d like to
leverage Core to understand your Haskell code’s performance
or behavior more deeply.

Now let us use this to analyze something:

discriminatory :: Bool -> Int

discriminatory b =

let x = undefined

in case b of

False -> 0

True -> 1

What does the Core for this look like?

discriminatory

discriminatory =

\ b_a10c ->

case b_a10c of _ {

False -> I# 0;

True -> I# 1

}

GHC is too clever for our shenanigans! It knows we’ll never
evaluate 𝑥, so it drops it. What if we force it to evaluate 𝑥 before
we evaluate 𝑏?
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discriminatory :: Bool -> Int

discriminatory b =

let x = undefined

in case x `seq` b of

False -> 0

True -> 1

Then the Core:

discriminatory =

\ b_a10D ->

let {

x_a10E

x_a10E = undefined } in

case

case x_a10E of _ {

__DEFAULT -> b_a10D

} of _ {

False -> I# 0;

True -> I# 1

}

What’s happened here is that there are now two case ex-
pressions, one nested in another. The nesting is to make the
evaluation of 𝑥 obligatory before evaluating 𝑏. This is how seq

changes your code.
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A Core difference In Haskell, case matching is strict — or, at
least, the pattern matching of it is — up to WHNF. In Core,
cases are always strict6 to WHNF. This doesn’t seem to be a
distinction that matters, but there are times when the distinc-
tion becomes relevant. In Haskell, this will not bottom out:

case undefined of { _ -> False}

When that gets transliterated into Core, it recognizes that
we didn’t actually use the case match for anything and drops
the case expression entirely, simplifying it to just the data
constructor False.

However, this Core expression is syntactically similar to the
Haskell above, but it will bottom out:

case undefined of { DEFAULT -> False }

Case in Core is strict even if there’s one case and it doesn’t
match on anything. Core and Haskell are not the same lan-
guage, but anytime you need to know if two expressions in
Haskell are the same, one way to know for sure is by examining
the Core.

6https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType#

Caseexpressions

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType#Caseexpressions
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType#Caseexpressions
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A little bit stricter now

Okay, we had a nice little digression there into wonderland!
Let’s get back to the point which is…we still haven’t quite man-
aged to accomplish what a strict language would have done
with our hypo function, because we did partially evaluate the
expression. We evaluated the 𝑠 which forced the 𝑥 which is
what finally gave us the exception. A strict language would not
even have evaluated 𝑠, because evaluating 𝑠 would depend on
the 𝑥 inside already being evaluated.

What if we want our Haskell program to do as a strict lan-
guage would’ve done?

hypo'' :: IO ()

hypo'' = do

let x :: Integer

x = undefined

s <- x `seq` getLine

case s of

"hi" -> print x

_ -> putStrLn "hello"

Notice we moved the seq to the earliest possible point in
our IO action. This one’ll just pop without so much as a by-
your-leave:

Prelude> hypo''
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*** Exception: Prelude.undefined

The reason is that we’re forcing evaluation of the bottom
before we evaluate getLine, which would have performed the
effect of awaiting user input. While this reproduces the ob-
servable results of what a strict language might have done,
it isn’t truly the same thing because we’re not firing off the
error upon the construction of the bottom. It’s not possible for
an expression to be evaluated until the path evaluation takes
through your program has reached that expression. In Haskell,
the tree doesn’t fall in the woods until you walk through the
forest and get to the tree. For that matter, the tree didn’t exist
until you walked up to it.

Exercises: Evaluate

Expand the expression in as much detail as possible. Then,
work outside-in to see what the expression evaluates to.

1. const 1 undefined

2. const undefined 1

3. flip const undefined 1

4. flip const 1 undefined

5. const undefined undefined



CHAPTER 27. NONSTRICTNESS 1657

6. foldr const 'z' ['a'..'e']

7. foldr (flip const) 'z' ['a'..'e']

27.6 Call by name, call by need

Another way we can talk about different evaluation strategies
is by distinguishing them on the basis of call by name, call by
need, and call by value.

1. Call by value: Argument expressions have been evaluated
before entering a function. The expressions that bindings
reference are evaluated before creating the binding. This
is conventionally called strict. This is inside-out evalua-
tion.

2. Call by name: Expressions can be arguments to a function
without having been evaluated, or in some cases, never
being evaluated. You can create bindings to expressions
without evaluating them first. Nonstrictness includes this
evaluation strategy. This is outside-in.

3. Call by need: This is the same as call by name, but expres-
sions are only evaluated once. This only happens some
of the time in GHC Haskell, usually when an expression
isn’t a lambda that takes arguments and also has a name.
Results are typically shared within that name only in GHC
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Haskell (that is, other implementations of Haskell may
choose to do things differently). This is also nonstrict and
outside-in.

27.7 Nonstrict evaluation changes what
we can do

We’ll cover normal order evaluation (the nonstrict strategy
Haskell prescribes for its implementations) in more detail later.
Now, we’ll look at examples of what nonstrictness enables. The
following will work in languages with a strict or a nonstrict
evaluation strategy:

Prelude> let myList = [1, 2, 3]

Prelude> tail myList

[2,3]

That works in either strict or nonstrict languages because
there is nothing there that can’t be evaluated. However, if we
keep in mind that undefined as an instance of bottom will throw
an error when forced:

Prelude> undefined

*** Exception: Prelude.undefined

We’ll see a difference between strict and nonstrict. This will
only work in languages that are nonstrict:
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Prelude> let myList = [undefined, 2, 3]

Prelude> tail myList

[2,3]

A strict language would have crashed on construction of
myList due to the presence of bottom. This is because strict
languages eagerly evaluate all expressions as soon as they
are constructed. The moment [undefined, 2, 3] was declared,
undefined would’ve been evaluated as an argument to (:) and
raised the exception. In Haskell, however, nonstrict evaluation
means that bottom value won’t be evaluated unless it is needed
for some reason.

Take a look at the next example and, before going on, see
if you can figure out whether it will throw an exception and
why:

Prelude> head $ sort [1, 2, 3, undefined]

When we call head on a list that has been passed to sort, we
only need the lowest value in the list and that’s all the work we
will do. The problem is that in order for sort to know what the
lowest value is, it must evaluate undefined which then throws
the error.
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27.8 Thunk Life

A thunk is used to reference suspended computations that
might be performed or computed at a later point in your pro-
gram. You can get into considerably more detail7 on this topic,
but essentially thunks are computations not yet evaluated up
to weak head normal form. If you read the GHC notes on
this you’ll see references to head normal form — it’s the same
thing as weak head normal form.

Not all values get thunked

We’re going to be using the GHCi command sprint in this
section as one means of showing when something is thunked.
You may remember this from the Lists chapter, but let’s refresh
our memories a bit.

The sprint command allows us to show what has been eval-
uated already by printing in the REPL. An underscore is used
to represent values that haven’t been evaluated yet. We noted
before that this command can have some quirky behavior, al-
though this chapter will explain some of the things that cause
those seemingly unpredictable behaviors.

Let’s start with a simple example:

Prelude> let myList = [1, 2] :: [Integer]

7https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
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Prelude> :sprint myList

myList = [1,2]

Wait a second — what happened here? Why is the list shown
fully evaluated when it’s not been needed by anything? This
is an opportunistic strictness. GHC will not thunk (and thus
delay) data constructors. Data constructors are known to be
constant, which justifies the safety of the optimization. The
data constructors here are cons (:), the Integers, and the empty
list — all of them are constants.

But aren’t data constructors functions? Data constructors
are like functions when they’re unapplied, and constants once
they are fully applied. Since all the data constructors in the
above example are fully applied already, evaluating to weak
headnormal formmeans evaluating everything because there’s
nothing left to apply.

Now back to the thunkery.
A graph of the values of myList looks like:

myList

|

:

/ \

1 :

/ \
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2 :

/ \

3 []

Here there aren’t any unevaluated thunks; it’s just the final
values that have been remembered. However, if we make it
more polymorphic:

Prelude> let myList2 = [1, 2, 3]

Prelude> :t myList2

myList2 :: Num t => [t]

Prelude> :sprint myList2

myList2 = _

we’ll see an unevaluated thunk represented by the under-
score at the very top level of the expression. Since the type
is not concrete, there’s an implicit function Num a -> a under-
neath, awaiting application to something that will force it to
evaluate to a concrete type. There’s nothing here triggering
that evaluation, so the whole list remains an unevaluated thunk.
We’ll get into more detail about how typeclass constraints eval-
uate soon.

GHC will also stop opportunistically evaluating as soon as
it hits a computation:

Prelude> let xs = [1, 2, id 1] :: [Integer]

Prelude> :sprint xs
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myList = [1,2,_]

It’s a trivial computation, but GHCi conveniently leaves it
be. Here’s the thunk graph for the above:

myList

|

:

/ \

1 :

/ \

2 :

/ \

_ []

Now let us consider another case that might be slightly
confusing initially for some:

Prelude> let xs = [1, 2, id 1] :: [Integer]

Prelude> let xs' = xs ++ undefined

Prelude> :sprint xs'

myList' = _

Whoa whoa whoa. What’s going on here? The whole thing
is thunked because it’s not in weak head normal form. Why
isn’t it in weak head normal form already? Because the out-
ermost term isn’t a data constructor like (:). The outermost
term is the function (++):
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myList' = (++) _ _

The function is outermost, despite the fact that it is super-
ficially an infix operator, because the function is the lambda.
The arguments are passed into the function body to be evalu-
ated.

27.9 Sharing is caring

Sharing here roughly means what we’ve implied above: that
when a computation is named, the results of evaluating that
computation can be shared between all references to that name
without re-evaluating it. We care about sharing because mem-
ory is finite, even today in the land of chickens in every pot
and smartphones in every pocket. The idea here is that non-
strictness is a fine thing, but call-by-name semantics aren’t
always enough to make it sufficiently efficient. What is suffi-
ciently efficient? That depends on context and whether it’s
your dissertation or not.

One of the points of confusion for people when trying to
figure out how GHC Haskell really runs code is that it turns
sharing on and off (that is, it oscillates between call-by-need
and call-by-name) based on necessity and what it thinks will
produce faster code. Part of the reason it can do this at all
without breaking your code is because the compiler knows
when your code does or does not perform I/O.
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Using trace to observe sharing

The base library has a module named Debug.Trace that has
functions useful for observing sharing. We’ll mostly use trace

here, but feel free to poke around for whatever else might catch
your fancy. Debug.Trace is a means of cheating the type system
and putting a putStrLnwithout having IO in the type. This is def-
initely something you want to restrict to experimentation and
education; do not use it as a logging mechanism in production
code — it won’t do what you think. However, it does give us a
convenient means of observing when things evaluate.

Let us demonstrate how we can use this to see when things
get evaluated:

Prelude> import Debug.Trace

Prelude> let a = trace "a" 1

Prelude> let b = trace "b" 2

Prelude> a + b

b

a

3

This isn’t an example of sharing, but it demonstrates how
trace can be used to observe evaluation. We can see that 𝑏
got printed first because that was the first argument that the
addition function evaluated, but you cannot and should not
rely on the evaluation order of the arguments to addition.
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Here we’re talking about the order in which the arguments to
a single application of addition are forced, not associativity.
You can count on addition being left associative, but within
each pairing, which in the pair of arguments gets forced is not
guaranteed.

Let’s look at a longer example and see how it shows us where
the evaluations occur:

import Debug.Trace (trace)

inc = (+1)

twice = inc . inc

howManyTimes =

inc (trace "I got eval'd" (1 + 1))

+ twice

(trace "I got eval'd" (1 + 1))

howManyTimes' =

let onePlusOne =

trace "I got eval'd" (1 + 1)

in inc onePlusOne + twice onePlusOne

Prelude> howManyTimes

I got eval'd
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I got eval'd

7

Prelude> howManyTimes'

I got eval'd

7

Cool, with that in mind, let’s talk about ways to promote
and prevent sharing.

What promotes sharing

Kindness. Also, names. Names turn out to be a pretty good
way to make GHC share something, if it could’ve otherwise
been shared. First, let’s consider the example of something
that won’t get shared:

Prelude> import Debug.Trace

Prelude> let x = trace "x" (1 :: Int)

Prelude> let y = trace "y" (1 :: Int)

Prelude> x + y

x

y

2

This seems intuitive and reasonable, but the values of 𝑥
and 𝑦 cannot be shared because they have different names.
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So, even though they have the same value, they have to be
evaluated separately.

GHC does use this intuition that you’ll expect results to be
shared when they have the same name to make performance
more predictable. If we add two values that have the same
name, it will get evaluated once and only once:

Prelude> import Debug.Trace

Prelude> let a = trace "a" (1 :: Int)

Prelude> a + a

a

2

Prelude> a + a

2

Indirection won’t change this either:

Prelude> let x = trace "x" (1 :: Int)

Prelude> (id x) + (id x)

x

2

Prelude> (id x) + (id x)

2

GHC knows what’s up, despite the addition of identity func-
tions. Notice the second time we ran it, it didn’t evaluate 𝑥 at
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all. The value of 𝑥 is now held there in memory so whenever
your program calls 𝑥, it already knows the value.

In general, GHC relies on an intuition around names and
sharing to make performance more predictable. However,
this won’t always behave in ways you expect. Consider the
case of a list with a single character…and a String with a sin-
gle character. They’re actually the same thing, but the way
they get constructed is not. This produces differences in the
opportunistic strictness GHC will engage in.

Prelude> let a = Just ['a']

Prelude> :sprint a

a = Just "a"

Prelude> let a = Just "a"

Prelude> :sprint a

a = Just _

So uh, what gives? Well, the deal is that the strictness analy-
sis driven optimization GHC performs here is limited to data
constructors only, no computation! But where’s the function
you ask? Well if we turn on our night vision goggles…

Prelude> let a = Just ['a']

returnIO

(: ((Just (: (C# 'a') ([])))
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`cast` ...) ([]))

Prelude> let a = Just "a"

returnIO

(: ((Just (unpackCString# "a"#))

`cast` ...) ([]))

The issue is that a call to a primitive function in GHC.Base

interposes between Just and a CString literal. The reason string
literals aren’t actually lists of characters at time of construction
is mostly to present optimization opportunities, such as when
we convert string literals into ByteString or Text values. More
on that in the next chapter!

What subverts or prevents sharing

Sometimes we don’t want sharing. Sometimes we want to
know why sharing didn’t happen when we did want it. Un-
derstanding what kinds of things prevent sharing is therefore
useful.

Inlining expressions where they get used prevents sharing
because it creates independent thunks that will get computed
separately. In this example, instead of declaring the value of 𝑓
to equal 1, we make it a function:

Prelude> :{



CHAPTER 27. NONSTRICTNESS 1671

Prelude| let f :: a -> Int

Prelude| f _ = trace "f" 1

Prelude| :}

Prelude> f 'a'

f

1

Prelude> f 'a'

f

1

In the next examples you can directly compare the dif-
ference between assigning a name to the value of (2 + 2) versus
inlining it directly. When it’s named, it gets shared and not
re-evaluated:

Prelude> let a :: Int; a = trace "a" 2 + 2

Prelude> let b = (a + a)

Prelude> b

a

8

Prelude> b

8

Here we saw 𝑎 once, which makes sense as we expect the
result to get shared.

Prelude> :{
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Prelude| let c :: Int;

Prelude| c = (trace "a" 2 + 2)

Prelude| + (trace "a" 2 + 2)

Prelude| :}

Prelude> c

a

a

8

Prelude> c

8

Here an expression equivalent to 𝑎 didn’t get shared be-
cause the two occurrences of the expression weren’t bound
to the same name. This is a trivial example of inlining. This
illustrates the difference in how things evaluate when an ex-
pression is bound to a name versus when it gets repeated via
inlining in an expression.

Being a function with explicit, named arguments also pre-
vents sharing. Haskell is not fully lazy; it is merely nonstrict,
so it is not required to remember the result of every func-
tion application for a given set of arguments, nor would it be
desirable given memory constraints. A demonstration:

Prelude> :{

Prelude| let f :: a -> Int

Prelude| f = trace "f" const 1
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Prelude| :}

Prelude> f 'a'

f

1

Prelude> f 'a'

1

Prelude> f 'b'

1

The explicit, named arguments part here is critical! Eta re-
duction (i.e., writing pointfree code, thus dropping the named
arguments) will change the sharing properties of your code.
This will be explained in more detail in the next chapter.

Typeclass constraints also prevent sharing. If we forget to
add a concrete type to an earlier example, we evaluate 𝑎 twice:

Prelude> let blah = Just 1

Prelude> fmap ((+1) :: Int -> Int) blah

Just 2

Prelude> :sprint blah

blah = _

Prelude> :t blah

blah :: Num a => Maybe a

Prelude> let bl = Just 1

Prelude> :t bl
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bl :: Num a => Maybe a

Prelude> :sprint bl

bl = _

Prelude> fmap (+1) bl

Just 2

Prelude> let fm = fmap (+1) bl

Prelude> :t fm

fm :: Num b => Maybe b

Prelude> :sprint fm

fm = _

Prelude> fm

Just 2

Prelude> :sprint fm

fm = _

Prelude> :{

Prelude| let fm' =

Prelude| fmap ((+1) :: Int -> Int) bla

Prelude| :}

Prelude> fm'

Just eval'd 1

2

Prelude> :sprint fm'

fm' = Just 2
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Again, that’s because typeclass constraints are a function
in Core. They are awaiting application to something that will
make them become concrete types. We’re going to go into a
bit more detail on this in the next section.

Implicit parameters are implemented similarly to type-
class constraints and have the same effect on sharing. Sharing
doesn’t work in the presence of constraints (typeclasses or im-
plicit parameters) because typeclass constraints and implicit
parameters decay into function arguments when the compiler
simplifies the code:

Prelude> :set -XImplicitParams

Prelude> import Debug.Trace

Prelude> :{

Prelude| let add :: (?x :: Int) => Int

Prelude| add = trace "add" 1 + ?x

Prelude| :}

Prelude> let ?x = 1 in add

add

2

Prelude> let ?x = 1 in add

add

2

We won’t talk about implicit parameters too much more as
wedon’t think they’re a good idea for general use. Inmost cases
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where you believe you want implicit parameters, more likely
you want Reader, ReaderT, or a plain old function argument.

Why polymorphic values never seem to get
forced

As we’ve said, GHC engages in opportunistic strictness when it
can do so safely without making an otherwise valid expression
result in bottom. This is one of the things that confounds the
use of sprint to observe evaluation in GHCi — GHC will often
be opportunistically strict with data constructors if it knows
the contents definitely can’t be a bottom, such as when they’re
a literal value. It gets more complicated when we consider
that, under the hood, typeclass constraints are simplified into
additional arguments.

Reusing a similar example from earlier we will first observe
this in action, then we’ll talk about why it happens:

Prelude> :{

Prelude| let blah =

Prelude| Just (trace "eval'd 1" 1)

Prelude| :}

Prelude> :sprint blah

blah = _

Prelude> :t blah

blah :: Num a => Maybe a
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Prelude> fmap (+1) blah

Just eval'd 1

2

Prelude> fmap (+1) blah

Just eval'd 1

2

Prelude> :sprint blah

blah = _

So we have at least some evidence that we’re re-evaluating.
Does it change when it’s concrete?

Prelude> :{

Prelude| let blah =

Prelude| Just (trace "eval'd 1"

Prelude| (1 :: Int))

Prelude| :}

Prelude> :sprint blah

blah = Just _

The Int value being obscured by trace prevented oppor-
tunistic evaluation there. However, eliding the Num a => a in
favor of a concrete type does bring sharing back:

Prelude> fmap (+1) blah

Just eval'd 1

2
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Prelude> fmap (+1) blah

Just 2

Now our trace gets emitted only once. The idea here is that
after the typeclass constraints get simplified to the underlying
GHC Core language, they’re really function arguments.

It doesn’t matter if you use a function that accepts a concrete
type and forces the Num a => a, it’ll re-do the work on each
evaluation because of the typeclass constraint. For example:

Prelude> fmap ((+1) :: Int -> Int) blah

Just 2

Prelude> :sprint blah

blah = _

Prelude> :t blah

blah :: Num a => Maybe a

Prelude> let bl = Just 1

Prelude> :t bl

bl :: Num a => Maybe a

Prelude> :sprint bl

bl = _

Prelude> fmap (+1) bl

Just 2

Prelude> let fm = fmap (+1) bl

Prelude> :t fm

fm :: Num b => Maybe b
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Prelude> :sprint fm

fm = _

Prelude> fm

Just 2

Prelude> :sprint fm

fm = _

Prelude> :{

Prelude| let fm' =

Prelude| fmap ((+1) :: Int -> Int)

Prelude| blah

Prelude| :}

Prelude> fm'

Just eval'd 1

2

Prelude> :sprint fm'

fm' = Just 2

So, what’s the deal here with the typeclass constraints? It’s as
if Num a => a were really Num a -> a. In Core, they are. The only
way to apply that function argument is to reach an expression
that provides a concrete type satisfying the constraint. Here’s
a demonstration of the difference in behavior using values:

Prelude> let poly = 1

Prelude> let conc = poly :: Int

Prelude> :sprint poly
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poly = _

Prelude> :sprint conc

conc = _

Prelude> poly

1

Prelude> conc

1

Prelude> :sprint poly

poly = _

Prelude> :sprint conc

conc = 1

Num a => a is a function awaiting an argument, while Int is
not. Behold the Core:

module Blah where

a :: Num a => a

a = 1

concrete :: Int

concrete = 1

Prelude> :l code/blah.hs

[1 of 1] Compiling Blah
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================ Tidy Core ==============

Result size of Tidy Core =

{terms: 9, types: 9, coercions: 0}

concrete

concrete = I# 1

a

a =

\ @ a1_aRN $dNum_aRP ->

fromInteger $dNum_aRP (__integer 1)

Do you see how 𝑎 has a lambda? In order to know what
instance of the typeclass to deploy at any given time, the type
has to be concrete. As we’ve seen, types can become concrete
through assignment or type defaulting. Whichever way it
becomes concrete, the result is the same: once the concrete
type is known, the typeclass constraint function gets applied
to the typeclass instance for that type. If you don’t declare the
concrete type, it will have to re-evaluate this function every
time, because it can’t know that the type didn’t change some-
where along the way. So, because it remains a function and
unapplied functions are not shareable values, polymorphic
expressions can’t be shared.

Mostly the behavior doesn’t change when it involves values
defined in terms of functions, but if you forget the type con-
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cretion it’ll stay _ and you’ll be confused and upset. Observe:

Prelude> :{

Prelude| let blah :: Int -> Int

Prelude| blah x = x + 1

Prelude| :}

Prelude> let woot = blah 1

Prelude> :sprint blah

blah = _

Prelude> :sprint woot

woot = _

Prelude> woot

2

Prelude> :sprint woot

woot = 2

Values of a concrete, constant type can be shared, once
evaluated. Polymorphic values may be evaluated once but still
not shared because, underneath, they continue to be functions
awaiting application.

Preventing sharing on purpose

When do we want to prevent sharing? When we don’t want
a large datum hanging out in memory that was calculated to
provide a much smaller answer. First an example that demon-
strates sharing:
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Prelude> import Debug.Trace

Prelude> let f x = x + x

Prelude> f (trace "hi" 2)

hi

4

We see “hi” once because 𝑥 got evaluated once. In the next
example, 𝑥 gets evaluated twice:

Prelude> let f x = (x ()) + (x ())

Prelude> f (\_ -> trace "hi" 2)

hi

hi

4

Using unit () as arguments to 𝑥 turned 𝑥 into a very trivial,
weird-looking function, which is why the value of 𝑥 can no
longer be shared. It doesn’t matter much since that “function”
𝑥 doesn’t really do anything.

OK, that was weird; maybe it’ll be easier to see if we use
some more traditional-seeming argument to 𝑥:

Prelude> let f x = (x 2) + (x 10)

Prelude> f (\x -> trace "hi" (x + 1))

hi

hi

14
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Using a lambda that mentions the argument in some fash-
ion disables sharing:

Prelude> let g = \_ -> trace "hi" 2

Prelude> f g

hi

hi

4

However, this worked in part because the function passed
to 𝑓 had the argument as part of the declaration, even though
it used underscore to ignore it. Notice what happens if we
make it pointfree:

Prelude> let g = const (trace "hi" 2)

Prelude> f g

hi

4

We’re going to get into a little more detail about this dis-
tinction in the next chapter, but the idea here is that functions
aren’t shared when there are named arguments but are when
the arguments are elided, as in pointfree. So, one way to pre-
vent sharing is adding named arguments.
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Forcing sharing

You can force sharing by giving your expression a name. The
most common way of doing this is with let.

-- calculates 1 + 1 twice

(1 + 1) * (1 + 1)

-- shares 1 + 1 result under 'x'

let x = 1 + 1

in x * x

With that in mind, if you take a look at the forever function
in Control.Monad, you might see something a little mysterious
looking:

forever :: (Monad m) => m a -> m b

forever a = let a' = a >> a' in a'

Why the let expression? Well, we want sharing here so that
running a monadic action indefinitely doesn’t leak memory.
The sharing here causes GHC to overwrite the thunk as it runs
each step in the evaluation, which is quite handy. Otherwise,
it would keep constructing new thunks indefinitely and that
would be very unfortunate.
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27.10 Refutable and irrefutable patterns

When we’re talking about pattern matching, it’s important to
be aware that there are refutable and irrefutable patterns. An
irrefutable pattern is one which will never fail to match. A
refutable pattern is one which has potential failures. Often,
the problem is one of specificity.

refutable :: Bool -> Bool

refutable True = False

refutable False = True

irrefutable :: Bool -> Bool

irrefutable x = not x

oneOfEach :: Bool -> Bool

oneOfEach True = False

oneOfEach _ = True

Remember, the pattern is refutable or not, not the function
itself. The function refutable is refutable because each case is
refutable; each case could be given an input that fails to match.
In contrast, irrefutable has an irrefutable pattern; that is, its
pattern doesn’t rely on matching with a specific value.

In the case of oneOfEach, the first pattern is refutable because
it pattern matches on the True data constructor. irrefutable
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and the second match of oneOfEach are irrefutable because they
don’t need to look inside the data they are applied to.

That said, the second pattern match of oneOfEach being ir-
refutable isn’t terribly semantically meaningful as Haskell will
have to inspect the data to see if it matches the first case any-
way.

The irrefutable function works for any inhabitant (all two
of them) of Bool because it doesn’t specify which Bool value in
the pattern to match. You could think of an irrefutable pattern
as one which will never fail to match. If an irrefutable pattern
for a particular value comes before a refutable pattern, the
refutable pattern will never get invoked.

This little function appeared in an earlier chapter, but we’ll
bring it back for a quick demonstration:

isItTwo :: Integer -> Bool

isItTwo 2 = True

isItTwo _ = False

In the case of Bool, the order of matching True and False

specifically doesn’t matter, but in cases like isItTwo where one
case is specific and the other is a catchall otherwise case, the
ordering will certainly matter. You can reorder the expressions
of isItTwo to see what happens, although it’s probably clear.
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Lazy patterns

Lazy patterns are also irrefutable.

strictPattern :: (a, b) -> String

strictPattern (a,b) = const "Cousin It" a

lazyPattern :: (a, b) -> String

lazyPattern ~(a,b) = const "Cousin It" a

The tilde is how one makes a pattern match lazy. A caveat
is that since it makes the pattern irrefutable, you can’t use
it to discriminate cases of a sum — it’s useful for unpacking
products that might not get used.

Prelude> strictPattern undefined

*** Exception: Prelude.undefined

Prelude> lazyPattern undefined

"Cousin It"

And as we see here, in the lazy pattern version since const

didn’t actually need 𝑎 from the tuple, we never forced the
bottom. The default behavior is to just go ahead and force
it before evaluating the function body, mostly for more pre-
dictable memory usage and performance.
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27.11 Bang patterns

Sometimes we want to evaluate an argument to a function
whether we use it or not. We can do this with seq as in the
following example:

{-# LANGUAGE BangPatterns #-}

module ManualBang where

doesntEval :: Bool -> Int

doesntEval b = 1

manualSeq :: Bool -> Int

manualSeq b = b `seq` 1

Or we can also do it with a bang pattern on 𝑏 — note the
exclamation point:

banging :: Bool -> Int

banging !b = 1

Let’s look at the Core for those three:
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doesntEval

doesntEval =

\ _ -> I# 1#

manualSeq

manualSeq =

\ b_a1ia ->

case b_a1ia of _

{ __DEFAULT -> I# 1# }

banging

banging =

\ b_a1ib ->

case b_a1ib of _

{ __DEFAULT -> I# 1# }

If you try passing bottom to each function you’ll find that
manualSeq and banging are forcing their argument despite not
using it for anything. Remember that forcing something is
expressed in Core as a case expression and that case evaluates
up to weak head normal form in Core.

Bang patterns in data

When we evaluate the outer data constructor of a datatype,
at times we’d also like to evaluate the contents to weak head
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normal form just like with functions.
One way to see the difference between strict and nonstrict

constructor arguments is how they behave when they are un-
defined. Let’s look at an example (note the exclamation mark):

data Foo = Foo Int !Int

first (Foo x _) = x

second (Foo _ y) = y

Since the nonstrict argument isn’t evaluated by second, pass-
ing in undefined doesn’t cause a problem:

> second (Foo undefined 1)

1

But the strict argument can’t be undefined, even if we don’t
use the value:

> first (Foo 1 undefined)

*** Exception: Prelude.undefined

You could do this manually with seq, but it’s a little tedious.
Here’s another example with two equivalent datatypes, one
of them with strictness annotations on the contents and one
without:
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{-# LANGUAGE BangPatterns #-}

module ManualBang where

data DoesntForce =

TisLazy Int String

gibString :: DoesntForce -> String

gibString (TisLazy _ s) = s

-- note the exclamation marks again

data BangBang =

SheShotMeDown !Int !String

gimmeString :: BangBang -> String

gimmeString (SheShotMeDown _ s) = s

Then testing those in GHCi:

Prelude> let x = TisLazy undefined "blah"

Prelude> gibString x

"blah"

Prelude> let s = SheShotMeDown

Prelude> let x = s undefined "blah"

Prelude> gimmeString x

"*** Exception: Prelude.undefined
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The idea here is that in some cases, it’s cheaper to just com-
pute something than to construct a thunk and then evaluate
it later. This case is particularly common in numerics code
where you have a lot of Int and Double values running around
which are individually cheap to conjure. If the values are both
cheap to compute and small, then you may as well make them
strict unless you’re trying to dance around bottoms. Types
with underlying primitive representations Int and Double most
assuredly qualify as small.

A good rule to follow is lazy in the spine, strict in the leaves!
Sometimes a “leak” isn’t really a leak but temporarily exces-
sive memory that subsides because you made 1,000,000 tiny
values into less-tiny thunks when you could’ve just computed
them as your algorithm progressed.

27.12 Strict and StrictData

If you’re using GHC 8.0 or newer, you can avail yourself of the
Strict and StrictData extensions. The key thing to realize is
Strict/StrictData are just letting you avoid putting in pervasive
uses of seq and bang patterns yourself. They don’t add any-
thing to the semantics of the language. Accordingly, it won’t
suddenly make lazy data structures defined elsewhere behave
differently, although it does make functions defined in that
module processing lazy data structures behave differently.
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Let’s play with that (if you have GHC 8.0 or newer; if not,
this code won’t work):

{-# LANGUAGE Strict #-}

module StrictTest where

blah x = 1

main = print (blah undefined)

The above will bottom out because blah is defined under
the module with the Strict extension and will get translated
into the following:

blah x = x `seq` 1

-- or with bang patterns

blah !x = 1

So, the Strict and StrictData extensions are a means of
avoiding noise when everything or almost everything in a
module is supposed to be strict. You can use the tilde for ir-
refutable patterns to recover laziness on a case by case basis:
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{-# LANGUAGE Strict #-}

module LazyInHostileTerritory where

willForce x = 1

willNotForce ~x = 1

Admittedly these are glorified renames of const, but it doesn’t
matter for the purposes of demonstratingwhat happens. Here’s
what we’ll see in GHCi when we pass them bottom:

Prelude> willForce undefined

*** Exception: Prelude.undefined

Prelude> willNotForce undefined

1

So even when you’re using the Strict extension, you can
selectively recover laziness when desired.

27.13 Adding strictness

Now we shall examine how applying strictness to a datatype
and operations we’re already familiar with can change how
they behave in the presence of bottom through the list type.
This is intended to be mostly demonstrative rather than a
practical example.
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module StrictTest1 where

data List a =

Nil

| Cons a (List a) deriving Show

sTake :: Int -> List a -> List a

sTake n _

| n <= 0 = Nil

sTake n Nil = Nil

sTake n (Cons x xs) =

(Cons x (sTake (n-1) xs))

twoEls = Cons 1 (Cons undefined Nil)

oneEl = sTake 1 twoEls

The name of the module here is a bit of a misnomer. List
here is lazy, just like the built-in [a] in the Haskell prelude.
Our take derivative named sTake is lazy too.

Now let’s load up this code in our REPL and test it out:

Prelude> twoEls

Cons 1 (Cons

*** Exception: Prelude.undefined

Prelude> oneEl
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Cons 1 Nil

Now let’s experiment with adding strictness to different
parts of our program and observe what changes in our code’s
behavior.

First we’re going to add BangPatterns so that we have a syn-
tactically convenient way to denote when and where we want
strictness:

module StrictTest2 where

data List a =

Nil

| Cons !a (List a) deriving Show

sTake :: Int -> List a -> List a

sTake n _

| n <= 0 = Nil

sTake n Nil = Nil

sTake n (Cons x xs) =

(Cons x (sTake (n-1) xs))

twoEls = Cons 1 (Cons undefined Nil)

oneEl = sTake 1 twoEls
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Noting the placement of the exclamation marks denoting
strictness, let’s run it in GHCi and see if it does what we want:

Prelude> twoEls

Cons 1 *** Exception: Prelude.undefined

Prelude> oneEl

Cons 1 Nil
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{-# LANGUAGE BangPatterns #-}

module StrictTest3 where

data List a =

Nil

| Cons !a (List a) deriving Show

sTake :: Int -> List a -> List a

sTake n _

| n <= 0 = Nil

sTake n Nil = Nil

sTake n (Cons x !xs) =

(Cons x (sTake (n-1) xs))

twoEls = Cons 1 (Cons undefined Nil)

oneEl = sTake 1 twoEls

threeElements = Cons 2 twoEls

oneElT = sTake 1 threeElements

We added strictness to the 𝑥𝑠 so that sTake is going to force
more of the list. Let’s see what happens:

Prelude> twoEls

Cons 1 *** Exception: Prelude.undefined
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Prelude> oneEl

*** Exception: Prelude.undefined

Prelude> threeElements

Cons 2 (Cons 1

*** Exception: Prelude.undefined

Prelude> oneElT

Cons 2 Nil

Let’s add more strictness:
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module StrictTest4 where

data List a =

Nil

| Cons !a !(List a) deriving Show

sTake :: Int -> List a -> List a

sTake n _

| n <= 0 = Nil

sTake n Nil = Nil

sTake n (Cons x xs) =

(Cons x (sTake (n-1) xs))

twoEls = Cons 1 (Cons undefined Nil)

oneEl = sTake 1 twoEls

And run it again:

Prelude> twoEls

*** Exception: Prelude.undefined

Prelude> oneEl

*** Exception: Prelude.undefined

So, what’s the upshot of our experiments with adding strict-
ness here?
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N Cons sTake

1 Cons a (List a) Cons x xs

2 Cons !a (List a) Cons x xs

3 Cons !a (List a) Cons x !xs

4 Cons !a !(List a) Cons x xs

Then the results themselves:

N twoEls oneEl

1 Cons 1 (Cons *** Cons 1 Nil

2 Cons 1 *** Cons 1 Nil

3 Cons 1 *** ***

4 *** ***

You can see clearly what adding strictness in different places
does to our evaluation in terms of bottom.

27.14 Chapter Exercises

Strict List

Try messing around with the following list type and compare
what it does with the bang-patterned list variants we experi-
mented with earlier:
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{-# LANGUAGE Strict #-}

module StrictList where

data List a =

Nil |

Cons a (List a)

deriving (Show)

take' n _ | n <= 0 = Nil

take' _ Nil = Nil

take' n (Cons x xs) =

(Cons x (take' (n-1) xs))

map' _ Nil = Nil

map' f (Cons x xs) =

(Cons (f x) (map' f xs))

repeat' x = xs where xs = (Cons x xs)

main = do

print $ take' 10 $ map' (+1) (repeat' 1)
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What will :sprint output?

We show you a definition or multiple definitions, you deter-
mine what :sprint will output when passed the bindings listed
in your head before testing it.

1. let x = 1

2. let x = ['1']

3. let x = [1]

4. let x = 1 :: Int

5. let f = \x -> x

let x = f 1

6. let f :: Int -> Int; f = \x -> x

let x = f 1

Will printing this expression result in bottom?

1. snd (undefined, 1)

2. let x = undefined

let y = x `seq` 1 in snd (x, y)

3. length $ [1..5] ++ undefined
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4. length $ [1..5] ++ [undefined]

5. const 1 undefined

6. const 1 (undefined `seq` 1)

7. const undefined 1

Make the expression bottom

Using only bang patterns or seq, make the code bottom out
when executed.

1. x = undefined

y = "blah"

main = do

print (snd (x, y))

27.15 Follow-up resources

1. The Incomplete Guide to Lazy Evaluation (in Haskell);
Heinrich Apfelmus
https://hackhands.com/guide-lazy-evaluation-haskell/

2. Chapter 2. Basic Parallelism: The Eval Monad; Parallel
and Concurrent Programming in Haskell; Simon Marlow;
http://chimera.labs.oreilly.com/books/1230000000929/ch02.html

https://hackhands.com/guide-lazy-evaluation-haskell/
http://chimera.labs.oreilly.com/books/1230000000929/ch02.html


CHAPTER 27. NONSTRICTNESS 1706

3. Lazy evaluation illustrated for Haskell divers; Takenobu
Tani

4. A Natural Semantics for Lazy Evaluation; John Launch-
bury

5. AnOperational Semantics for Parallel Call-by-Need; Clem
Baker-Finch, David King, Jon Hall and Phil Trinder



Chapter 28

Basic libraries

Bad programmers worry
about the code. Good
programmers worry
about data structures and
their relationships.

Linus Torvalds

1707
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28.1 Basic libraries and data structures

Data structures are kind of important. Insofar as computers
are fast, they aren’t getting much faster — at least, the CPU
isn’t. This is usually a lead-in for a parallelism/concurrency
sales pitch. But this isn’t that book.

The data structures you choose to represent your problem
affect the speed and memory involved in processing your data,
perhaps to a larger extent than is immediately obvious. At the
level of your program, making the right decision about how
to represent your data is the first important step to writing
efficient programs. In fact, your choice of data structure can
affect whether it’s worthwhile or even makes sense to attempt
to parallelize something.

This chapter is here to help you make the decision of the
optimal data structures for your programs. We can’t prescribe
one or the other of similar data structures because how ef-
fective they are will depend a lot on what you’re trying to
do. So, our first step will be to give you tools to measure for
yourself how different structures will perform in your context.
We’ll also cover some of the mistakes that can cause your
memory usage and execution time to explode.

This chapter will

• demonstrate how to measure the usage of time and space
in your programs;
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• offer guidelines on when weak head normal form or nor-
mal form are appropriate when benchmarking code;

• define constant applicative forms and explain argument
saturation;

• demonstrate and critically evaluate when to use different
data structures in different circumstances;

• sacrifice some jargon for the jargon gods.

We’re going to kick this chapter off with some benchmark-
ing.

28.2 Benchmarking with Criterion

It’s a common enough thing to want to know how fast our
code is. If you can’t benchmark properly, then you can’t know
if you used six microseconds or only five, and can only ask
yourself, “Well, do I feel lucky?”

Well, do ya, punk?
If you’d rather not trust your performance to guesswork,

the best way to measure performance is to sample many times
in order to establish a confidence interval. Fortunately, that
work has already been done for us in the wonderful library
criterion1 by Bryan O’Sullivan.

1 http://hackage.haskell.org/package/criterion

http://hackage.haskell.org/package/criterion
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As it happens, criterion comes with a pretty nice tutorial2,
but we’ll still work through an example so you can follow along
with this chapter. In our toy program here, we’re looking to
write a total version of (!!) which returns Maybe to make the
bottoms unnecessary. When you compile code for bench-
marking, make sure you’re using -O or -O2 in the build flags to
GHC. Those can be specified by running GHC manually:

-- with stack

$ stack ghc -- -O2 bench.hs

-- without stack

$ ghc -O2 bench.hs

Or via the Cabal setting ghc-options3.
Let’s get our module set up:
2http://www.serpentine.com/criterion/tutorial.html
3https://www.haskell.org/cabal/users-guide/

http://www.serpentine.com/criterion/tutorial.html
https://www.haskell.org/cabal/users-guide/
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module Main where

import Criterion.Main

infixl 9 !?

_ !? n | n < 0 = Nothing

[] !? _ = Nothing

(x:_) !? 0 = Just x

(_:xs) !? n = xs !? (n-1)

myList :: [Int]

myList = [1..9999]

main :: IO ()

main = defaultMain

[ bench "index list 9999"

$ whnf (myList !!) 9998

, bench "index list maybe index 9999"

$ whnf (myList !?) 9998

]

Our version of (!!) shouldn’t have anything too surprising
going on. We have declared that it’s a left-associating infix op-
erator (infixl) with a precedence of 9. We haven’t talked much
about the associativity or fixity of operators since Chapter 2.
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This is the same associativity and precedence as the normal
(!!) operator in base.

Criterion.Main is the convenience module to import from
criterion if you’re running benchmarks in a Main module. Usu-
ally you’ll have a benchmark stanza in your Cabal file that be-
haves like an executable. It’s also possible to do it as a one-off
using Stack:

$ stack build criterion

$ stack ghc -- -O2 benchIndex.hs

$ ./benchIndex

Here main uses a function from criterion called whnf. The
functions whnf and nf (also in criterion), as you might guess,
refer to weak head normal form and normal form, respectively.
Weak head normal form, as we said before, evaluates to the
first data constructor. That means that if your outermost data
constructor is a Maybe, it’s only going to evaluate enough to find
out if it’s a Nothing or a Just — if there is a Just a, it won’t count
the cost of evaluating the 𝑎 value.

Using nf would mean you wanted to include the cost of
fully evaluating the 𝑎 as well as the first data constructor. The
key when determining whether you want whnf or nf is to think
about what you’re trying to benchmark and if reaching the first
data constructor will do all the work you’re trying to measure
or not. We’ll talk more about what the difference is here and
how to decide which you need in a bit.
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In our case, what we want is to compare two things: the
weak head normal form evaluation of the original indexing
operator and that of our safe version, applied to the same long
list. We only need weak head normal form because (!!) and
(!?) don’t return a data constructor until they’ve done the
work already, as we can see by taking a look at the first three
cases:

_ !? n | n < 0 = Nothing

[] !? _ = Nothing

(x:_) !? 0 = Just x

These first three cases aren’t reached until you’ve gone
through the list as far as you’re going to go. The recursive case
below doesn’t return a data constructor. Instead, it invokes
itself repeatedly until one of the above cases is reached. Eval-
uating to WHNF cannot and does not pause in a self-invoked
recursive case like this:

(_:xs) !? n = xs !? (n-1)

-- Self function call,

-- not yet in weak head.

When evaluated to weak head normal form the above will
continue until it reaches the index, you reach the element, or
you hit the end of the list. Let us consider an example:
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[1, 2, 3] !? 2

-- matches final case

(_: [2, 3]) !? 2

= [2, 3] !? (2-1)

-- not a data constructor, keep going

[2, 3] !? 1

-- matches final case

(_: [3]) !? 1

= [3] !? (1-1)

-- not a data constructor, keep going

[3] !? 0

-- matches Just case

(x:[]) !? 0 = Just x

-- We stop at Just

In the above, we happen to know 𝑥 is 3, but it’ll get thunked
if it wasn’t opportunistically evaluated on construction of the
list.

Next, let’s look at the types of the following functions:
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defaultMain :: [Benchmark] -> IO ()

whnf :: (a -> b) -> a -> Benchmarkable

nf :: Control.DeepSeq.NFData b =>

(a -> b) -> a -> Benchmarkable

The reason it wants a function it can apply an argument
to is so that the result isn’t shared, which we discussed in the
previous chapter. We want it to re-perform the work for each
sampling in the benchmark results, so this design prevents
that sharing. Keep in mind that if you want to use your own
datatype with nf, which has an NFData constraint you will need
to provide your own instance. You can find examples in the
deepseq library on Hackage.

Our goal with this example is to equalize the performance
difference between (!?) and (!!). In this case, we’ve derived
the implementation of (!?) from the Report version of (!!).
Here’s how it looks in base:
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-- Go to the Data.List docs in `base`,

-- click the source link for (!!)

#ifdef USE_REPORT_PRELUDE

xs !! n | n < 0 =

error "Prelude.!!: negative index"

[] !! _ =

error "Prelude.!!: index too large"

(x:_) !! 0 = x

(_:xs) !! n = xs !! (n-1)

#else

However, after you run the benchmarks, you’ll find our
version based on the above isn’t quite as fast.4 Fair enough! It
turns out that most of the time when there’s a Report version as
well as a non-Report version of a function in base, it’s because
they found a way to optimize it and make it faster. If we look
down from the #else, we can find the version that replaced it:

4Note that if you get weird benchmark results, you’ll want to resort to the old pro-
grammer’s trick of wiping your build. With Stack you’d run stack clean, with Cabal it’d
be cabal clean. Inexplicable things happen sometimes. You shouldn’t need to do this
regularly, though.
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-- negIndex and tooLarge are a bottom

-- and a const bottom respectively.

{-# INLINABLE (!!) #-}

xs !! n

| n < 0 = negIndex

| otherwise =

foldr

(\x r k -> case k of

0 -> x

_ -> r (k-1))

tooLarge xs n

The non-Report version is written in terms of foldr, which
often benefits from the various rewrite rules and optimizations
attached to foldr — rules we will not be explaining here at all,
sorry. This version also has a pragma letting GHC know it’s
okay to inline the code of the function where it’s used when
the cost estimator thinks it’s worthwhile to do so. So, let’s
change our version of this operator to match this version to
make use of those same optimizations:
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infixl 9 !?

{-# INLINABLE (!?) #-}

xs !? n

| n < 0 = Nothing

| otherwise =

foldr

(\x r k ->

case k of

0 -> Just x

_ -> r (k-1))

(const Nothing) xs n

If you run this, you’ll find that…things have not improved.
So, what can we do to improve the performance of our opera-
tor?

Well, unless you added one already, you’ll notice the type
signature is missing. If you add a declaration that the number
argument is an Int, it should now perform the same as the
original:
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infixl 9 !?

{-# INLINABLE (!?) #-}

(!?) :: [a] -> Int -> Maybe a

xs !? n

| n < 0 = Nothing

| otherwise =

foldr

(\x r k ->

case k of

0 -> Just x

_ -> r (k-1))

(const Nothing) xs n

Change the function in your module to reflect this and run
the benchmark again to check.

The issue was that the version with an inferred type was
defaulting the Num a => a to Integer which compiles to a less
efficient version of this code than does one that specifies the
type Int. The Int version will turn into a more primitive, faster
loop. You can verify this for yourself by specifying the type
Integer and re-running the code or comparing the GHC Core
output for each version.
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More on whnf and nf

Let’s return now to the question of when we should use whnf

or nf. You want to use whnf when the first data constructor is a
meaningful indicator of whether the work you’re interested in
has been done. Consider the simplistic example of a program
that is meant to locate some data in a database, say, a person’s
name and whether there are any known addresses for that
person. If it finds any data, it might print that information
into a file.

The part you’re probably trying to judge the performance of
is the lookup function that finds the data and assesses whether
it exists, not how fast your computer can print the list of ad-
dresses into a file. In that case, what you care about is at the
level of weak head normal form, and whnf will tell you more
precisely how long it is taking to find the data and decide
whether you have a Nothing or a Just a.

On the other hand, if you are interested in measuring the
time it takes to print your results, in addition to looking up the
data, then you may want to evaluate to normal form. There
are times when measuring that makes sense. We’ll see some
examples shortly.

For now, let us consider each indexing operator, the (!!)

that exists in base and the one we’ve written that uses Maybe

instead of bottoms.
In the former case, the final result has the type 𝑎. The
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function doesn’t stop recursing until it either returns bottom
or the value at that index. In either case, it’s done all the work
you’d care to measure — traversing the list. Evaluation to
WHNF means stopping at your 𝑎 value.

In the latter case with Maybe, evaluation to WHNF means
stopping at either Just or Nothing. It won’t evaluate the contents
of the Just data constructor under whnf, but it will under nf.
Either is sufficient for the purposes of the benchmark as, again,
we’re measuring how quickly this code reaches the value at an
index in the list.

Let us consider an example with a few changes:
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module Main where

import Criterion.Main

import Debug.Trace

myList :: [Int]

myList = trace "myList was evaluated"

([1..9999] ++ [undefined])

-- your version of (!?) here

main :: IO ()

main = defaultMain

[ bench "index list 9999"

$ whnf (myList !!) 9998

, bench "index list maybe index 9999"

$ nf (myList !?) 9999

]

Notice what we did here. We added an undefined in what
will be the index position 9999. With the (!!) operator, we are
accessing the index just before that bottom value because there
is no outer data constructor (such as Nothing or Just) where we
could stop the evaluation. Both whnf and nf will necessarily
force that bottom value.
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We also modified the whnf to nf for the benchmark of (!?).
Now it will evaluate the undefined it found at that index under
the bottom in the first run of the benchmark and fail:

benchmarking index list maybe index 9999

criterion1: Prelude.undefined

A function value that returned bottom instead of a data
constructor would’ve also acted as a stopping point for WHNF.
Consider the following:

Prelude> (Just undefined) `seq` 1

1

Prelude> (\_ -> undefined) `seq` 1

1

Prelude> ((\_ -> Just undefined) 0) `seq` 1

1

Prelude> ((\_ -> undefined) 0) `seq` 1

*** Exception: Prelude.undefined

Much of the time, whnf is going to cover the thing you’re
trying to benchmark.

Making the case for nf

Let us now look at an example of when whnf isn’t sufficient for
benchmarking, something that uses guarded recursion, unlike
(!!):
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module Main where

import Criterion.Main

myList :: [Int]

myList = [1..9999]

main :: IO ()

main = defaultMain

[ bench "map list 9999" $

whnf (map (+1)) myList

]

The above is an example of guarded recursion because a
data constructor is interposed between each recursion step.
The data constructor is the cons cell when we’re talking about
map. Guarded recursion lets us consume the recursion steps
up to weak head normal form incrementally on demand.

Importantly, foldr can be used to implement guarded and
unguarded recursion, depending entirely on what the folding
function does rather than any special provision made by foldr

itself. So what happens when we benchmark this?

Linking bin/bench ...

time

8.844 ns (8.670 ns .. 9.033 ns)
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0.998 R² (0.997 R² .. 1.000 R²)

mean

8.647 ns (8.567 ns .. 8.751 ns)

std dev

293.3 ps (214.7 ps .. 412.9 ps)

variance introduced by outliers:

57% (severely inflated)

Well, that’s suspect. Does it really take 8.8 nanoseconds
to traverse a 10,000 element linked list in Haskell? We saw
an example of how long it should take, roughly. This is an
example of our benchmark being too lazy. The issue is that
map uses guarded recursion and the cons cells of the list are
interposed between each recursion of map. You may recall this
from the lists and folds chapters. So, it ends up evaluating
only this far:

(_ : _)

Ah, that first data constructor. It has neither done the work
of incrementing the value nor has it traversed the rest of the
list. It’s just sitting there at the first cons cell. Using bottoms,
you can progressively prove to yourself what whnf is evaluating
by replacing things and re-running the benchmark:
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-- is it applying (+1)?

myList = (undefined : [2..9999])

-- Is it going any further in the list?

myList :: [Int]

myList = (undefined : undefined)

-- This should s'plode because

-- it'll be looking for that first

-- data constructor or (->) to stop at

myList :: [Int]

myList = undefined

No matter, we can fix this!

-- change this bit

whnf (map (+1)) myList

-- into:

nf (map (+1)) myList

Then we get:

time

122.5 μs (121.7 μs .. 123.9 μs)

0.999 R² (0.998 R² .. 1.000 R²)
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mean

123.0 μs (122.0 μs .. 125.6 μs)

std dev

5.404 μs (2.806 μs .. 9.323 μs)

That is considerably more realistic considering we’ve eval-
uated the construction of a whole new list. This is slower than
the indexing operation because we’re not just kicking a new
value out, we’re also constructing a new list.

In general when deciding between whnf and nf, ask yourself,
“when I have reached the first data constructor, have I done
most or all of the work that matters?” Be careful not to use nf

too much. If you have a function that returns a nontrivial data
structure or collection for which it’s already done all the work
to produce, nf will make your code look excessively slow and
lead you on a wild goose chase.

28.3 Profiling your programs

We’re going to do our best to convey what you should know
about profiling programs with GHC and what we think is con-
ceptually less well covered, but we aren’t going to presume to
replace the GHC User Guide. We strongly recommend you
read the guide5 for more information.

5https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html
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Profiling time usage

Sometimes rather than seeing how fast our programs are, we
want to know why they’re slow or fast and where they’re spend-
ing their time. To that end, we use profiling. First, let’s put
together a simple example for motivating this:

-- profilingTime.hs

module Main where

f :: IO ()

f = do

print ([1..] !! 999999)

putStrLn "f"

g :: IO ()

g = do

print ([1..] !! 9999999)

putStrLn "g"

main :: IO ()

main = do

f

g

Given that we traverse 10 times as much list structure in the



CHAPTER 28. BASIC LIBRARIES 1729

case of 𝑔, we believe we should see something like 10 times
as much CPU time spent in 𝑔. We can do the following to
determine if that’s the case:

$ stack ghc -- -prof -fprof-auto \

> -rtsopts -O2 profile.hs

./profile +RTS -P

cat profile.prof

Breaking down what each flag does:

1. -prof enables profiling. Profiling isn’t enabled by default
because it can lead to slower programs but this generally
isn’t an issue when you’re investigating the performance
of your programs. Used alone, -prof will require you to
annotate cost centers manually, places for GHC to mark
for keeping track of how much time is spent evaluating
something.

2. -fprof-auto assigns all bindings not marked inline a cost
center named after the binding. This is fine for little stuff
or otherwise not terribly performance-sensitive stuff, but
if you’re dealing with a large program or one sensitive
to perturbations from profiling, it may be better to not
use this and instead assign your “SCCs” manually. SCC is
what the GHC documentation calls a cost center.
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3. -rtsopts enables you to pass GHC RTS options to the gen-
erated binary. This is optional so you can get a smaller
binary if desired. We need this to tell our program to
dump the profile to the .prof file named after our pro-
gram.

4. -O2 enables the highest level of program optimizations.
This is wise if you care about performance but -O by itself
also enables optimizations, albeit somewhat less aggres-
sive ones. Either option can make sense when bench-
marking; it’s a case by case thing, but most Haskell pro-
grammers feel pretty free to default to -O2.

After examining the .prof file which contains the profiler
output, this is roughly what we’ll see:

Sun Feb 14 21:34 2016

Time and Allocation

Profiling Report (Final)

profile +RTS -P -RTS

total time = 0.22 secs

(217 ticks @ 1000 us, 1 processor)

total alloc = 792,056,016 bytes

(excludes profiling overheads)
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COST CENTRE MODULE %time %alloc ticks bytes

g Main 91.2 90.9 198 720004344

f Main 8.8 9.1 19 72012568

...later noise snipped,

we care about the above...

And indeed, 91.2% time spent in 𝑔, 8.8% time spent in 𝑓 would
seem to validate our hypothesis here.

Time isn’t the only thing we can profile. We’d also like
to know about the space (or memory) different parts of our
program are responsible for using.

Profiling heap usage

We have measured time; now we shall measure space. Well,
memory anyway; we’re not astrophysicists. We’re going to
keep this quick and boring so that we might be able to get to
the good stuff:
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module Main where

import Control.Monad

blah :: [Integer]

blah = [1..1000]

main :: IO ()

main =

replicateM_ 10000 (print blah)

ghc -prof -fprof-auto -rtsopts -O2 loci.hs

./loci +RTS -hc -p

hp2ps loci.hp

If you open the loci.ps postscript file with your PDF reader
of choice, you’ll see how much memory the program used
over the time the program ran. Note that you’ll need the
program to run a minimum amount of time for the profiler
to get any samples of the heap size.

28.4 Constant applicative forms

Whenwe’re talking aboutmemoryusage and sharing inHaskell,
we have to also talk about CAFs: constant applicative forms.
CAFs are expressions that have no free variables and are held
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in memory to be shared with all other expressions in a module.
They can be literal values or partially applied functions that
have no named arguments.

We’re going to construct a very large CAF here. Notice we
are mapping over an infinite list and want to know how much
memory this uses. You might consider betting on a lot:

module Main where

incdInts :: [Integer]

incdInts = map (+1) [1..]

main :: IO ()

main = do

print (incdInts !! 1000)

print (incdInts !! 9001)

print (incdInts !! 90010)

print (incdInts !! 9001000)

print (incdInts !! 9501000)

print (incdInts !! 9901000)

Now we can profile that:

Thu Jan 21 23:25 2016

Time and Allocation

Profiling Report (Final)



CHAPTER 28. BASIC LIBRARIES 1734

cafSaturation +RTS -p -RTS

total time = 0.28 secs

(283 ticks @ 1000 us, 1 processor)

total alloc = 1,440,216,712 bytes

(excludes profiling overheads)

COST CENTRE MODULE %time %alloc

incdInts Main 90.1 100.0

main Main 9.9 0.0

-- some irrelevant bits elided

COST CENTRE MODULE no. entries %time %alloc

MAIN MAIN 45 0 0.0 0.0

CAF Main 89 0 0.0 0.0

incdInts Main 91 1 90.1 100.0

main Main 90 1 9.9 0.0

Note how incdInts is its own constant applicative form (CAF)
here apart from main. And notice the size of that memory
allocation. It’s because that mapping over an infinite list is a
top-level value that can be shared throughout a module, so it
must be evaluated and the results held in memory in order to
be shared.

CAFs include

• values;
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• partially applied functions without named arguments;

• fully applied functions such as incdInts above, although
that would be rare in real code.

CAFs can make some programs faster since you don’t have
to keep re-evaluating shared values; however, CAFs can be-
come memory-intensive quite quickly. The important take-
away is that, if you find your program using much more mem-
ory than you expected, find the golden CAF and kill it.

Fortunately, CAFs mostly occur in toy code. Real world
code is usually pulling the data from somewhere, which avoids
the problem of holding large amounts of data in memory.

Let’s look at a way to avoid creating a CAF by introducing
an argument into our incdInts example:

module Main where

-- not a CAF

incdInts :: [Integer] -> [Integer]

incdInts x = map (+1) x

main :: IO ()

main = do

print (incdInts [1..] !! 1000)

If you examine the profile:
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CAF

main

incdInts

Pointfree top-level declarations will be CAFs, but pointful
ones will not. We’d discussed this to some degree in the pre-
vious chapter as well. The reason the difference matters is
often not because of the total allocation reported by the pro-
file, which is often misleading anyway. Rather it’s important
because lists are as much control structures as data structures
and it’s very cheap in GHC to construct a list which is thrown
away immediately. Doing so might increase how much mem-
ory you allocate in total, but unlike a CAF, it won’t stay in your
heap which may lead to lower peak memory usage and the
runtime spending less time collecting garbage.

Indeed, this is not a standalone CAF. But what if we eta
reduce it (that is, remove its named arguments) so that it is
pointfree?
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module Main where

-- Gonna be a CAF this time.

incdInts :: [Integer] -> [Integer]

incdInts = map (+1)

main :: IO ()

main = do

print (incdInts [1..] !! 1000)

This time when you look at the profile, it’ll be its own CAF:

CAF

incdInts

main

incdInts

GREAT SCOTT!
It doesn’t really change the performance for something so

trivial, but you get the idea. The big difference between the
two is in the heap profiles. Check them and you will likely see
what we mean.

28.5 Map

We’re going to start our exploration of data structures with Map.
It’s worth pointing out here that most of the structures we’ll
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look at are, in some sense, replacements for the lists we have
depended on throughout the book. Lists and strings are useful
for a lot of things, but they’re not the most performant or even
the most useful way to structure your data. What is the most
performant or useful for any given program can vary, so we
can’t give a blanket recommendation that you should always
use any one of the structures we’re going to talk about. You
have to judge that based on what problems you’re trying to
solve and use benchmarking and profiling tools to help you
fine tune the performance.

Most of the data structures we’ll be looking at are in the
containers6 library. If you build it, Map will come. And also
Sequence and Set and some other goodies. You’ll notice a lot of
the data structures have a similar API, but each are designed
for different sets of circumstances.

We’ve used the Map type before to represent associations of
unique pairings of keys to values. You may remember it from
the Testing chapter in particular, where we used it to look up
Morse code translations of alphabetic characters. Those were
fun times, so carefree and innocent.

The structure of the Map type looks like this:
6http://hackage.haskell.org/package/containers

http://hackage.haskell.org/package/containers
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data Map k a

= Bin

{-# UNPACK #-}

!Size !k a

!(Map k a) !(Map k a)

| Tip

type Size = Int

You may recognize the exclamation marks denoting strict-
ness from the sections on bang patterns in the previous chapter.
Tip is a data constructor for capping off the branch of a tree.

If you’d like to find out about the unpacking of strict fields,
which is what the UNPACK pragma is for; see the GHC documen-
tation for more information.

What’s something that’s faster with Map?

Well, lookups by key in particular are what it’s used for. Con-
sider the following comparison of an association list and Data.Map:

module Main where

import Criterion.Main

import qualified Data.Map as M
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genList :: Int -> [(String, Int)]

genList n = go n []

where go 0 xs = ("0", 0) : xs

go n' xs =

go (n' - 1) ((show n', n') : xs)

pairList :: [(String, Int)]

pairList = genList 9001

testMap :: M.Map String Int

testMap = M.fromList pairList

main :: IO ()

main = defaultMain

[ bench "lookup one thing, list" $

whnf (lookup "doesntExist") pairList

, bench "lookup one thing, map" $

whnf (M.lookup "doesntExist") testMap

]

Association lists such as pairList are fine if you need some-
thing cheap and cheerful for a very small series of pairs, but
you’re better off using Map by default when you have keys and
values. You get a handy set of baked-in functions for looking
things up and an efficient means of doing so. Insert operations
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also benefit from being able to find the existing key-value pair
in Map more quickly than in association lists.

What’s slower with Map?

Using an Int as your key type is usually a sign you’d be better off
with a HashMap, IntMap, or Vector, depending on the semantics of
your problem. If you need good memory density and locality
— which will make aggregating and reading values of a large
Vector faster, then Map might be inappropriate and you’ll want
Vector instead.

28.6 Set

This is also in containers. It’s like a Map, but without the ‘value’
part of the key-value pair. You may be asking yourself, why
do I want only keys?

When we use Map, it has an Ord constraint on the functions
to ensure the keys are in order. That is one of the things that
makes lookups in Map particularly efficient. Knowing that the
keys will be ordered divides the problem space up by halves:
if we’re looking for the key 6 in a set of keys from 1-10, we
don’t have to search in the first half of the set because those
numbers are less than 6. Set, like Map, is structured associatively,
not linearly.
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Functions with Set have the same Ord constraint, but now
we don’t have key-value pairs — we only have keys. Another
way to think of it is the keys are now the values. That means
that Set represents a unique, ordered set of values.

Here is the datatype for Set:

data Set a

= Bin

{-# UNPACK #-}

!Size !a !(Set a) !(Set a)

| Tip

type Size = Int

It’s effectively equivalent to a Map type with unit values.

module Main where

import Criterion.Main

import qualified Data.Map as M

import qualified Data.Set as S

bumpIt (i, v) = (i + 1, v + 1)
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m :: M.Map Int Int

m = M.fromList $ take 10000 stream

where stream = iterate bumpIt (0, 0)

s :: S.Set Int

s = S.fromList $ take 10000 stream

where stream = iterate (+1) 0

membersMap :: Int -> Bool

membersMap i = M.member i m

membersSet :: Int -> Bool

membersSet i = S.member i s

main :: IO ()

main = defaultMain

[ bench "member check map" $

whnf membersMap 9999

, bench "member check set" $

whnf membersSet 9999

]

If you benchmark the above, you should get very similar
results for both, with Map perhaps being a smidgen slower than
Set. They’re similar because they’re nearly identical data struc-
tures in the containers library.
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There’s not much more to say. It has the same pros and
cons7 as Map, with the same performance of the core operations,
save that you’re more limited.

Exercise: Benchmark Practice

Make a benchmark to prove for yourself whether Map and Set

have similar performance. Try operations other than mem-
bership testing, such as insertion or unions.

28.7 Sequence

Sequence is a nifty datatype built atop finger trees; we aren’t
going to address finger trees in this book, unfortunately, but we
encourage you to check them out.8 Sequence appends cheaply
on the front and the back, which avoids a common problem
with lists where you can only cons to the front cheaply.

Here is the datatype for Sequence:
7HA HA GET IT?!
8see, for example, Finger Trees: A Simple General-purpose Data Structure by Ralf

Hinze and Ross Paterson
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newtype Seq a = Seq (FingerTree (Elem a))

-- Elem is so elements and nodes can be

-- distinguished in the types of the

-- implementation. Don't sweat it.

newtype Elem a = Elem { getElem :: a }

data FingerTree a

= Empty

| Single a

| Deep {-# UNPACK #-} !Int !(Digit a)

(FingerTree (Node a)) !(Digit a)

What’s faster with Sequence?

Updates (cons and append) to both ends of the data structure
and concatenation are what Sequence is particularly known for.
You won’t want to resort to using Sequence by default though,
as the list type is often competitive. Sequence will have more
efficient access to the tail than a list will. Here’s an example
where Sequence does better because the list is a bit big:
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module Main where

import Criterion.Main

import qualified Data.Sequence as S

lists :: [[Int]]

lists = replicate 10 [1..100000]

seqs :: [S.Seq Int]

seqs =

replicate 10 (S.fromList [1..100000])

main :: IO ()

main = defaultMain

[ bench "concatenate lists" $

nf mconcat lists

, bench "concatenate sequences" $

nf mconcat seqs

]

Note that in the above, a substantial amount of the time in
the benchmark is spent traversing the data structure because
we’re evaluating to normal form to ensure all the work is done.
Incidentally, this accentuates the difference between a list and
Sequence because it’s faster to index or traverse a sequence than
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a list. Consider the following:

module Main where

import Criterion.Main

import qualified Data.Sequence as S

lists :: [Int]

lists = [1..100000]

seqs :: S.Seq Int

seqs = S.fromList [1..100000]

main :: IO ()

main = defaultMain

[ bench "indexing list" $

whnf (\xs -> xs !! 9001) lists

, bench "indexing sequence" $

whnf (flip S.index 9001) seqs

]

The difference between list and Sequence in the above when
we ran the benchmark was two orders of magnitude.
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What’s slower with Sequence?

Sequence is a persistent data structure like Map, so the memory
density isn’t as good as it is with Vector (we’re getting there).
Indexing by Int will be faster with Vector as well. List will be
faster with consing and concatenation in some cases, if the
lists are small. When you know you need cheap appending
to the end of a long list, it’s worth giving Sequence a try, but
it’s better to base the final decision on benchmarking data if
performance matters.

28.8 Vector

The next data structure we’re going to look at is not in contain-
ers. It’s in its own library called, unsurprisingly, vector9. You’ll
notice it says vectors are “efficient arrays.” We’re not going to
look at arrays, or Haskell’s Array type, specifically here, though
you may already be familiar with the idea.

One rarely uses arrays, ormore specifically, Array10 inHaskell.
Vector is almost always what you want instead of an array. The
default Vector type is implemented as a slice wrapper of Array;
we can see this in the definition of the datatype:

9https://hackage.haskell.org/package/vector
10http://hackage.haskell.org/package/array

https://hackage.haskell.org/package/vector
http://hackage.haskell.org/package/array
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-- | Boxed vectors, supporting

-- efficient slicing.

data Vector a =

Vector {-# UNPACK #-} !Int

{-# UNPACK #-} !Int

{-# UNPACK #-} !(Array a)

deriving ( Typeable )

There are many variants of Vector, although we won’t dis-
cuss them all here. These include boxed, unboxed, immutable,
mutable, and storable vectors, but the plain version above is
the usual one you’d use. We’ll talk about mutable vectors in
their own section. Boxed means the vector can reference any
datatype you want; unboxed represents raw values without
pointer indirection.11 The latter can save a lot of memory but
is limited to types like Bool, Char, Double, Float, Int, Word, tuples
of unboxable values. Since a newtype is unlifted and doesn’t
introduce any pointer indirection, you can unbox any newtype
that contains an unboxable type.

When does one want a Vector in Haskell?

You want a Vector when
11 This book isn’t the right place to talk about what pointers are in detail. Briefly, they

are references to things in memory, rather than the things themselves.
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• you need memory efficiency close to the theoretical max-
imum for the data you are working with;

• your data access is almost exclusively in terms of indexing
via an Int value;

• you want uniform access times for accessing each element
in the data structure; and/or,

• you will construct a Vector once and read it many times (al-
ternatively, you plan to use a mutable Vector for ongoing,
efficient updates).

What’s this about slicing?

Remember this from the definition of Vector?

-- | Boxed vectors, supporting

-- efficient slicing.

Slicing refers to slicing off a portion, or creating a sub-array.
The Vector type is designed for making slicing much cheaper
than it otherwise would be. Consider the following:
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module Main where

import Criterion.Main

import qualified Data.Vector as V

slice :: Int -> Int -> [a] -> [a]

slice from len xs =

take len (drop from xs)

l :: [Int]

l = [1..1000]

v :: V.Vector Int

v = V.fromList [1..1000]

main :: IO ()

main = defaultMain

[ bench "slicing list" $

whnf (head . slice 100 900) l

, bench "slicing vector" $

whnf (V.head . V.slice 100 900) v

]

If you run this benchmark, Vector should be faster than
list. Why? Because when we constructed that new Vector with
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V.slice, all it had to do was the following:

-- from Data.Vector

instance G.Vector Vector a where

-- other methods elided

{-# INLINE basicUnsafeSlice #-}

basicUnsafeSlice j n (Vector i _ arr) =

Vector (i+j) n arr

What makes Vector nicer than lists and Array in this respect
is that when you construct a slice or view of another Vector, it
doesn’t have to construct as much new data. It returns a new
wrapper around the original underlying array with a new index
and offset with a reference to the same original Array. Doing
the same with an ordinary Array or a list would’ve required
copying more data. Speed comes from being sneaky and
skipping work.

Updating vectors

Persistent vectors are not great at handling updates on an
ongoing basis, but there are some situations in which they can
surprise you. One such case is fusion12. Fusion, or loop fusion,

12Stream Fusion; Duncan Coutts; http://code.haskell.org/~dons/papers/icfp088-coutts.
pdf

http://code.haskell.org/~dons/papers/icfp088-coutts.pdf
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf
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means that as an optimization the compiler can fuse several
loops into one megaloop and do it in one pass:

module Main where

import Criterion.Main

import qualified Data.Vector as V

testV' :: Int -> V.Vector Int

testV' n =

V.map (+n) $ V.map (+n) $

V.map (+n) $ V.map (+n)

(V.fromList [1..10000])

testV :: Int -> V.Vector Int

testV n =

V.map ( (+n) . (+n)

. (+n) . (+n) )

(V.fromList [1..10000])



CHAPTER 28. BASIC LIBRARIES 1754

main :: IO ()

main = defaultMain

[ bench "vector map prefused" $

whnf testV 9998

, bench "vector map will be fused" $

whnf testV' 9998

]

The vector library has loop fusion built in, so in a lot of
cases, such as with mapping, you won’t construct 4 vectors just
because you mapped four times. Through the use of GHC
RULES13 the code in testV’ will change into what you see in
testV. It’s worth noting that part of the reason this optimization
is sound is because we know what code performs effects and
what does not because we have types.

However, loop fusion isn’t a panacea and there will be situ-
ations where you want to change one element at a time, selec-
tively. Let’s consider more efficient ways of updating vectors.
We’re going to use the (//) operator from the vector library
here. It’s a batch update operator that allows you to modify
several elements of the vector at one time:

13https://wiki.haskell.org/GHC/Using_rules

https://wiki.haskell.org/GHC/Using_rules
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module Main where

import Criterion.Main

import Data.Vector ((//))

import qualified Data.Vector as V

vec :: V.Vector Int

vec = V.fromList [1..10000]

slow :: Int -> V.Vector Int

slow n = go n vec

where go 0 v = v

go n v = go (n-1) (v // [(n, 0)])

batchList :: Int -> V.Vector Int

batchList n = vec // updates

where updates =

fmap (\n -> (n, 0)) [0..n]

main :: IO ()

main = defaultMain

[ bench "slow" $ whnf slow 9998

, bench "batch list" $

whnf batchList 9998

]
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The issue with the first example is that we’re using a batch
API… but not in batch. It’s much cheaper (500–1000x in our
tests) to construct the list of updates all at once and then feed
them to the (//) function. We can make it even faster still by
using the update function that uses a vector of updates:

batchVector :: Int -> V.Vector Int

batchVector n = V.unsafeUpdate vec updates

where updates =

fmap (\n -> (n, 0))

(V.fromList [0..n])

Benchmarking this version should get you code that is about
1.4x faster. But we’re greedy. So we want more.

Mutable Vectors

“Moria! Moria! Wonder of the Northern world. Too
deep we delved there, and woke the nameless fear.”
— Glóin, The Fellowship of the Ring

What if we want something even faster? Although many
people don’t realize this about Haskell, we can obtain the bene-
fits of in-place updates if we so desire. What sets Haskell apart
is that we cannot do so in a way that compromises referential
transparency or the nice equational properties our expressions
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have. First we’ll demonstrate how to do this, then we’ll talk
about how this is designed to behave predictably.

Here comes an example:

module Main where

import Control.Monad.Primitive

import Control.Monad.ST

import Criterion.Main

import qualified Data.Vector as V

import qualified Data.Vector.Mutable as MV

import qualified

Data.Vector.Generic.Mutable as GM

mutableUpdateIO

:: Int

-> IO (MV.MVector RealWorld Int)

mutableUpdateIO n = do

mvec <- GM.new (n+1)

go n mvec

where go 0 v = return v

go n v =

(MV.write v n 0) >> go (n-1) v
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mutableUpdateST :: Int -> V.Vector Int

mutableUpdateST n = runST $ do

mvec <- GM.new (n+1)

go n mvec

where go 0 v = V.freeze v

go n v =

(MV.write v n 0) >> go (n-1) v

main :: IO ()

main = defaultMain

[ bench "mutable IO vector"

$ whnfIO (mutableUpdateIO 9998)

, bench "mutable ST vector"

$ whnf mutableUpdateST 9998

]

We’re going to talk about runST shortly. For the moment,
let’s concentrate on the fact that the mutable IO version is
approximately 7,000x faster than the original unbatched loop
in our tests. The ST version is about 1.5x slower than the IO

version, but still very fast. The added time in the ST version is
from freezing the mutable vector into an ordinary vector. We
won’t explain ST fully here, but, as we’ll see, it can be handy
when you want to temporarily make something mutable and
ensure no mutable references are exposed outside of the ST

monad.
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Here were the timings we got with the various vector oper-
ations on our computer:

Variant Microseconds

slow 133,600

batchList 244

batchVector 176

mutableUpdateST 32

mutableUpdateIO 19

Notably, most of the performance improvement was from
not doing something silly. Don’t resort to the use of mutation
via IO or ST except where you know it’s necessary. It’s worth
noting that given our test involved updating almost 10,000
indices in the vector, we spent an average of 1.9 nanoseconds
per update when we used mutability and 17.6 ns when we did
it in batch with a persistent vector.

A sidebar on the ST Monad

ST can be thought of as a mutable variant of the strict State

monad. From another angle, it could be thought of as IO

restricted exclusively to mutation which is guaranteed safe.
Safe how? ST is relying on the principle behind that old

philosophical saw about the tree that falls in the forest with no
one to see it fall. The idea behind this “morally effect-free” un-
derstanding of mutable state was introduced in the paper Lazy
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Functional State Threads.14 It unfreezes your data, mutates
it, then refreezes it so that it can’t mutate anymore. Thus it
manages to mutate and still maintain referential transparency.

For ST to work properly, the code that mutates the data must
not get reordered by the optimizer or otherwise monkeyed
with, much like the code in IO. So there must be something
underlying the type which prevents GHC ruining our day. Let
us examine the ST type:

Prelude> import Control.Monad.ST

Prelude> :info ST

type role ST nominal representational

newtype ST s a =

GHC.ST.ST (GHC.ST.STRep s a)

...

Prelude> import GHC.ST

Prelude> :info STRep

type STRep s a =

GHC.Prim.State# s

-> (# GHC.Prim.State# s, a #)

There’s a bit of ugliness in here that shouldn’t be too sur-
prising after you’ve seen GHC Core in the previous chapter.
What’s important is that 𝑠 is getting its type from the thing

14Lazy Functional State Threads; John Launchbury and Simon Peyton Jones
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you’re mutating, but it has no value-level witness. The State

monad here is therefore erasable; it can encapsulate this mu-
tation process and then melt away.

It’s important to understand that 𝑠 isn’t the state you’re
mutating. The mutation is a side effect of having entered
the closures that perform the effect. This strict, unlifted state
transformer monad happens to structure your code in a way
that preserves the intended order of the computations and
their associated effects.

By closures here, we mean lambda expressions. Of course
we do, because this whole book is one giant lambda expression
under the hood. Entering each lambda performs its effects.
The effects of a series of lambdas are not batched, because the
ordering is important when we’re performing effects, as each
new expression might depend on the effects of the previous
one. The effects are performed and then, if the value that
should result from the computation is also going to be used,
the value is evaluated.

So what is the 𝑠 type for? Well, while it’s all well and good to
ask politely that programmers freeze a mutable reference into
a persistent, immutable data structure as the final result…you
can’t count on that. ST enforces it at compile time by making
it so that 𝑠 will never unify with anything outside of the ST

Monad. The trick for this is called existential quantification15,
15Existentially quantified types; Haskell Wikibook

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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but having said this won’t necessarily mean anything to you
right now. But it does prevent you from accidentally leaking
mutable references to code outside ST, which could then lead
to code that does unpredictable things depending on the state
of the bits in memory.

Avoid dipping in and out of ST over and over. The thaws
and freezes will cost you in situations where it might have
been better to just use IO. Batching your mutation is best for
performance and code comprehensibility.

Exercises: Vector

Setup a benchmark harness with criterion to profile how much
memory boxed and unboxed vectors containing the same
data uses. You can combine this with a benchmark to give it
something to do for a few seconds. We’re not giving you a lot
because you’re going to have to learn to read documentation
and source code anyway.

28.9 String types

The title is a slight bit of a misnomer as we’ll talk about two
string (or text) types and one type for representing sequences
of bytes. Here’s a brief explanation of String, Text, and ByteString:
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String

You know what String is. It’s a type alias for a list of Char, yet
underneath it’s not quite as simple as an actual list of Char.

One of the benefits of using strings is the simplicity, and
they’re easy enough to explain. For most demonstration and
toy program purposes, they’re fine.

However, like lists themselves, they can be infinite. The
memory usage for even very large strings can get out of control
rapidly. Furthermore, they have very inefficient character-by-
character indexing into the String. The time taken to do a
lookup increases proportionately with the length of the list.

Text

This one comes in the text16 library on Hackage. This is best
when you have plain text, but need to store the data more
efficiently — particularly as it concerns memory usage.

We’ve used this one a bit in previous chapters, when we
were playing with OverloadedStrings. The benefits here are that
you get:

• compact representation in memory; and

• efficient indexing into the string.
16http://hackage.haskell.org/package/text

http://hackage.haskell.org/package/text
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However, Text is encoded as UTF-16, and that isn’t what
most people expect given UTF-8’s popularity. In Text’s defense,
UTF-16 is often faster due to cache friendliness via chunkier
and more predictable memory accesses.

Don’t trust your gut, measure

We mentioned Text has a more compact memory represen-
tation, but what do you think the memory profile for the
following program will look up? High first, then low, or low
first, then high?
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module Main where

import Control.Monad

import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified System.IO as SIO

-- replace "/usr/share/dict/words"

-- as appropriate

dictWords :: IO String

dictWords =

SIO.readFile "/usr/share/dict/words"

dictWordsT :: IO T.Text

dictWordsT =

TIO.readFile "/usr/share/dict/words"

main :: IO ()

main = do

replicateM_ 1000 (dictWords >>= print)

replicateM_ 1000

(dictWordsT >>= TIO.putStrLn)

The issue is that Text went ahead and loaded the entire file
into memory each of the ten times you forced the IO action.
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The readFile operation for String, however, was lazy and only
read as much of the file into memory as needed to print the
data to stdout. The proper way to handle incrementally pro-
cessing data is with streaming17, but this is not something we’ll
cover in detail in this book. However, there is a lazy way we
could change this:

-- Add the following to the module you

-- already made for profiling String

-- and Text.

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.IO as TLIO

dictWordsTL :: IO TL.Text

dictWordsTL =

TLIO.readFile "/usr/share/dict/words"

main :: IO ()

main = do

replicateM_ 1000 (dictWords >>= print)

replicateM_ 1000

(dictWordsT >>= TIO.putStrLn)

replicateM_ 1000

(dictWordsTL >>= TLIO.putStrLn)

17https://wiki.haskell.org/Pipes

https://wiki.haskell.org/Pipes
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Now you should see memory usage plummet again after
a middle plateau because you’re reading in as much text as
necessary to print, able to deallocate as you go. This is some,
but not all, of the benefits of streaming but we do strongly
recommend using streaming rather than relying on a lazy IO
API.

ByteString

This is not a string. Or text. Not necessarily anyway. ByteStrings
are sequences of bytes represented (indirectly) as a vector of
Word8 values. Text on a computer is made up of bytes, but it
has to have a particular encoding in order for it to be text.
Encodings of text can be ASCII, UTF-8, UTF-16, or UTF-32,
usually UTF-8 or UTF-16. The Text type encodes the data as
UTF-16, partly for performance. It’s often faster to read larger
chunks of data at a time from memory, so the 16-bits-per-rune
encoding of UTF-16 performs a bit better in most cases.

The main benefit of ByteString is that it’s easy to use via the
OverloadedStrings extension but is bytes instead of text. This
addresses a larger problem space than mere text.

The flip side of that, of course, is that it encompasses byte
data that isn’t comprehensible text. That’s a drawback if you
didn’t mean to permit non-text byte sequences in your data.
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ByteString examples

Here’s an example highlighting that ByteStrings are not always
text:

{-# LANGUAGE OverloadedStrings #-}

module BS where

import qualified Data.Text.IO as TIO

import qualified Data.Text.Encoding as TE

import qualified Data.ByteString.Lazy as BL

-- https://hackage.haskell.org/package/zlib

import qualified

Codec.Compression.GZip as GZip

We’re going to use the gzip compression format to compress
some data. This is so we have an example of data that includes
bytes that aren’t a valid text encoding.

input :: BL.ByteString

input = "123"

compressed :: BL.ByteString

compressed = GZip.compress input

The GZip module expects a lazy ByteString, probably so that
it’s streaming friendly.
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main :: IO ()

main = do

TIO.putStrLn $ TE.decodeUtf8 (s input)

TIO.putStrLn $

TE.decodeUtf8 (s compressed)

where s = BL.toStrict

The encodingmodule in the text library expects strict ByteStrings,
so we have to make them strict before attempting a decoding.
The second text decode will fail because there’ll be a byte that
isn’t recognizably correct as an encoding of text information.

ByteString traps

You might think to yourself at some point, “I’d like to convert
a String to a ByteString!” This is a perfectly reasonable thing to
want to do, but many Haskellers will mistakenly use the Char8

module in the bytestring library when that is not really what
they want. The Char8 module is really a convenience for data
that mingles bytes and ASCII data18 there. It doesn’t work for
Unicode and shouldn’t be used anywhere there’s even a hint
of possibility that there could be Unicode data. For example:

18Since ASCII is 7 bits and Char8 is 8 bits you could use the eighth bit to represent
Latin-1 characters. However, since you will usually intend to convert the Char8 data to
encodings like UTF-8 and UTF-16 which use the eighth bit differently that would be
unwise.
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module Char8ProllyNotWhatYouWant where

import qualified Data.Text as T

import qualified Data.Text.Encoding as TE

import qualified Data.ByteString as B

import qualified

Data.ByteString.Char8 as B8

-- utf8-string

import qualified

Data.ByteString.UTF8 as UTF8

-- Manual unicode encoding of Japanese text

-- GHC Haskell allows UTF8 in source files

s :: String

s = "\12371\12435\12395\12385\12399\12289\

\20803\27671\12391\12377\12363\65311"

utf8ThenPrint :: B.ByteString -> IO ()

utf8ThenPrint =

putStrLn . T.unpack . TE.decodeUtf8
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throwsException :: IO ()

throwsException =

utf8ThenPrint (B8.pack s)

bytesByWayOfText :: B.ByteString

bytesByWayOfText = TE.encodeUtf8 (T.pack s)

-- letting utf8-string do it for us

libraryDoesTheWork :: B.ByteString

libraryDoesTheWork = UTF8.fromString s

thisWorks :: IO ()

thisWorks = utf8ThenPrint bytesByWayOfText

alsoWorks :: IO ()

alsoWorks =

utf8ThenPrint libraryDoesTheWork

Then we go to run the code that attempts to get a ByteString

via the Char8 module which contains Unicode:

Prelude> throwsException

*** Exception: Cannot decode byte '\x93':

Data.Text.Internal.Encoding.decodeUtf8:

Invalid UTF-8 stream



CHAPTER 28. BASIC LIBRARIES 1772

You can use ord from Data.Char to get the Int value of the
byte of a character:

Prelude> import Data.Char (ord)

Prelude> :t ord

ord :: Char -> Int

Prelude> ord 'A'

65

Prelude> ord '\12435'

12435

The second example seems obvious, but when the data is
represented natively on your computer this is more useful.
Use non-English websites to get sample data to test.

We can now use the ordering of characters to find the first
character that breaks Char8:

Prelude> let xs = ['A'..'\12435']

Prelude> let cs = map (:[]) xs

Prelude> mapM_ (utf8ThenPrint . B8.pack) cs

... bunch of output ...

Then to narrow this down, we know we need to find what
came after the tilde and the \DEL character:

... some trial and error ...

Prelude> let f = take 3 $ drop 60
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Prelude> mapM_ putStrLn (f cs)

}

~

Hrm, okay, but where is this in the ASCII table? We can
use the opposite of the ord function from Data.Char, chr to
determine this:

Prelude> import Data.Char (chr)

Prelude> :t chr

chr :: Int -> Char

Prelude> map chr [0..128]

... prints the first 129 characters ...

What it printed corresponds to the ASCII table, which is
how UTF-8 represents the same characters. Now we can use
this function to narrow down precisely what our code fails at:

-- works fine

Prelude> utf8ThenPrint (B8.pack [chr 127])

-- fails

Prelude> utf8ThenPrint (B8.pack [chr 128])

*** Exception: Cannot decode byte '\x80':

Data.Text.Internal.Encoding.decodeUtf8:

Invalid UTF-8 stream
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Don’t use Unicode characters with the Char8 module! This
problem isn’t exclusive to Haskell — all programming lan-
guages must acknowledge the existence of different encodings
for text.

Char8 is bad mmmmmkay The Char8 module is not for Uni-
code or for text more generally! The pack function it contains
is for ASCII data only! This fools programmers because the
UTF-8 encoding of the English alphabet with some Latin ex-
tension characters intentionally overlaps exactly with the same
bytes ASCII uses to encode those characters. So the following
will work but is wrong in principle:

Prelude> utf8ThenPrint (B8.pack "blah")

blah

Getting a UTF-8 bytestring via the text or utf8-string li-
braries works fine, as you’ll see if you take a look at the result
of thisWorks and alsoWorks.

When would I use ByteString instead of Text for
textual data?

This does happen sometimes, usually because you want to
keep data that arrived in a UTF-8 encoding in UTF-8. Of-
ten this happens because you read UTF-8 data from a file or
network socket and you don’t want the overhead of bouncing
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it into and back out of Text. If you do this, you might want
to use newtypes to avoid accidentally mixing this data with
non-UTF-8 bytestrings.

28.10 Chapter Exercises

Difference List

Lists are really nice, but they don’t append or concatenate
cheaply. We covered Sequence as one potential solution to this,
but there’s a simpler data structure that solves slow appending
specifically, the difference list!

Rather than justify and explain difference lists, part of the
exercise is figuring out what it does and why (although feel
free to look up the documentation on Hackage). Attempt
the exercise before resorting to the tutorial in the follow-up
reading. First, the DList type is built on top of ordinary lists,
but it’s a function:

newtype DList a = DL { unDL :: [a] -> [a] }

The API that follows is based on code by Don Stewart and
Sean Leather. Here’s what you need to write:

1. empty :: DList a

empty = undefined

{-# INLINE empty #-}
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2. singleton :: a -> DList a

singleton = undefined

{-# INLINE singleton #-}

3. toList :: DList a -> [a]

toList = undefined

{-# INLINE toList #-}

4. -- Prepend a single element to a dlist.

infixr `cons`

cons :: a -> DList a -> DList a

cons x xs = DL ((x:) . unDL xs)

{-# INLINE cons #-}

5. -- Append a single element to a dlist.

infixl `snoc`

snoc :: DList a -> a -> DList a

snoc = undefined

{-# INLINE snoc #-}

6. -- Append dlists.

append :: DList a -> DList a -> DList a

append = undefined

{-# INLINE append #-}
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What’s so nifty about DList is that cons, snoc, and append all
take the same amount of time no matter how long the dlist is.
That is to say, they take a constant amount of time rather than
growing with the size of the data structure.

Your goal is to get the following benchmark harness running
with the performance expected:

schlemiel :: Int -> [Int]

schlemiel i = go i []

where go 0 xs = xs

go n xs = go (n-1) ([n] ++ xs)

constructDlist :: Int -> [Int]

constructDlist i = toList $ go i empty

where go 0 xs = xs

go n xs =

go (n-1)

(singleton n `append` xs)

main :: IO ()

main = defaultMain

[ bench "concat list" $

whnf schlemiel 123456

, bench "concat dlist" $

whnf constructDlist 123456

]
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If you run the above, the DList variant should be about twice
as fast.

A simple queue

We’re going to write another data structure in terms of list, but
this time it’ll be a queue. The main feature of queues is that
we can add elements to the front cheaply and take items off
the back of the queue cheaply.

-- From Okasaki's Purely

-- Functional Data Structures

data Queue a =

Queue { enqueue :: [a]

, dequeue :: [a]

} deriving (Eq, Show)

-- adds an item

push :: a -> Queue a -> Queue a

push = undefined

pop :: Queue a -> Maybe (a, Queue a)

pop = undefined

We’re going to give you less code this time, but your task is
to implement the above and write a benchmark comparing it
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against performing alternating pushes and pops from a queue
based on a single list. Alternating so that you can’t take advan-
tage of reversing the list after a long series of pushes in order
to perform a long series of pops efficiently.

Don’t forget to handle the case where the dequeue is empty
and you need to shift items from the enqueue to the dequeue.
You need to do so without violating “first come, first served”.

Lastly, benchmark it against Sequence. Come up with a vari-
ety of tests. Add additional operations for your Queue type if
you want.

28.11 Follow-up resources

1. Criterion tutorial; Bryan O’Sullivan
http://www.serpentine.com/criterion/tutorial.html

2. Demystifying DList; Tom Ellis
http://h2.jaguarpaw.co.uk/posts/demystifying-dlist/

3. Memory Management; GHC; Haskell Wiki
https://wiki.haskell.org/GHC/Memory_Management

4. Performance; Haskell Wiki
https://wiki.haskell.org/Performance

5. Pragmas, specifically UNPACK; GHC Documentation

http://www.serpentine.com/criterion/tutorial.html
http://h2.jaguarpaw.co.uk/posts/demystifying-dlist/
https://wiki.haskell.org/GHC/Memory_Management
https://wiki.haskell.org/Performance
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6. High Performance Haskell; Johan Tibell
http://johantibell.com/files/slides.pdf

7. Haskell Performance Patterns; Johan Tibell

8. Faster persistent data structures through hashing; Johan
Tibell

9. Lazy Functional State Threads; John Launchbury and
Simon Peyton Jones

10. Write Haskell as fast as C: exploiting strictness, laziness
and recursion; Don Stewart

11. Haskell as fast as C: A case study; Jan Stolarek

12. Haskell FFT 11: Optimisation Part 1; Ian Ross

13. Understanding the RealWorld; Edsko de Vries

14. Stream Fusion; Duncan Coutts
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf

15. Purely functional data structures; Chris Okasaki

http://johantibell.com/files/slides.pdf
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf
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IO

In those days, many
successful projects started
out as graffitis on a beer
mat in a very, very smoky
pub.

Peter J. Landin
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29.1 IO

You should be proud of yourself for making it this far into the
book. You’re juggling monads. You’ve defeated an army of
monad transformers. You’re comfortable with using algebraic
structures in typeclass form. You’ve got a basic understand-
ing of how Haskell terms evaluate, nonstrictness, and sharing.
With those things in hand, let’s talk about IO.

We’ve used the IO type at various times throughout the
book, with only cursory explanation. You no doubt know that
we use this type in Haskell as a means of keeping our chocolate
separate from our peanut butter — that is, our pure functions
from our effectful ones. Perhaps you’re wondering how it all
works, what’s underneath that opaque type. To many people,
IO seems mysterious.

An effectful function is one which has an observable impact
on the environment it is evaluated in, other than computing
and returning a result. Examples of effects includes writing to
standard output (like putStrLn), reading from standard input
(getChar), or modifying state destructively (ST). Implicit to this,
is that this almost always means the code requires it be evalu-
ated in a particular order. Haskell expressions which aren’t in
IO will always return the same result regardless of what order
they are evaluated in; we lose this guarantee and others besides
once IO is introduced.

Most explanations of the IO type in Haskell don’t help much,
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either. They seem designed to confuse the reader rather than
convey anything useful. Don’t look now, but somebody is writ-
ing an explanation of IO right now that uses van Laarhoven
Free Monads and costate comonad coalgebras to explain some-
thing that’s much simpler than either of those topics.

We’re not going to do that here. We will instead try to
demystify IO a bit. The important thing about IO is that it’s a
special kind of datatype that disallows sharing in some cases.

In this chapter, we will

• explain how IO works operationally;

• explore what it should mean to you when you read a type
that has IO in it;

• provide a bit more detail about the IO Functor, Applicative,
and Monad.

29.2 Where IO explanations go astray

A lot of explanations of IO are misleading or muddled. We’ve
already alluded to the overwrought and complex explanations
of IO. Others call it “the IO Monad” and seem to equate IO with
Monad. While IO is a type that has a Monad instance, it is not only
a Monad and monads are not only IO. Other presentations imply
that once you enter IO, you destroy purity and referential
transparency. And some references don’t bother to say much
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about IO because the fact that it remains opaque won’t stop
you from doing most of what you want to use it for anyway.

We want to offer some guidance in critically evaluating
explanations of IO. Let us consider one of the most popular
explanations of IO, the one that attempts to explain IO in terms
of State.

Burn the State to the ground!

The temptation to use State to get someone comfortable with
the idea of IO is strong. Give the following passage early in the
documentation to GHC.IO a gander:

The IO Monad is just an instance of the ST monad,
where the state is the real world.

The motivation for these explanations is easy to understand
when you look at the underlying types:
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-- from ghc-prim

import GHC.Prim

import GHC.Types

newtype State s a

= State {runState :: s -> (a, s)}

-- :info IO

newtype IO a =

IO (State# RealWorld

-> (# State# RealWorld, a #))

Yep, it sure looks like State! However, this is less meaningful
or helpful than you’d think at first.

The issue with this explanation is that you don’t usefully
see or interact with the underlying State#1 in IO. It’s not State
in the sense that one uses State, StateT, or even ST, although
the behavior of the 𝑠 here is certainly very like that of ST.

The State here is a signalling mechanism for telling GHC
what order your IO actions are in and what a unique IO action
is. If we look through the GHC.Prim documentation, we see:

State# is the primitive, unlifted type of states. It has
one type parameter, thus State# RealWorld, or State#

1 The # indicates a primitive type. These are types that cannot be defined in Haskell
itself and are exported by the GHC.Prim module.
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𝑠, where 𝑠 is a type variable. The only purpose of
the type parameter is to keep different state threads
separate. It is represented by nothing at all.

RealWorld is deeply magical. It is primitive, but it
is not unlifted (hence ptrArg). We never manipulate
values of type RealWorld; it’s only used in the type
system, to parameterise State#.

When they say that RealWorld is “represented by nothing at
all,” they mean it literally uses zero bits of memory. The state
tokens underlying the IO type are erased during compile time
and add no overhead to your runtime. So the problem with
explaining IO in terms of State is not precisely that it’s wrong;
it’s that it’s not a State you can meaningfully interact with or
control in the way you’d expect from the other State types.

29.3 The reason we need this type

So, let’s try to move from there to an understanding of IO that
is meaningful to us in our day-to-day Haskelling. IO primarily
exists to give us a way to order operations and to disable some
of the sharing that we talked so much about in the chapter on
nonstrictness.

GHC is ordinarily free to do a lot of reordering of opera-
tions, delaying of evaluation, sharing of named values, dupli-
cating code via inlining, and other optimizations in order to
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increase performance. The main thing the IO type does is turn
off most of those abilities.

What?

No, really. That’s a lot of it.

Order and chaos

As we’ve seen in the previous chapters, GHC can normally
reorder operations. This is disabled in IO (as in ST). IO actions
are instead enclosed within nested lambdas — nesting is the
only way to ensure that actions are sequenced within a pure
lambda calculus.

Nesting lambdas is how we guarantee that this

main = do

putStr "1"

putStr "2"

putStrLn "3"

will output “123” and we want that guarantee. The underly-
ing representation of IO allows the actions to be nested, and
therefore sequenced.

When we enter a lambda expression, any effects that need to
be performedwill be performedfirst, before any computations
are evaluated. Then if there is a computation to evaluate, that
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may be evaluated next, before we enter the next lambda to
perform the next effect and so on. We’ve seen how this plays
out in previous chapters; think of the parsers that perform the
effect of moving a “cursor” through the text without reducing
to any value; also recall what we saw with ST and mutable
vectors.

In fact, the reason we have Monad is because it was a means
of abstracting away the nested lambda noise that underlies IO.

29.4 Sharing

In addition to enforcing ordering, IO turns off a lot of the shar-
ing we talked about in the nonstrictness chapter. As we’ll soon
see, it doesn’t disable all forms of sharing — it couldn’t, because
all Haskell programs have a main action with an obligatory IO

type. But we’ll get to that in a moment.
For now, let’s turn our attention to what sharing is disabled

and why. Usually in Haskell, we’re pretty confident that if a
function is going to be evaluated at all, it will result in a value
of a certain type, bearing in mind that this could be a Nothing

value or an empty list. When we declare the type, we say, “if
this is evaluated at all, we will have a value of this type as a
result.”

But with the IO type, you’re not guaranteed anything. Values
of type IO a are not an 𝑎; they’re a description of howyoumight
get an 𝑎. Something of type IO String is not a computation
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that, if evaluated, will result in a String; it’s a description of
how you might get that String from the “real world,” possibly
performing effects along the way. Describing IO actions does
not perform them, just as having a recipe for a cake does not
give you a cake.2

In this environment, where you do not have a value but
only a means of getting a value, it wouldn’t make sense to say
that value could be shared.

The time has come

So, one of the key features of IO is that it turns off sharing.
Let’s use an example to think of why we want this. We have
this library function that gets the current UTC time from the
system clock:

-- from Data.Time.Clock

getCurrentTime :: IO UTCTime

Without IO preventing sharing, how would this work? When
you fetched the time once, it would share that result, and the
time would be whatever time it was the first time you forced it.
Unfortunately, this is not a means of stopping time; we would
continue to age, but your program wouldn’t work at all the
way you’d intended.

2 See Brent Yorgey’s explanation of IO for the cis194 class at UPenn http://www.cis.

upenn.edu/~cis194/spring13/lectures/08-IO.html

http://www.cis.upenn.edu/~cis194/spring13/lectures/08-IO.html
http://www.cis.upenn.edu/~cis194/spring13/lectures/08-IO.html
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But if that’s so, and it’s clearly a value with a name that
could be shared, why isn’t it?

getCurrentTime :: IO UTCTime

-- ^-- that right there

Remember: what we have here is a description of how we
can get the current time when we need it. We do not have the
current time yet, so it isn’t a value that can be shared, and we
don’t want it to be shared anyway, because we want it to get a
new time each time we run it.

And the way we run it is by defining main in that module
for the runtime system to find and execute. Everything inside
main is within IO so that everything is nested and sequenced
and happens in the order you’re expecting.

Another example

Let’s look at another example of IO turning off sharing. You
remember the whnf and nf functions from criterion that we
used in the last chapter. You may recall that we want to turn
off sharing for those so that they get evaluated over and over
again; if the result was shared, our benchmarking would only
tell us how long it takes to evaluate it once instead of giving us
an average of evaluating it many times. The way we disabled
sharing for those functions is by applying them to arguments.
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But the IO variants of those functions do not require this
function application in order to disable sharing, because the
IO parameter itself disables sharing. Contrast the following
types:

whnf :: (a -> b) -> a -> Benchmarkable

nf :: NFData b

=> (a -> b) -> a -> Benchmarkable

whnfIO :: IO a -> Benchmarkable

nfIO :: NFData a => IO a -> Benchmarkable

The IO variants don’t need a function argument to apply
because sharing is already prevented by being an IO action —
it can be executed over and over without resorting to adding
an argument.

As we said earlier, IO doesn’t turn off all sharing everywhere;
it couldn’t, or else sharing would be meaningless because main

is always in IO. But it’s important to understand when sharing
will be disabled and why, because if you’ve got this notion of
sharing running around in the back of your head you’ll have
the wrong intuitions for how Haskell code works. Which then
leads to…
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The code! It doesn’t work!

We’re going to use an example here that takes advantage of
the MVar type. This is based on a real code event that was how
Chris finally learned what IO means and the example he first
used to explain it to Julie.

The MVar type is a means of synchronizing shared data in
Haskell. To give a very cursory overview, the MVar can hold
one value at a time. You put a value into it; it holds onto it
until you take that value out. Then and only then can you
put another cat in the box.3 We cannot hope to best Simon
Marlow’s work4 on this front, so if you want more information
about it, we strongly recommend you peruse Marlow’s book.

OK, so we’ll set up some toy code here with the idea that
we want to put a value into an MVar and then take it back out:

3 What you need is a cat gif. https://twitter.com/argumatronic/status/

631158432859488258
4 Parallel & Concurrent Programming in Haskell http://chimera.labs.oreilly.com/

books/1230000000929

https://twitter.com/argumatronic/status/631158432859488258
https://twitter.com/argumatronic/status/631158432859488258
http://chimera.labs.oreilly.com/books/1230000000929
http://chimera.labs.oreilly.com/books/1230000000929
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module WhatHappens where

import Control.Concurrent

myData :: IO (MVar Int)

myData = newEmptyMVar

main :: IO ()

main = do

mv <- myData

putMVar mv 0

mv' <- myData

zero <- takeMVar mv'

print zero

This will spew an error about being stuck or in a deadlock.
The problem here is that the type IO MVar a of newEmptyMVar is
a recipe for producing as many empty MVars as you need or
want; it is not a reference to a single, shared MVar. In other
words, the two references to myData here are not referring to
the same MVar.

Taking from an empty MVar blocks until something is put
into the MVar. Consider the following ordering:

take

put
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take

put

That will terminate successfully. An attempt to take a value
from the MVar blocked, then a value was put in it, then another
blocked take occurred, then there was another put to satisfy
the second take. This is fine.

The following is an example of something that will dead-
lock:

put

take

take

Whatever part of your program performed the second take
will now be blocked until a second put occurs. If your program
is designed such that no put ever occurs again, it’s deadlocked.
A deadlock error looks like the following:

Prelude> main

*** Exception:

thread blocked indefinitely

in an MVar operation

When you see a type like:

IO String
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You don’t have a String; you have a means of (possibly)
obtaining a String, with some effects possibly performed along
the way. Similarly, what happened earlier is that we had two
MVars with two different lifetimes and that looked something
like this:

mv mv'

put take (the final one)

The point here is that this type

IO (MVar a)

tells you that you have a recipe for producing as many
empty MVars as you want, not a reference to a single shared
MVar.

You can share the MVar, but it has to be done explicitly rather
than implicitly. Failing to explicitly share the MVar reference
after binding it once will simply spew out new, empty MVars.
Again, we recommend Simon Marlow’s book when you’re
ready to explore MVars in more detail.

29.5 IO doesn’t disable sharing for
everything

As we mentioned earlier, IO doesn’t disable sharing for every-
thing, and it wouldn’t make sense if it did. It only disables
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sharing for the terminal value it reduces to. Values that are
not dependent on IO for their evaluation can still be shared,
even within a larger IO action such as main.

In the following example, we’ll use Debug.Trace again to show
us when things are being shared. For blah, the trace is outside
the IO action, so we’ll use outer trace:

import Debug.Trace

blah :: IO String

blah = return "blah"

blah' = trace "outer trace" blah

And for woot, we’ll use inner trace inside the IO action:

woot :: IO String

woot = return (trace "inner trace" "woot")

Then we throw both of them into a larger IO action, main:



CHAPTER 29. IO 1797

main :: IO ()

main = do

b <- blah'

putStrLn b

putStrLn b

w <- woot

putStrLn w

putStrLn w

Prelude> main

outer trace

blah

blah

inner trace

woot

woot

We only saw inner and outer emitted once because IO is not
intended to disable sharing for values not in IO that happen to
be used in the course of running of an IO action.

29.6 Purity is losing meaning

It’s common at this time to use the words “purely functional”
or to talk about purity when one means without effects. This is
inaccurate and not very useful as a definition, but we’re going
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to provide some context here and an alternative understand-
ing.

Semantically, pedantically accurate

Purity and “pure functional” have undergone a few changes in
connotation and denotation since the 1950s. What was origi-
nally meant when describing a pure functional programming
language is that the semantics of the language would only be
lambda calculus. For quite a long time, impure functional lan-
guages were more typical. They admitted the augmentation of
lambda calculus, usually so that the means to describe imper-
ative, effectful programs was embedded within the semantics.
The strength of Haskell is that by sticking to lambda calculus,
we not only have a much simpler core language for describing
our language, but we retain referential transparency in the
language. We use nested lambdas (hidden behind a Monad ab-
straction) to order and encapsulate effects while maintaining
referential transparency.

Referential transparency

Referential transparency is something you are probably fa-
miliar with, even if you’ve never called it that before. Put
casually, it means that any function, when given the same in-
puts, returns the same result. More precisely, an expression
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is referentially transparent when it can be replaced with its
value without changing the behavior of a program.

One source of the confusion between purity as referential
transparency and purity as pure lambda calculus could be that
in a pure lambda calculus, referential transparency is assured.
Thus, a pure lambda calculus is necessarily pure in the other
sense as well.

The mistake people make with IO is that they conflate the
effects with the semantics of the program. A function that
returns IO a is still referentially transparent, because given the
same arguments, it’ll generate the same IO action every time!
To make this point:

module IORefTrans where

import Control.Monad (replicateM)

import System.Random (randomRIO)

gimmeShelter :: Bool -> IO [Int]

gimmeShelter True =

replicateM 10 (randomRIO (0, 10))

gimmeShelter False = pure [0]

The trick here is to realize that while executing IO [Int] can
and does produce different literal values when the argument
is True, it’s still producing the same result (i.e., a list of ran-
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dom numbers) for the same input. Referential transparency is
preserved because we’re still returning the same IO action, or
“recipe,” for the same argument, the same means of obtaining
a list of Int. Every True input to this function will return a list
of random Ints:

Prelude> gimmeShelter True

[1,8,7,9,10,4,2,9,3,6]

Prelude> gimmeShelter True

[10,0,7,1,10,2,4,0,9,3]

Prelude> gimmeShelter False

[0]

The sense we’re trying to convey here is that as far as Haskell
is concerned, it’s a language for evaluating expressions and
constructing IO actions that get executed by main at some point
later.

29.7 IO’s Functor, Applicative, and
Monad

Another mistake people make is in implying that IO is a Monad,
rather than accounting for the fact that, like all Monads, IO is
a datatype that has a Monad instance — as well as Functor and
Applicative instances:
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fmap: construct an action which performs the same effects
but transforms the 𝑎 into a 𝑏:

fmap :: (a -> b) -> IO a -> IO b

(<*>): construct an action that performs the effects of both
the function and value arguments, applying the function to
the value:

(<*>) :: IO (a -> b) -> IO a -> IO b

join: merge the effects of a nested IO action:

join :: IO (IO a) -> IO a

The IO Functor

What does fmap mean with respect to IO? As always, we want
an example:

fmap (+1) (randomIO :: IO Int)

If we’re going to get that Int value, we will have to perform
some effects. What fmap does here is lift our incrementing
function over the effects that we might perform to obtain the
Int value. It doesn’t affect the effects, because the effects here
are part of that IO structure. Using fmap here returns a recipe for
obtaining an Int that also increments the result of the original
action that was lifted over.
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The key here is that we didn’t perform any effects. We pro-
duced a new IO action in terms of the old one by transforming
the final result of the IO action.

Applicative and IO

IO also has an Applicative instance, as we mentioned in the
Applicative chapter. You might remember an example like
this:

Prelude> (++) <$> getLine <*> getLine

hello

julie

"hellojulie"

There we fmapped the concatenation operator over two
(potential) IO Strings to produce the final result. Let’s look at
another, more interesting example:

(+)

<$> (randomIO :: IO Int)

<*> (randomIO :: IO Int)

After the initial fmap, we have a means of obtaining a func-
tion which is monoidally lifted over a means of obtaining an
Int. What this means is that you’ll get a single new means
of obtaining the result of having applied the function which
performs the effects of both.
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Monad and IO

For IO, pure or return can be read as an effect-free embedding
of a value in a recipe-creating environment. Let’s consider the
following examples.

First, GHCi does basically two things: it can print values
not in IO, such as these:

Prelude> "I'll pile on the candy"

"I'll pile on the candy"

Prelude> 1

1

It can also run IO actions and print their results, if any. When
you have values of type IO (IO a), what you have is a recipe
for making a recipe that produces an 𝑎. Consider why the
following example using print does not print anything:

Prelude> :{

*Main| let embedInIO =

*Main| return :: a -> IO a

*Main| :}

Prelude> embedInIO 1

1

Prelude> :{

*Main| let s =

*Main| "I'll put in some ingredients"
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*Main| :}

Prelude> embedInIO (print s)

In order to merge those effects and get a single IO a which
will print a result in GHCi, we need join:

Prelude> let s = "It's a piece of cake"

Prelude> join $ embedInIO (print s)

"It's a piece of cake"

Prelude> embedInIO (embedInIO 1)

Prelude> join $ embedInIO (embedInIO 1)

1

What sets the IO Monad apart from the Applicative is that the
effects performed by the outer IO action can influence what
recipe you get in the inner part. The nesting also lets us express
order dependence, a useful trick for lambda calculi noted by
Peter J. Landin5.

An example for effect:
5A correspondence between ALGOL 60 and Church’s Lambda-notations; P.J. Landin
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module NestedIO where

import Data.Time.Calendar

import Data.Time.Clock

import System.Random

huehue :: IO (Either (IO Int) (IO ()))

huehue = do

t <- getCurrentTime

let (_, _, dayOfMonth) =

toGregorian (utctDay t)

case even dayOfMonth of

True ->

return $ Left randomIO

False ->

return $

Right (putStrLn "no soup for you")

The IO action we return here is contingent on having per-
formed effects and observed whether the day of the month
was an even number6 or an odd one. Note this is inexpressible
with Applicative. If you’d like a way to run it and see what
happens, try the following:

Prelude> blah <- huehue

6Why? Monad chapter’s long passed, we need something to be spooky.
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Prelude> either (>>= print) id blah

-7077132465932290066

It was the 28th of January when we wrote this. Your mileage
may vary.

Monadic associativity

Haskellers will often get confused when they are told Monad’s
bind is associative because they’ll think of IO as a counterex-
ample. The mistake being made here is mistaking the con-
struction of IO actions for the execution of IO actions. As far
as Haskell is concerned, we only construct IO actions to be
executed when we call main. Semantically, IO actions aren’t
something we do, but something we talk about. Binding over
an IO action doesn’t execute it, it produces a new IO action in
terms of the old one.

You can reconcile yourself with this framing by remem-
bering how IO actions are like recipes, an analogy created by
Brent Yorgey that we’re fond of.

29.8 Well, then, how do we MVar?

Earlier in the chapter, we showed you an example of when
IO prevents sharing, using the MVar type. Our previous code
would block because the following:
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myData :: IO (MVar Int)

myData = newEmptyMVar

is an IO action that produces an empty MVar; it isn’t a stable
reference to a single given MVar. We have a couple ways of
fixing this. One is by passing the single stable reference as an
argument. The following will terminate successfully:

module WhatHappens where

import Control.Concurrent

main :: IO ()

main = do

mv <- newEmptyMVar

putMVar mv (0 :: Int)

zero <- takeMVar mv

print zero

There is a somewhat more evil and unnecessary way of
doing it. We’ll use this opportunity to examine an unsafe
means of enabling sharing for an IO action: unsafePerformIO!
Consider that the following will also terminate:
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module WhatHappens where

import Control.Concurrent

import System.IO.Unsafe

myData :: MVar Int

myData = unsafePerformIO newEmptyMVar

main :: IO ()

main = do

putMVar myData 0

zero <- takeMVar myData

print zero

The type of unsafePerformIO is IO a -> a, which is seemingly
impossible and not a good idea in general. In real code, you
should pass references to MVars as an argument or via ReaderT,
but the combination of MVar and unsafePerformIO gives us an
opportunity to see in very stark terms what it means to use
unsafePerformIO in our code. The new empty MVar can now be
shared implicitly, as often as you want, instead of creating a
new one each time.

Do not use unsafePerformIO when unnecessary or where it
could break referential transparency in your code! If you
aren’t sure — don’t use it! There are other unsafe IO functions,
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too, but there is rarely a need for any of them, and in general
you should prefer explicit rather than implicit.

29.9 Chapter Exercises

File I/O with Vigenère

Reusing theVigenère cipher youwrote back in algebraic datatypes
and wrote tests for in testing, make an executable that takes
a key and a mode argument. If the mode is -d the executable
decrypts the input from standard in and writes the decrypted
text to standard out. If the mode is -e the executable blocks
on input from standard input (stdin) and writes the encrypted
output to stdout.

Consider this an opportunity to learn more about how file
handles and the following members of the base library work:

System.Environment.getArgs :: IO [String]

System.IO.hPutStr

:: Handle -> String -> IO ()

System.IO.hGetChar :: Handle -> IO Char

System.IO.stdout :: Handle

System.IO.stdin :: Handle

Whatever OS you’re on, you’ll need to learn how to feed
files as input to your utility and how to redirect standard out
to a file. Part of the exercise is figuring this out for yourself.
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You’ll want to use hGetChar more than once to accept a string
which is encrypted or decrypted.

Add timeouts to your utility

Use hWaitForInput to make your utility timeout if no input is
provided within a span of time of your choosing. You can
make it an optional command-line argument. Exit with a
nonzero error code and an error message printed to standard
error (stderr) instead of stdout.

System.IO.hWaitForInput

:: Handle -> Int -> IO Bool

System.IO.stderr :: Handle

Config directories

Reusing the INI parser from the Parsing chapter, parse a direc-
tory of INI config files into a Map whose key is the filename and
whose value is the result of parsing the INI file. Only parse
files in the directory that have the file extension .ini.

29.10 Follow-up resources

1. Referential Transparency; Haskell Wiki
https://wiki.haskell.org/Referential_transparency

https://wiki.haskell.org/Referential_transparency
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2. IO Inside; Haskell Wiki
https://wiki.haskell.org/IO_inside

3. Unraveling the mystery of the IO Monad; Edward Z. Yang

4. Primitive Haskell; Michael Snoyman
https://github.com/commercialhaskell/haskelldocumentation/

blob/master/content/primitive-haskell.md

5. Evaluation order and state tokens; Michael Snoyman
https://wiki.haskell.org/Evaluation_order_and_state_tokens

6. Haskell GHC Illustrated; Takenobu Tani

7. Tackling the Awkward Squad; Simon PEYTON JONES
http://research.microsoft.com/en-us/um/people/simonpj/papers/

marktoberdorf/mark.pdf

8. Note [IO hack in the demand analyser]; GHC source code

9. Monadic I/O in Haskell 1.3; Andrew D. Gordon and Kevin
Hammond

10. Notions of computation and monads; Eugenio Moggi
http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf

11. The Next 700 Programming Languages; P. J. Landin

12. Haskell Report 1.2

https://wiki.haskell.org/IO_inside
https://github.com/commercialhaskell/haskelldocumentation/blob/master/content/primitive-haskell.md
https://github.com/commercialhaskell/haskelldocumentation/blob/master/content/primitive-haskell.md
https://wiki.haskell.org/Evaluation_order_and_state_tokens
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf


Chapter 30

When things go wrong

It is easier to write an
incorrect program than
understand a correct one

Alan Perlis

1812
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30.1 Exceptions

Let’s face it: in the execution of a program, a lot of things can
happen, not all of them expected or desired. In those unhappy
times when things have not gone as we wanted them to, we
will throw or raise an exception. The term exception refers
to the condition that has interrupted the expected execution
of the program. Encountering an exception causes an error,
or exception, message to appear, informing you that due to
some condition you weren’t prepared for, the execution of the
program has halted in an unfortunate way.

In previous chapters, we’ve covered ways of using Maybe,
Either, and Validation types to handle certain error conditions
explicitly. Raising exceptional conditions via such datatypes
isn’t always ideal, however. In some cases, exceptions can
be faster by eliding repeated checks for an adverse condition.
Exceptions are not explicitly part of the interfaces you’re using,
and that has immediate consequences when trying to reason
about the ways in which your program could fail.

Letting exceptions arise as they will — and the program
halt willy-nilly — is suboptimal. Exception handling is a way
of dealing with errors and giving the program some alternate
means of execution or termination should one arise. This
chapter is going to cover both exceptions and what they look
like as well as various means of handling them.

In this chapter, we will:
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• examine the Exception typeclass and methods;

• dip our toes into existential quantification;

• discuss ways of handling exceptions.

30.2 The Exception class and methods

Exceptions are plain old types and values like you’ve seen
throughout the book. The types that encode exceptions must
have an instance of the Exception typeclass. The origins of
exceptions as they exist in Haskell today are in Simon Mar-
low’s work on an extensible hierarchy of exceptions1 which
are discriminated at runtime. Using this extensible hierarchy
allows you to both catch exceptions that may have various
types and also add new exception types as the need arises.

The Exception typeclass definition looks like this:

class (Typeable e, Show e) =>

Exception e where

toException :: e -> SomeException

fromException :: SomeException -> Maybe e

displayException :: e -> String

-- Defined in ‘GHC.Exception’

1http://community.haskell.org/~simonmar/papers/ext-exceptions.pdf

http://community.haskell.org/~simonmar/papers/ext-exceptions.pdf


CHAPTER 30. WHEN THINGS GOWRONG 1815

We’ll take a look at those methods in a moment. The Show

constraint is there so that we can print the exception to the
screen in a readable form for whatever type 𝑒 ends up being.
Typeable is a typeclass that defines methods of identifying types
at runtime. We will talk about this more and explain why these
constraints are necessary to our Exception class soon.

The list of types that have an Exception instance is long:

-- some instances elided

instance Exception IOException

instance Exception Deadlock

instance Exception BlockedIndefinitelyOnSTM

instance

Exception BlockedIndefinitelyOnMVar

instance Exception AsyncException

instance Exception AssertionFailed

instance Exception AllocationLimitExceeded

instance Exception SomeException

instance Exception ErrorCall

instance Exception ArithException

We won’t talk in detail about each of these, but you may be
able to figure out what, for example, BlockedIndefinitelyOnMVar
is used for. We’ll note that it’s simply a datatype with one
inhabitant:
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data BlockedIndefinitelyOnMVar =

BlockedIndefinitelyOnMVar

-- Defined in ‘GHC.IO.Exception’

If we look at ArithException, we’ll find that it’s a sum type
with several values:

data ArithException

= Overflow

| Underflow

| LossOfPrecision

| DivideByZero

| Denormal

| RatioZeroDenominator

instance Exception ArithException

If you import the Control.Exception module, you can poke
at ArithException’s data constructors and see that they’re plain
old values, nothing unusual at all.

But there is something different going on here

We’re going to start unpacking all this to see how the parts
work together. First, let’s take a look at the methods of the
Exception typeclass:
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toException :: e -> SomeException

fromException :: SomeException -> Maybe e

We don’t have much occasion to use the toException and
fromException functions themselves. Instead, we use other func-
tions that call them for us. As it turns out, the toException

method is quite similar to the data constructor for SomeException.
You may have noticed that SomeException is also a type that is
listed as having an instance of the Exception typeclass, and now
here it is in the Exception methods. It seems a bit circular, but
it turns out that SomeException is ultimately the key to the way
we handle exceptions.

A brief introduction to existential quantification

SomeException acts as a sort of parent type for all the other ex-
ception types, so that we can handle many exception types at
once, without having to match all of them. Let’s examine how:

data SomeException where

SomeException

:: Exception e => e -> SomeException

This may not seem odd at first glance. That is due, in part,
to the fact that the weirdness is hiding in a construction called
a GADT, for generalized algebraic datatype. For the most
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part, GADTs are out of the scope of this book, being well
into intermediate Haskell territory that is fun to explore but
not strictly necessary to programming in Haskell. What the
GADT syntax is hiding there is something called existential
quantification.

We could rewrite the SomeException type like this without a
change in meaning:

data SomeException =

forall e . Exception e => SomeException e

Ordinarily, the forall quantifies variables universally, as
you might guess from the word all. However, the SomeException

type constructor doesn’t take an argument; the type variable
𝑒 is a parameter of the data constructor. It takes an 𝑒 and
results in a SomeException. Moving the quantifier to the data
constructor limits the scope of its application, and changes
the meaning from for all e to there exists some e. That is exis-
tential quantification. It means that any type that implements
the Exception class can be that 𝑒 and be subsumed under the
SomeException type.

We aren’t going to examine existential quantification deeply
here; this is a mere taste. Usually when type constructors are
parameterized, they are universally quantified. Arguments
have to be supplied to satisfy them. Your Maybe a type is, as
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we’ve noted before, a sort of function waiting for an argument
to be supplied to be a fully realized type.

Butwhenwe existentially quantify a type, aswith SomeException,
we can’t do much with that polymorphic type variable in its
data constructor. We can’t concretize it. Other than adding
constraints, we can’t know anything about it. It must remain
polymorphic, and we can cram any value of any type that im-
plements its constraint into that role. It’s like a polymorphic
parasite just hanging out on your type.

So, any exception type — any type with an instance of
the Exception typeclass — can be that 𝑒 and be handled as a
SomeException. We need Typeable and Show in order to determine
what type of exception we’re dealing with, as we will soon see.

So, wait, what?

For an example of what existential quantification lets us do,
we’re going to show you an example that doesn’t rely on the
magic of the runtime exception machinery. Here we’ll be
returning errors in Either of totally different types without
having to unify them under a single sum type:
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{-# LANGUAGE ExistentialQuantification #-}

{-# LANGUAGE GADTs #-}

module WhySomeException where

import Control.Exception

( ArithException(..)

, AsyncException(..))

import Data.Typeable

data MyException =

forall e .

(Show e, Typeable e) => MyException e

instance Show MyException where

showsPrec p (MyException e) =

showsPrec p e
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multiError :: Int

-> Either MyException Int

multiError n =

case n of

0 ->

Left (MyException DivideByZero)

1 ->

Left (MyException StackOverflow)

_ -> Right n

What’s special about the above is that we have a Left case
in our Either that includes error values of two totally different
types without enumerating them in a sum type. MyException
doesn’t appear to have a polymorphic argument in the type
constructor, but it does in the data constructor. We are able
to apply the MyException data constructor to values of different
types because of the existentially quantified type for 𝑒.

data SomeError =

Arith ArithException

| Async AsyncException

| SomethingElse

deriving (Show)
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discriminateError :: MyException

-> SomeError

discriminateError (MyException e) =

case cast e of

(Just arith) -> Arith arith

Nothing ->

case cast e of

(Just async) -> Async async

Nothing -> SomethingElse

runDisc n =

either discriminateError

(const SomethingElse) (multiError n)

Then trying this out:

Prelude> runDisc 0

Arith divide by zero

Prelude> runDisc 1

Async stack overflow

Prelude> runDisc 2

SomethingElse

This is the essence of why we need existential quantification
for exceptions — so that we can throw various exception types
without being forced to centralize and unify them under a
sum type. Don’t abuse this facility.
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Prior to this design, there were a few ways you could do
exception handling. Some of the more apparent methods
would’ve been one big sum type or strings. The problem is
that neither of them are meaningfully extensible to structured,
proper data types. We want, in a sense, a hierarchy of values
where catching a “parent” means catching any of the possible
“children.” The combination of SomeException and the Typeable

typeclass gives you a means of throwing different exceptions
of different types and then catching some or all of them in a
handler without wrapping them in a sum type.

Typeable

The Typeable typeclass lives in the Data.Typeablemodule. Typeable
exists to permit types to be known at runtime, allowing for a
sort of dynamic typechecking. It allows you to learn the type
of a value at runtime and also to compare the types of two val-
ues and check that they are the same. Typeable is particularly
useful when you have code that needs to allow various types
to be passed to it but needs to enforce or trigger on specific
types.

This is ordinarily unwise, but it makes sense when you’re
talking about exceptions. When we’re concerned with excep-
tion handling, we want to be able to check whether values of
possibly varying types match the Exception type we’re trying to
handle, and we need to do that at runtime, when the exception
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occurs. Thus we need this runtime witness to the types of the
exceptions.

Let’s look at a method called cast, simplified from its im-
plementation in base:

cast :: (Typeable a, Typeable b)

=> a -> Maybe b

We don’t usually call this function directly, but it gets called
for us by the fromException function, and fromException is called
by the catch function.

At runtime, when an exception is thrown, it starts rolling
back through the stack, looking for a catch. When it finds a
catch, it checks to see what type of exception this catch catches.
It calls fromException and cast to check if the type of the excep-
tion that got thrown matches the type of an exception we’re
handling with the catch. A catch that handles a SomeException

will match any type of exception, due to the flexibility of that
type.

If they don’t match, we get a Nothing value; the exception
will keep rolling up through the stack, looking for a catch that
can handle the exception that was thrown. If it doesn’t find
one, your program just dies an unseemly death.

If they do match, the Just a allows us to catch the exception.
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30.3 This machine kills programs

Exceptions can result from pure code:

Prelude> 2 `div` 0

*** Exception: divide by zero

However, running code is an I/O action (and GHCi is implic-
itly invoking IO), so most of the time when you need to worry
about exceptions, you’ll be in IO. Even when they happen in
pure code, exceptions may only be caught, or handled, in IO.

IO contains the implicit contract, “You cannot expect this
computation to succeed unconditionally.” It turns out the
outside world is a harsh mistress — just about any IO action
can fail, even putStrLn.

First, let’s demonstrate that any I/O action can fail. We will
assume that you do not currently have a file called aaa in your
working directory. So, when you run this code, it will create
the file, write to it, print “wrote to file” in your terminal and
terminate successfully:

-- writePls.hs

module Main where

main = do

writeFile "aaa" "hi"

putStrLn "wrote to file"
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You can fire up your REPL and load that, or you can compile
the binary like this (this is review, so if you already have all
this down, then go ahead and do it):

stack ghc -- <filename> -o <output file name>

And run it like this:

$ ./<output file name>

So, if you called the output file wp, for example, your termi-
nal session might look like this:

$ stack ghc -- writepls.hs -o wp

[stack compilation messages]

$ ./wp

wrote to file

$ cat aaa

hi

Cool, that all worked. That worked in part because writeFile

will go ahead and create a file and give it write permissions
if the file you’re trying to write to does not exist. But what if
you’re trying to write to a file that does already exist and does
not have write permissions?

Make a read-only file named zzz that we can experiment
with. To make a file that cannot be written to on Linux or OSX,
the following suffices:
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$ touch zzz

$ chmod 400 zzz

Suppose that file cohabits a directory where we’re trying to
execute this program:

-- writePls.hs

module Main where

main = do

writeFile "zzz" "hi"

putStrLn "wrote to file"

It’s the same program we had for the aaa file, just with the
file name changed. You can fire up your REPL and load that,
or you can compile the binary as we did above.

Then, if you run this program with such a file, you’ll get the
following result:

$ ./wp

wp: zzz: openFile: permission denied (Permission denied)

There’s a hole in our bucket, dear Liza: an exception.

Catch me if you can

Let’s fix that, dear Henry. We’ll start with some rudimentary
exception handling:
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module Main where

import Control.Exception

import Data.Typeable

handler :: SomeException -> IO ()

handler (SomeException e) = do

print (typeOf e)

putStrLn ("We errored! It was: "

++ show e)

main =

writeFile "zzz" "hi"

`catch` handler

We’re still going to terminate without writing to the file, for
the same reasons as above. The program will run and termi-
nate successfully, but it’ll mention the error and say that it
failed with an IOException. We’ll get a bit more information
about why the program failed and be able to log that informa-
tion with our exception handler if we wish. Sometimes, that’s
exactly what you want: for your program to log the exception
and then die. Soon, we’ll look at some other options for han-
dling exceptions in a way that lets your program proceed with
an alternate execution.
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For now, let’s turn our attention to catch:

catch :: Exception e

=> IO a

-> (e -> IO a)

-> IO a

You may recall we mentioned catch earlier because it calls
fromException and cast for us. It runs only if the exception
matching the type you specified gets thrown, and it gives you
an opportunitity to recover from the error and still satisfy
the original type that your IO action purported to be. If no
exception gets thrown, then nothing happens with that 𝑒 and
the IO a at the front is the same as the IO a at the end.

Let’s expand our rudimentary error handling in a way that
allows the program an alternate execution method instead
of allowing it to die. This time, the main action still wants to
write to that read-only file, but this time our handler gives
it an alternate file that does not exist to write to (if you do
have a file called bbb in your present working directory, you
can change the name of the writeFile argument to some other
name, anything as long as it doesn’t exist in your directory
yet):
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-- writePls.hs

module Main where

import Control.Exception

import Data.Typeable

handler :: SomeException -> IO ()

handler (SomeException e) = do

putStrLn ("Running main caused an error!\

\ It was: "

++ show e)

writeFile "bbb" "hi"

main =

writeFile "zzz" "hi"

`catch` handler

When writing to zzz fails, it should print the error message
to the terminal. If you check your directory, you should see
your alternate file, named in the handler function, and if you
look inside that, it should say “hi” to you.

Let’s look at another, slightly more complex, use of catch.
This is taken from a program that deletes things from a Twitter
account and relies on the library twitter-conduit.2 This portion

2https://www.stackage.org/package/twitter-conduit

https://www.stackage.org/package/twitter-conduit
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of the program can fail when it doesn’t have access to the
appropriate credentials for talking to a Twitter account. So,
we built an exception handler that tells it what to do when that
exception arises:

withCredentials action = do

twinfo <-

loadCredentials `catch` handleMissing

case twinfo of

Nothing ->

getTWInfo >>= saveCredentials

Just twinfo -> action twinfo

where handleMissing :: IOException

-> IO (Maybe TWInfo)

handleMissing _ = return Nothing

We turn an IOException into an IO (Maybe a) so we can case
on the Maybe to tell it what to do in the Nothing case. In this
case, if we throw an IOException and return a Nothing value, our
program will execute this:

getTWInfo >>= saveCredentials

By saving the credentials (the code that does the saving is
not shown here), we hopefully won’t encounter this exception
the next time we try to run it. In which case, we perform the
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action that is named in the Just twinfo line (said action is also
not shown here, sorry!).

30.4 Want either? Try!

Sometimes we’d like to lift exceptions out into explicit Either
values. This is quite doable, but you can’t erase the fact that
you performed I/O in the process. It’s also no guarantee you’ll
catch all exceptions. Here’s the function we need to turn im-
plicit exceptions into an explicit Either:

-- Control.Exception

try :: Exception e

=> IO a

-> IO (Either e a)

Then to use it, we could write something like the following
code (please note, this will not compile to a binary the way
earlier examples did because it is not a Main executable; use
GHCi):
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module TryExcept where

import Control.Exception

willIFail :: Integer

-> IO (Either ArithException ())

willIFail denom =

try $ print $ div 5 denom

Here we print the result because you can only handle ex-
ceptions in IO, evidenced by the types of try and catch. If you
feed this some inputs, you’ll see something like the following:

Prelude> willIFail 1

5

Right ()

Prelude> willIFail 0

Left divide by zero

One thing to keep in mind is that exceptions in Haskell are
like exceptions in most other programming languages — they
are imprecise. An exception not caught by a particular bit of
code will get rolled up by the exception until it’s either caught
or kills your program.

If you wanted to get rid of the Right () that it’s printing in
the successful cases, here’s one way to get rid of it:
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onlyReportError :: Show e

=> IO (Either e a)

-> IO ()

onlyReportError action = do

result <- action

case result of

Left e -> print e

Right _ -> return ()

willFail :: Integer -> IO ()

willFail denom =

onlyReportError $ willIFail denom

Or you could use catch:

willIFail' :: Integer -> IO ()

willIFail' denom =

print (div 5 denom) `catch` handler

where handler :: ArithException

-> IO ()

handler e = print e

Let’s expand on this. We want to take the above examples
and turn them into an executable binary, which is a problem,
because in an executable, main can’t take arguments. So, we’ll
have to do some serious modification in order to be able to
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pass arguments to main when we call it. We’re going to import
System.Environment so that we can make use of a function called
getArgs that allows us to pass arguments in at the point where
we call main:

module Main where

import Control.Exception

import System.Environment (getArgs)

willIFail :: Integer

-> IO (Either ArithException ())

willIFail denom =

try $ print $ div 5 denom

onlyReportError :: Show e

=> IO (Either e a)

-> IO ()

onlyReportError action = do

result <- action

case result of

Left e -> print e

Right _ -> return ()
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testDiv :: String -> IO ()

testDiv d =

onlyReportError $ willIFail (read d)

main :: IO ()

main = do

args <- getArgs

mapM_ testDiv args

The use of mapM_ here might not be obvious, so let’s unpack
that a bit. It is essentially a less general traverse function that
throws away its end result and only produces the effects. In this
case, those effects are going to be the results of mapping our
testDiv function over a list of arguments — returning either
the result of a successful division or the type of an exception.

We’ll compile this one to an executable binary again, as we
did earlier in the chapter. To pass in the arguments, it will
look like this:

$ stack ghc -- writepls.hs -o wp

[stack noise]

$ ./wp 4 5 0 9

1

1

divide by zero

0
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In case youwanted to try this in theREPL, reproducingwhat
you did above, use the indexmain@:main GHCi command and
pass the same arguments.

Prelude> :main 4 5 0 9

1

1

divide by zero

0

Notice that, now that the exception is handled, we can still
get that last result — we have survived an ArithException!

30.5 The unbearable imprecision of
trying

Let’s do another little experiment:

import Control.Exception

canICatch :: Exception e

=> e

-> IO (Either ArithException ())

canICatch e =

try $ throwIO e
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The new thing here is throwIO, a function that allows you
to throw an exception. Right now we want to demonstrate
that this handler doesn’t catch all types of exceptions, so we’re
using throwIO to cause exceptions of various types to be thrown.

The Left here can only handle or catch an ArithException,
not any other kind. So when we throw a different type of
exception, we get the following:

Prelude> canICatch DivideByZero

Left divide by zero

Prelude> canICatch StackOverflow

*** Exception: stack overflow

Prelude> :t DivideByZero

DivideByZero :: ArithException

Prelude> :t StackOverflow

StackOverflow :: AsyncException

The latter case blew past our try because we were trying to
catch an ArithException, not an AsyncException.

We’vementioned several times that SomeExceptionwillmatch
on all types that implement the Exception typeclass, so try
rewriting the above such that the StackOverflow or any other
exception can also be caught.

We’ll continue the experiment by making a program that
runs until an unhandled exception stops the party:
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module StoppingTheParty where

import Control.Concurrent (threadDelay)

import Control.Exception

import Control.Monad (forever)

import System.Random (randomRIO)

randomException :: IO ()

randomException = do

i <- randomRIO (1, 10 :: Int)

if i `elem` [1..9]

then throwIO DivideByZero

else throwIO StackOverflow

main :: IO ()

main = forever $ do

let tryS :: IO ()

-> IO (Either ArithException ())

tryS = try

_ <- tryS randomException

putStrLn "Live to loop another day!"

-- microseconds

threadDelay (1 * 1000000)

We’ve talked about forever before; it causes the program
execution to loop indefinitely. We have added the threadDelay
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to slow the looping down so that what’s happening is more
noticeable. Note that the thread is delayed by a number of
microseconds.

The tryS allows it to survive the ArithExceptions. We throw
away those exceptions and keep looping, but we can only throw
away the exception that we matched on (ArithException). At
some point, when our random number is 10, we will throw an
AsyncException instead of an ArithException, and our program
will die a rapid death. Try modifying this one so that both
exceptions are handled and the loop never terminates.

30.6 Why throwIO?

It may have seemed odd to you (or not!) to encounter throwIO

above. Why do we want to stop a program by purposely throw-
ing an exception? In the real world, we often do want to do
that — to stop the program when some condition occurs, but
it may be difficult to see that from what we’ve shown you so
far.

There’s a function called throw that allows exceptions, such
as the arithmetic exceptions, but you rarely use it. It’s what
allows the div function to throw a DivideByZero exception when
that happens, but outside of such library functions, you don’t
need it.

The difference between throw and throwIO can be seen in the
type:
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throwIO :: Exception e => e -> IO a

Partiality in the form of throwing an exception can be
thought of as an effect. The conventional way to throw an
exception is to use throwIO, which has IO in its result. This is
the same thing as throw, but throwIO embeds the exception in
IO. You always handle exceptions in IO3. Handling exceptions
must be done in IO even if they were thrown without an IO type.
You almost never want throw as it throws exceptions without
any warning in the type, even IO.

We’ll look at an example of an unconditionally thrown ex-
ception in IO so you can see how it affects the control flow of
your program:

import Control.Exception

main :: IO ()

main = do

throwIO DivideByZero

putStrLn "lol"

Prelude> main

*** Exception: divide by zero

Like throw, throwIO is often called for us, behind the scenes,
by library functions. Often, in interacting with the real world,

3Why? Because catching and handling exceptions means you could produce different
results from the same inputs. That breaks referential transparency.
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we need to tell our program that in certain conditions, we want
it to stop or to give us an error message and let us know things
went wrong. We’ll take a look at a couple of examples from
real code, a library called http-client4 by Michael Snoyman,
that uses throwIO to throw some exceptions when http things
haven’t gone the way we wanted them to:

connectionReadLine :: Connection

-> IO ByteString

connectionReadLine conn = do

bs <- connectionRead conn

when (S.null bs) $

throwIO IncompleteHeaders

connectionReadLineWith conn bs

In the above, throwIO will throw an IncompleteHeaders excep-
tion when the ByteString header is empty. In the next example,
it’s used to throw a ResponseTimeout exception when, well, the
response times out:

4https://www.stackage.org/package/http-client

https://www.stackage.org/package/http-client
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parseStatusHeaders :: Connection

-> Maybe Int

-> Maybe (IO ())

-> IO StatusHeaders

parseStatusHeaders conn timeout' cont

| Just k <- cont =

getStatusExpectContinue k

| otherwise =

getStatus

where

withTimeout = case timeout' of

Nothing -> id

Just t ->

timeout t >=>

maybe

(throwIO ResponseTimeout)

return

-- ... other code elided ...

You can use http-client without worrying about how he
makes the exceptions happen. But let’s next take a look at
making our own exception types for those times when you
do need to worry about it. Keep in mind that since time of
writing, http-client has changed how it defines and throws
exceptions, but the examples should still be useful.
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30.7 Making our own exception types

Often we’ll want our own exception types, like http-client has.
They enable us to be more precise about what’s going on in
our program. Let’s work through a small example to emit one
of a couple different possible errors in an otherwise simple
function to see how we could do this:

module OurExceptions where

import Control.Exception

data NotDivThree =

NotDivThree

deriving (Eq, Show)

instance Exception NotDivThree

data NotEven =

NotEven

deriving (Eq, Show)

instance Exception NotEven

Note here that Exception instances are derivable — you don’t
need to write an instance. Continuing on:
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evenAndThreeDiv :: Int -> IO Int

evenAndThreeDiv i

| rem i 3 /= 0 = throwIO NotDivThree

| odd i = throwIO NotEven

| otherwise = return i

Then we’ll see the error and success conditions:

*OurExceptions> evenAndThreeDiv 0

0

*OurExceptions> evenAndThreeDiv 1

*** Exception: NotDivThree

*OurExceptions> evenAndThreeDiv 2

*** Exception: NotDivThree

*OurExceptions> evenAndThreeDiv 3

*** Exception: NotEven

*OurExceptions> evenAndThreeDiv 6

6

*OurExceptions> evenAndThreeDiv 9

*** Exception: NotEven

*OurExceptions> evenAndThreeDiv 12

12

There is an issue with this setup, although it’s common.
What if we want to know what input or inputs caused the
error? We need to add context!
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Adding context

Convenient subsection titling! Anyhow, let’s modify that:

module OurExceptions where

import Control.Exception

data NotDivThree =

NotDivThree Int

deriving (Eq, Show)

instance Exception NotDivThree

data NotEven =

NotEven Int

deriving (Eq, Show)

instance Exception NotEven

evenAndThreeDiv :: Int -> IO Int

evenAndThreeDiv i

| rem i 3 /= 0 = throwIO (NotDivThree i)

| odd i = throwIO (NotEven i)

| otherwise = return i

Now when we get errors, we can know what input caused
the error:
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*OurExceptions> evenAndThreeDiv 12

12

*OurExceptions> evenAndThreeDiv 9

*** Exception: NotEven 9

*OurExceptions> evenAndThreeDiv 8

*** Exception: NotDivThree 8

*OurExceptions> evenAndThreeDiv 3

*** Exception: NotEven 3

*OurExceptions> evenAndThreeDiv 2

Catch one, catch all

Now, you can probably figure out how to catch these two dif-
ferent errors:

catchNotDivThree :: IO Int

-> (NotDivThree -> IO Int)

-> IO Int

catchNotDivThree = catch

catchNotEven :: IO Int

-> (NotEven -> IO Int)

-> IO Int

catchNotEven = catch

Or perhaps with try:
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Prelude> type EA e = IO (Either e Int)

Prelude> try (evenAndThreeDiv 2) :: EA NotEven

*** Exception: NotDivThree 2

Prelude> try (evenAndThreeDiv 2) :: EA NotDivThree

Left (NotDivThree 2)

The type synonym isn’t semantically important, but it shrinks
the noise a bit. Now, you could handle both errors with the
catches function:

catches :: IO a -> [Handler a] -> IO a

catchBoth :: IO Int

-> IO Int

catchBoth ioInt =

catches ioInt

[ Handler

(\(NotEven _) -> return maxBound)

, Handler

(\(NotDivThree _) -> return minBound)

]

The maxBound/minBound thing is not good code for real use, just
a convenience. Incidentally, the same trick the SomeException

type uses to hide type arguments is used by the Handler type
to wrap the values in the list of exception handlers: existential
quantification.
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data Handler a where

Handler :: Exception e

=> (e -> IO a) -> Handler a

-- Defined in ‘Control.Exception’

We can make a list of handlers that handle exceptions of
varying types because the exception types are existentially
quantified under Handler’s datatype.

But what if this isn’t convenient enough? What if we have a
family of semantically related or otherwise similar exceptions
we want to catch as a group? For this we revive our old friend,
the sum type!
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module OurExceptions where

import Control.Exception

data EATD =

NotEven Int

| NotDivThree Int

deriving (Eq, Show)

instance Exception EATD

evenAndThreeDiv :: Int -> IO Int

evenAndThreeDiv i

| rem i 3 /= 0 = throwIO (NotDivThree i)

| even i = throwIO (NotEven i)

| otherwise = return i

Now when we want to catch either error, we only need one
handler and then we can pattern match on the exception type
just like good old fashioned datatypes:

Prelude> type EA e = IO (Either e Int)

Prelude> try (evenAndThreeDiv 0) :: EA EATD

Left (NotEven 0)

Prelude> try (evenAndThreeDiv 1) :: EA EATD

Left (NotDivThree 1)
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Nifty, eh? The notion here is to exercise the same taste
and judgment in designing your error types as you would in
your happy-path types. Preserve context and try to make it so
somebody could understand the problem you’re solving from
the types. If necessary. On a desert island. With a lot of rum.

And sea turtles.

30.8 Surprising interaction with
bottom

One thing to watch out for is situations where you catch an
exception for a value that might be bottom. Due to nonstrict-
ness, the bottom could’ve been forced before or after your
exception handler, so you might be surprised if you expected
either:

• that your exception handler was meant to catch the bot-
tom, or

• that no bottoms would cause your program to fail after
having caught, say, a SomeException.

The proper coping mechanism for this is a glass of scotch
and to realize the following things:

• The exception handling mechanism is not for, nor should
be used for, catching bottoms.
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• Having caught an exception, even SomeException, without
rethrowing an exception doesn’t mean your program
won’t fail.

To demonstrate the point, we’ll show you a case where we
caught an exception from a bottom and a case where a bottom
leap-frogged our handler:

import Control.Exception

noWhammies :: IO (Either SomeException ())

noWhammies =

try undefined

megaButtums :: IO (Either SomeException ())

megaButtums =

try $ return undefined

Do you think these should have the same result? We’ve got
bad news:

Prelude> noWhammies

Left Prelude.undefined

Prelude> megaButtums

Right *** Exception: Prelude.undefined

The issue is that nonstrictness means burying the bottom
in a return causes the bottom to not get forced until you’re
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already past the try, resulting in an uncaught error inside the
Right constructor. The take-away here shouldn’t be, “laziness
is terrifying,” but rather, “write total programs that don’t use
bottom.” It’s not only unforced bottoms that can cause pro-
grams that shouldn’t have any uncaught exceptions to fail
either, there’s also…

30.9 Asynchronous Exceptions

Asynchronous exceptions are the predators hunting your happy
little programs. You probably don’t have much experience
with anything like this unless you’ve written Erlang before.
Even then, Erlang’s asynchronous exceptions are handled by
a separate process. Most languages don’t have anything like
this if only because they don’t have a hope of making it safe
within their implementation runtimes.

module Main where

-- we haven't explained this.

-- tough cookies.

import Control.Concurrent

(forkIO, threadDelay)

import Control.Exception

import System.IO
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openAndWrite :: IO ()

openAndWrite = do

h <- openFile "test.dat" WriteMode

threadDelay 1500

hPutStr h

(replicate 100000000 '0' ++ "abc")

hClose h

data PleaseDie =

PleaseDie

deriving Show

instance Exception PleaseDie

main :: IO ()

main = do

threadId <- forkIO openAndWrite

threadDelay 1000

throwTo threadId PleaseDie

If you run this program, the intended result is that you’ll
have a file named test.dat with only zeroes that didn’t reach
the “abc” at the end. Since we can’t predict the future, if you
have a disk with preternaturally fast I/O, increase the argu-
ments to replicate to reproduce the intended issue. If it ain’t
broken, break it.
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What happened was that we threw an asynchronous excep-
tion from the main thread to our child thread, short-circuiting
what we were doing in the middle of doing it. If you did this
in a loop, you’d leak file handles, too. Done continually over a
period of time, leaking file handles can cause your process to
get killed or your computer to become unstable.

We can think of asynchronous exceptions as exceptions
raised from a different thread than the one that’ll receive the
error. They’re immensely useful and give us a means of talk-
ing about error conditions that are quite real and possible in
languages that don’t have formal asynchronous exceptions.
Your process can get axe-murdered by the operating system
out of nowhere in any language. We just happen to have the
ability to do the same within the programming language at the
thread level as well. The issue is that we want to temporarily
ignore exceptions until we’ve finished what we’re doing. This
is so the state of the file is correct but also so that we don’t leak
resources like file handles or perhaps database connections or
something similar.5 Never fear, we can fix this!

5 In this case, leaking means having too many (files, database connections, etc.) open
at one time, thus consuming all the resources your OS can allocate, the way trying to
hold too much in memory for too long causes memory leaks.
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module Main where

-- we haven't explained this.

-- tough cookies.

import Control.Concurrent

(forkIO, threadDelay)

import Control.Exception

import System.IO

openAndWrite :: IO ()

openAndWrite = do

h <- openFile "test.dat" AppendMode

threadDelay 1500

hPutStr h

(replicate 10000000 '0' ++ "abc")

hClose h

data PleaseDie =

PleaseDie

deriving Show

instance Exception PleaseDie

main :: IO ()

main = do

threadId <- forkIO (mask_ openAndWrite)

threadDelay 1000

throwTo threadId PleaseDie
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Here we used mask_ from Control.Exception in order to mask
or delay exceptions thrown to our child thread until the IO

action openAndWritewas complete. Incidentally, since the end of
the mask is the last thing our child thread does, the exception
our main thread tried to throw to the child blows up in its
face, Wile E. Coyote style, and is now thrown within the main
thread.

Don’t panic!

Async exceptions are helpful and manifest in less obvious ways
in other language runtimes and ecosystems. Don’t try to catch
everything; just let it die, and make sure you have a process
supervisor and good logs. No execution is better than bad
execution.

30.10 Follow-up Reading

1. ABeginner’s Guide to Exceptions inHaskell; Erin Swenson-
Healey
https://www.youtube.com/watch?v=PWS0Whf6-wc

2. Chapter 8. Overlapping Input/Output; Parallel and Con-
current Programming in Haskell; Simon Marlow;
http://chimera.labs.oreilly.com/books/1230000000929/ch08.html

https://www.youtube.com/watch?v=PWS0Whf6-wc
http://chimera.labs.oreilly.com/books/1230000000929/ch08.html
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3. Chapter 9. Cancellation and Timeouts; Parallel and Con-
current Programming in Haskell; Simon Marlow;
http://chimera.labs.oreilly.com/books/1230000000929/ch09.html

4. An Extensible Dynamically-Typed Hierarchy of Excep-
tions; Simon Marlow
http://community.haskell.org/~simonmar/papers/ext-exceptions.

pdf

http://chimera.labs.oreilly.com/books/1230000000929/ch09.html
http://community.haskell.org/~simonmar/papers/ext-exceptions.pdf
http://community.haskell.org/~simonmar/papers/ext-exceptions.pdf
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31.1 Final project

For our final project, we’re doing something a little weird, but
small and modernized a bit from the original design. Surely
no one who knows us from Twitter or IRC will be surprised
that we’ve chosen something eccentric for this, but we felt it
was important to show you an end-to-end project that brings
in so much real world it’ll make your head spin.

In this chapter,

• FINGER DAEMONS.

31.2 fingerd

Dating back to 1971, the finger1 service was a means of figuring
out how to contact colleagues or other people on the same
computer network and whether they were on the network at
a given time, often on the same mainframe in a time when
computing was usually time-shared on the same physical ma-
chine. finger was originally intended to be used to share an
office number, email address, basic contact details like that.
By the time the 1990s and public internet access was widely
available finger was also used to deliver .plan or .project files
as sort of pre-Twitter/Tumblr microblog.

1http://www.rajivshah.com/Case_Studies/Finger/Finger.htm

http://www.rajivshah.com/Case_Studies/Finger/Finger.htm
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We’re going to be writing a finger daemon in this chapter.
Finger daemon programs are often called fingerd. A daemon
is a process that runs in the background without direct user
interaction; in the case of finger, the daemon acts as the server
side of the protocol, while the finger program itself is on the
client side. When you use finger from your command line,
it sends a request to the finger daemon, and the daemon re-
sponds with the requested information if it can.

We use this as an example in part because it’s not a typical
web app, only requires working with text, and because the
text-based protocol is spare and easy to debug once you know
how. This chapter is going to be somewhat more Unix/Linux-
oriented than previous ones, for a few reasons. Windows users
will find that not all of the examples can be followed along
literally, but the final version of the finger daemon2 should
work.

Caveat for the Windows users

You will not be able to follow all of the instructions here ver-
batim. You can still build and hack on the project, but if you
aren’t willing to install a finger client for testing your finger
daemon via Cygwin then you’ll need to write your own client.

2A daemon is a computer program that runs as a background process
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31.3 Exploring finger

If you had fingerd running on your local machine under the
username callen, the result of having done so might look some-
thing like:3

$ finger callen@localhost

Login: callen Name: callen

Directory: /home/callen Shell: /bin/zsh

On OS X, this will work, without having fired up or installed
a finger service, by not specifying a hostname to query:

$ finger callen

Login: callen Name: Chris Allen

Directory: /Users/callen Shell: /bin/bash

Spooky! Don’t ask. The finger protocol operates over Trans-
mission Control Protocol (TCP) sockets, something it has in
common with the protocol used by web browsers. However,
while they both use TCP, a finger daemon is not a web server.
It’s something much simpler. Rather than having an entire
application protocol layered atop TCP like the web (HTTP)
does, it’s a single message text protocol. Rather than go into a
long explanation of the internet, UDP, and TCP, let’s say TCP

3You can still use finger to check on the status of the bathrooms in the Random Hall
dormitory at MIT by typing finger @bathroom.mit.edu in your terminal. Try it.
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is a protocol for sending messages back and forth between a
client and a server. Those messages can be raw bytes or text.
A socket is an address where a message can be delivered.4

Leaving aside the socket business, the way this should work
is roughly like this: the client requests some information, and
that request is trasmitted to the server with TCP magic. The
server (our friendly daemon) dishes up that information (if it
has it), TCP magic sends it to the client, then the client prints
the information in your terminal. We will start our project
with a little TCP echo server that prints the literal text the
client sent so that we can understand the cases we’re dealing
with.

Project overview

To kick this off, we’ll use Stack with the stack new command
like so:

$ stack new fingerd simple

This gets us a simple project with a single executable stanza
in the Cabal file. The final version after we’ve added Debug.hs

will have the following layout:

$ tree .

4 If you’re new to networking and sockets, this guide by Julia Evans is a great intro-
duction. http://jvns.ca/zines/#networking-ack

 http://jvns.ca/zines/#networking-ack 
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.

├── LICENSE

├── Setup.hs

├── fingerd.cabal

├── src

│   ├── Debug.hs

│   └── Main.hs

└── stack.yaml

fingerd.cabal

Our Cabal file will mention an executable we’re not going to
give you yet, so you can leave the placeholder Stack generated
there for now. Note we have gently reformatted the text to fit
this book’s format.

name: fingerd

version: 0.1.0.0

synopsis: Simple project template

description: Please see README.md

homepage: https://github.com/u/fingerd

license: BSD3

license-file: LICENSE

author: Chris Allen

maintainer: cma@bitemyapp.com

copyright: 2016, Chris Allen

category: Web
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build-type: Simple

cabal-version: >=1.10

executable debug

ghc-options: -Wall

hs-source-dirs: src

main-is: Debug.hs

default-language: Haskell2010

build-depends: base >= 4.7 && < 5

, network

executable fingerd

ghc-options: -Wall

hs-source-dirs: src

main-is: Main.hs

default-language: Haskell2010

build-depends: base >= 4.7 && < 5

, bytestring

, network

, raw-strings-qq

, sqlite-simple

, text

Now that we have taken care of that, let’s write some code.
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src/Debug.hs

This is our first source file. We’re going to use this program to
show us what the client sends and send it back. In this respect,
it’s almost identical to the echo server demonstrated in the
documentation of the network5 library we’re relying on. The
difference is that it also prints a literal representation of the
text that was sent.

Our debug program is a TCP server, similar to a web server
which provides a web page, but lower level and limited to
sending raw text back and forth. What is different is that a web
server communicates with browsers over a TCP socket using a
structured protocol rich with metadata, routes, and a standard
describing that protocol. What we’re doing is older and more
primitive.

module Main where

import Control.Monad (forever)

import Network.Socket hiding (recv)

import Network.Socket.ByteString

(recv, sendAll)

5https://www.stackage.org/package/network The example we’re referring to is in the Net-

work.Socket.ByteString module. Click on it and look for the example.

https://www.stackage.org/package/network


CHAPTER 31. FINAL PROJECT 1867

logAndEcho :: Socket -> IO ()

logAndEcho sock = forever $ do

(soc, _) <- accept sock

printAndKickback soc

sClose soc

where printAndKickback conn = do

msg <- recv conn 1024

print msg

sendAll conn msg

This sets up our server. Its argument is a socket (sock) that
listens for new client connections; due to our use of forever,
that socket remains open indefinitely. The accept action will
block until a client connects to the server. The socket soc is
the result of accept-ing a connection for communicating with
the client.

The server can receive up to 1024 bytes of text from the
client. All it does here is print the text literally, then echo
what the client sent right back to the client that made the
connection. Note that recv is permitted to return fewer than
the maximum bytes specified if that’s all the client sent. Then
the connection to the client is closed — we apply sClose to
soc but not to sock, so sock, the server socket, remains open.
Because this action loops forever, the next thing we do is await
another client connection.
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main :: IO ()

main = withSocketsDo $ do

addrinfos <- getAddrInfo

(Just (defaultHints

{addrFlags =

[AI_PASSIVE]}))

Nothing (Just "79")

let serveraddr = head addrinfos

sock <- socket (addrFamily serveraddr)

Stream defaultProtocol

bindSocket sock (addrAddress serveraddr)

listen sock 1

logAndEcho sock

sClose sock

At the beginning of main, withSocketsDo is not going to do any-
thing at all unless you’re on Windows. If you are on Windows,
it’s obligatory to use the sockets API in the network library. The
address information stuff is mostly noise and can be ignored
as a means for describing what kind of TCP server we’re firing
up and what port it’s listening on.

The important part is the (Just "79") part — that’s the port
we’re listening for connections on. Also note that you’ll need
administrative privileges on most operating systems to listen
on that port.
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TCP socket libraries like network often call everything a
socket. Server listening for connections? That’s a socket.
Client connection that you were listening for? That’s a socket.
Everything’s a socket, and nothing’s a wrench.

The next bit constructs a sort of socket descriptor with
socket. Thenwebind the socket to the address (port) wewanted.
Lastly, we let the operating system know we’re prepared to
listen for connections from clients with listen. From there, we
fire off our server logic which runs indefinitely. If and when
logAndEcho finishes, we’ll close the socket server and then our
story is over.

The next step, assuming your project is built, is to fire up the
debug server — note that it’ll want administrative privileges
for using port 79:

$ sudo `stack exec which debug`

{... build noise and a password prompt ...}

That will get our echo server set up, and we can now test
it using telnet to connect. Telnet is often used to debug TCP
services that use text to communicate. Note that you’ll need
to use sudo or otherwise make use of administrator powers to
start the program because it wants to use a network port that
only administrators or root accounts have access to in most
operating systems. Usually this is the first 1024 ports. Once
you have the debug server running in one terminal, you’ll
connect to it from a new terminal like so:
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$ telnet localhost 79

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

From there, telnet is waiting for you to type something and
then hit enter:

blah

blah

Connection closed by foreign host.

In the above, we typed “blah,” hit enter, got “blah” echoed
back to us, then the server closed the connection. Remember
that sClose is applied to soc in our logAndEcho function, ensuring
that the temporary telnet connection is closed. However, the
server is still open, and you can make further requests by
reopening the telnet connection.

Let us take a look at the server side to see what it printed:

"blah\r\n"

We used print rather than putStrLn in logAndEcho on purpose,
so we could get a literal representation of the data that was
sent. In this case, the string “blah” and the special characters
\r and \n were sent. On Unix-based operating systems such
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as Linux, \n is the default line-ending character. Microsoft
Windows uses \r followed by \n for the same.

Having done that, let us now do the same with a finger
client:

$ finger callen@localhost

[localhost]

Trying 127.0.0.1...

callen

$ finger @localhost

[localhost]

Trying 127.0.0.1...

Particularly if you’re on a Mac, you may get some noise
here like this:

Trying ::1...

finger: connect: Connection refused

Trying 127.0.0.1...

It should connect after that. It attempts to use IPv6 first to
reach your finger daemon; when it can’t, it should use IPv4.
You can probably ignore this.

Then the output server-side for this would be:

"callen\r\n"

"\r\n"
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The first command asked the finger daemon running at
localhost for information on the user callen; the second asked
for a listing of users. With the printed output the server gave
us, we now know what queries from a finger client will look
like to our TCP server. With that done, we’ll now write up the
final TCP server itself.

31.4 Slightly modernized fingerd

Historically, the data that finger returns about users was part
of the operating system. That information is still typically
stored in the OS, but for security reasons, it’s no longer rou-
tinely shared through finger requests. We’re going to update
the source of data for finger by using an embedded SQL6

database called SQLite. A database is a convenient yet robust
way of sorting and reading data, and SQLite is a lightweight
database. The data will be stored in a file within the main
project directory, so there won’t be a lot of mystery or magic
involved in interacting with it.

First we’ll show you the TCP server’s framing of the logic,
then we’ll show you how the database interaction works. From
here, all the code goes into your Main.hs file.

6Pronounced “squirrel.”
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{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

{-# LANGUAGE RecordWildCards #-}

OverloadedStrings you already know. QuasiQuotes is for the
literals, which you’ve seen before. RecordWildCards is the new
one and isn’t too difficult to figure out. It spares us manually
yanking the contents of a record into scope; instead, the record
accessors become bindings to the contents such that,

{-# LANGUAGE RecordWildCards #-}

module RWCDemo where

data Blah =

Blah { myThing :: Int }

wew Blah{..} = print myThing

wew will print the myThing inside of the Blah argument it is
applied to without needing to apply myThing to a Blah value or
to destructure the contents of Blah in the pattern match. It’s
purely a convenience.
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module Main where

import Control.Exception

import Control.Monad (forever)

import Data.List (intersperse)

import Data.Text (Text)

import qualified Data.Text as T

import Data.Text.Encoding

(decodeUtf8, encodeUtf8)

We’ll need the ability to decode a Text value from a UTF-8
ByteString and then re-encode a Text value as aUTF-8 ByteString.

import Data.Typeable

import Database.SQLite.Simple

hiding (close)

import qualified Database.SQLite.Simple

as SQLite

import Database.SQLite.Simple.Types

import Network.Socket hiding (close, recv)

import Data.ByteString (ByteString)

import qualified Data.ByteString as BS

import Network.Socket.ByteString

(recv, sendAll)

import Text.RawString.QQ
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Creating the database We’re using the sqlite-simple library
to make a self-contained database stored in a file in the same
directory as our project. This will act as the repository of users
our finger daemon can report on.

data User =

User {

userId :: Integer

, username :: Text

, shell :: Text

, homeDirectory :: Text

, realName :: Text

, phone :: Text

} deriving (Eq, Show)

Now we dig into where the data comes from. User is the
datatype describing our user records. It’s not super structured
or interesting, but gets things rolling. The only bit potentially
out of the ordinary here is that we have a userId field of type
Integer in order to provide the database with what’s called a
primary key. This is to provide a means of uniquely identify-
ing data in the database independent of the text fields in our
record type, among other things.

Weneed someboilerplate typeclass instances formarshalling
and unmarshalling data to and from the SQLite database:
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instance FromRow User where

fromRow = User <$> field

<*> field

<*> field

<*> field

<*> field

<*> field

instance ToRow User where

toRow (User id_ username shell homeDir

realName phone) =

toRow (id_, username, shell, homeDir,

realName, phone)

This should remind you of FromJSON and ToJSON.

createUsers :: Query

createUsers = [r|

CREATE TABLE IF NOT EXISTS users

(id INTEGER PRIMARY KEY AUTOINCREMENT,

username TEXT UNIQUE,

shell TEXT, homeDirectory TEXT,

realName TEXT, phone TEXT)

|]
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The Query type is a newtype wrapper for a Text value. Con-
veniently, Query has an IsString instance, so string literals can
be Query values. This isn’t really a query, though; it’s a SQL
statement defining the database table that will contain our
user data. The primary key stuff is noise saying that the row is
named id and that we want that field to autoincrement without
needing to do it ourselves. That is, if the last row we inserted
into the database had the id 1, then the new one will be auto-
assigned the primary key 2. The rest of it describes field names
and their representation (“TEXT”), but you’ll note we require
usernames to be unique so that there cannot be two User values
with the same username.

insertUser :: Query

insertUser =

"INSERT INTO users\

\ VALUES (?, ?, ?, ?, ?, ?)"

allUsers :: Query

allUsers =

"SELECT * from users"

getUserQuery :: Query

getUserQuery =

"SELECT * from users where username = ?"
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This is utility stuff for inserting a new user, getting all users
from the user table, and getting all the fields for a single user
with a particular username. The question marks are how the
sqlite-simple library parameterizes database queries.

data DuplicateData =

DuplicateData

deriving (Eq, Show, Typeable)

instance Exception DuplicateData

The type above is a one-off exception we throw whenever
we get something other than zero or one users for a particular
username. That should be impossible, but you never know.

type UserRow =

(Null, Text, Text, Text, Text, Text)

UserRow is a type synonym for the tuples we insert to create
a new user.
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getUser :: Connection

-> Text

-> IO (Maybe User)

getUser conn username = do

results <-

query conn getUserQuery (Only username)

case results of

[] -> return $ Nothing

[user] -> return $ Just user

_ -> throwIO DuplicateData

The Only data constructor is how we pass a single argument
instead of a 2-or-greater tuple to our query parameters when
using the sqlite-simple library. This is needed because base has
no one-tuple type and getUserQuery takes a single parameter.
We check for none, one, or many results converting it into a
Nothing, Just, or IO exception.

Finally, we need a utility function for creating the database
with a single example row of data:
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createDatabase :: IO ()

createDatabase = do

conn <- open "finger.db"

execute_ conn createUsers

execute conn insertUser meRow

rows <- query_ conn allUsers

mapM_ print (rows :: [User])

SQLite.close conn

where meRow :: UserRow

meRow =

(Null, "callen", "/bin/zsh",

"/home/callen", "Chris Allen",

"555-123-4567")

Stack may balk because you have a module called Main that
has no main defined. If that’s the case for you, you can do this:

main :: IO ()

main = createDatabase

We’ll change that main later, but that will get your executable
building for now.

Running this a second time will error without changing the
database. If you need or want to reset the database, you can
delete the finger.db file.
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Before you continue The code that follows will assume and
require a SQLite database by the name of finger.db with the
schema outlined in createUsers exists in the same directory as
where you run your fingerd service.

To run createDatabase, you could do the following:

$ stack ghci --main-is fingerd:exe:fingerd

{... noise noise ...}

Prelude> createDatabase

User {userId = 1, ... noise ... }

With that in place, you can continue implementing your
finger daemon.

Let your fingers do the walking

We’re still in our Main module here. You should have created
the database already, but now we’ll write the functions that
will allow the server to listen and respond to client queries.
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returnUsers :: Connection

-> Socket

-> IO ()

returnUsers dbConn soc = do

rows <- query_ dbConn allUsers

let usernames = map username rows

newlineSeparated =

T.concat $

intersperse "\n" usernames

sendAll soc (encodeUtf8 newlineSeparated)

returnUsers uses a database Connection and a Socket for talk-
ing to the user. The database connection is used to get a list
of all the users in the database which is then changed into
a newline separated Text value. Then that is encoded into a
UTF-8 ByteString which is sent through the socket to the client.

formatUser :: User -> ByteString

formatUser (User _ username shell

homeDir realName _) = BS.concat

["Login: ", e username, "\t\t\t\t",

"Name: ", e realName, "\n",

"Directory: ", e homeDir, "\t\t\t",

"Shell: ", e shell, "\n"]

where e = encodeUtf8
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This function is used to format User records as a UTF-8
ByteString value. The format is intended to mimic popular
fingerd implementations but we’re not going for precision
here.

returnUser :: Connection

-> Socket

-> Text

-> IO ()

returnUser dbConn soc username = do

maybeUser <-

getUser dbConn (T.strip username)

case maybeUser of

Nothing -> do

putStrLn

("Couldn't find matching user\

\ for username: "

++ (show username))

return ()

Just user ->

sendAll soc (formatUser user)

This is the single user query case, where we use formatUser

to provide detailed information to the client on a single user.
We have to handle the case where no user by the username
provided was found. As it stands, the Nothing case here will
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print the report that no user was found by that username in the
server terminal but will not send that information — or any
information — to the client side. You may want to change that,
as it might be useful to tell the end user why no information
was returned.

If a user is found, we send the formatted ByteString of the
User record to the client. The stripping of the username text
prior to querying is because the literal data sent for a user-
name query is "yourname\r\n" and in order for that to match
“yourname,” we need to strip the control characters from the
text, which strip from Data.Text does for us.

handleQuery :: Connection

-> Socket

-> IO ()

handleQuery dbConn soc = do

msg <- recv soc 1024

case msg of

"\r\n" -> returnUsers dbConn soc

name ->

returnUser dbConn soc

(decodeUtf8 name)

handleQuery receives up to 1024 bytes of data. Based on
that data the client sends to the server, the case discriminates
between when it should send a list of all users or only a single
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user. Fortunately, the protocol is relatively uncomplicated,
so we don’t have to do any parsing as would ordinarily be
required for communicating with a more elaborate protocol.

handleQueries :: Connection

-> Socket

-> IO ()

handleQueries dbConn sock = forever $ do

(soc, _) <- accept sock

putStrLn "Got connection, handling query"

handleQuery dbConn soc

sClose soc

It’s similar to the echo server, save for the additional ar-
gument of the database connection and the logging of when
connections were accepted.

Now we need to change main to assemble our whole pro-
gram:
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main :: IO ()

main = withSocketsDo $ do

addrinfos <-

getAddrInfo

(Just (defaultHints

{addrFlags = [AI_PASSIVE]}))

Nothing (Just "79")

let serveraddr = head addrinfos

sock <- socket (addrFamily serveraddr)

Stream defaultProtocol

bindSocket sock (addrAddress serveraddr)

listen sock 1

-- only one connection open at a time

conn <- open "finger.db"

handleQueries conn sock

SQLite.close conn

sClose sock

The only new bit above is the opening of a connection to a
SQLite database located in the same directory as your project.
The connection to the database is passed to the query-handling
code, which runs indefinitely like the echo-and-log server. If
it somehow stops without throwing an exception, we close the
server socket, just to be good little programmers.

Now we’re done, assuming you’ve created a SQLite database
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using createDatabase which is valid and accessible to your pro-
gram, the following should work. You’ll want to do this in one
terminal:

$ stack build

$ sudo `stack exec which fingerd`

Then in another, different, shell session the following should
work:

$ finger callen@localhost

Login: callen Name: Chris Allen

Directory: /home/callen Shell: /bin/zsh

And that’s it. In the exercises, we’ve given some ways to
extend this, and we hope you’ve enjoyed this little foray into
TCP sockets and basic networking. Security concerns aside,
the finger protocol has been used over the years for some
pretty cool things. Perhaps most famously, John Carmack
used .plan files as a kind of microblog to deliver updates on
the development process of Quake.7

31.5 Chapter Exercises

1. Try using the sqlite3 command line interface to add a
new user or modify an existing user in finger.db.

7http://atrophied.co.uk/read/john-carmacks-plan-archive

http://atrophied.co.uk/read/john-carmacks-plan-archive
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2. Write an executable separate of fingerd and debug which
allows you to add new users to the database.

3. Add the ability to modify an existing user in the database.

4. Bound on a different port, try creating a “control socket”
that permits inserting new data into the database while
the server is running. This will probably require, at mini-
mum, learning how to use forkIO and the basics of concur-
rency in Haskell among other things. Design the format
for representing the user rows passed over the TCP socket
yourself. For bonus points, write your own client exe-
cutable that takes the arguments from the command line
as well.

5. Celebrate completing this massive book.
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1303, 1390

foldl, 548, 549, 559, 570, 572,
588, 1269

foldl', 561
foldMap, 1261, 1263, 1265,

1270
foldr, 532, 533, 536, 545, 569,

571, 1261, 1267, 1269,
1717, 1724

forall, 1818
foreign function interface

(FFI), 1475
forever, 809, 1685, 1840
Fractional, 138, 146, 215, 276,

277
fractional, 145
FromJSON, 1484, 1486
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fromMaybe, 1293, 1359
fst, 162, 508
function, 3, 4, 7, 41, 43–45,

192, 298, 330, 332, 333,
984

function
anonymous, 8
application, 10, 41, 46–48,

80, 185, 195, 330, 334,
335, 389, 427, 507, 598,
707, 973, 984, 1059, 1071,
1110, 1199, 1219

body, 46
composition, see function

composition
datatype, 184
first-class, 3, 330
head, 46
higher-order, see

higher-order function
infix, 51
mathematical, 48
parameter, 192
prefix, 51
structure, 7, 8
unsafe, 122

function composition, 985,
995, 1203, 1209, 1325,
1328, 1331, 1334, 1507,
1509, 1573

function type, 192, 194, 195,
252, 289, 1319

function type
Applicative, 1337
Functor, 1328, 1330, 1336
Monad, 1348
Monoid, 1218, 1220
as Reader, 1334

function type constructor,
185, 195, 197, 367, 723,
729, 748, 875

function, definition, 96
functional dependencies,

596
Functor, 500, 502, 714, 958,

960–962, 965, 972, 973,
984, 1005, 1018, 1039,
1054, 1057, 1143, 1197,
1221, 1276, 1319, 1328,
1330, 1334, 1511, 1524

Functor laws, 979, 983, 1010
Functor, definition, 1047
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functor, 959, 960, 1142, 1200,
1318, 1325

functor, applicative, 1145

fusion, 1753, 1754

GADTs, 1818, 1819

garbage collection, 1628,
1631, 1736

Gen, 835, 837, 839, 861, 864,
866, 869, 873

GeneralizedNewtypeDeriving,
624, 626

generalized algebraic
datatype, see GADTs

generator, 477, 478

generator

multiple, 479, 480

Generic, 874

getArgs, 1835

getChar, 1782

getLine, 775, 777, 1157

GHC 8.0, 1693

GHC Core, 1647, 1652, 1654,
1680, 1689

GHC extension, see
language extension

GHC flag, 1729
GHC flag

-ddump, 1435, 1648
-fprof-auto, 1729
-I, 921
-O2, 1710, 1730
-O, 1710
-prof, 1729
-rtsopts, 1730
-Wall, 267, 348, 385

GHC optimization, 1661,
1716, 1730, 1754, 1787

GHC optimization,
strictness, 1669, 1676

GHC Rules, 1754
GHC.Prim, 1785
GHCi, 36, 41, 45, 339, 929,

1031, 1032, 1825
GHCi block syntax, 345, 348,

378
GHCi command

:browse, 358, 765, 827
:info, 53, 78, 135, 144, 155,

250, 252, 843
:kind, 598, 676, 721
:load, 40
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:main, 1837

:module, 40, 770

:reload, 47

:set, 348, 385, 770, 1436,
1648

:sprint, 488, 493, 1660

:type, 99, 111, 152, 182, 618,
964

GHCi options, 766

Gibbard, Cale, 540

git, 753, 754

go pattern, 445

Gofer, 979

guard, 377, 379, 380,
382–385, 711

guarded recursion, 1724

gzip, 1768

Hackage, 258

HashMap, 1741

Haskell ninjas, 307

Haskell Report, 279, 596,
600, 720, 1716

head, 120

heap profiling, 1731

hGetChar, 1809

hgrev (library), 1226
higher-kinded, 720, 722, 726,

729
higher-kinded

polymorphism
definition, 1047

higher-kinded type, 674, 677,
680, 681, 720, 965, 974,
979, 1005, 1007, 1034,
1047, 1262

higher-kinded type, Functor,
972

higher-kinded type,
definition, 748

higher-order function, 200,
365, 366, 369, 375, 387,
421, 425, 472, 500, 512,
1399

higher-order function
definition, 413

Hindley-Milner, see
Damas-Hindley-Milner

homomorphism, 1109, 1130
Hoogle, 252
hspec (testing), 822, 825, 828,

833, 845, 1456
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http-client (library), 1842,
1843

Hutton’s Razor, 702

I/O, 103, 301, 775, 1825

id, 210, 1507, 1508

idempotent, 881

idempotent, definition, 886

Identity (type), 270, 865,
1078, 1269, 1270, 1302,
1307, 1507, 1508, 1511,
1524, 1568, 1569

identity, 905

identity

function, 11, 12, 21, see id

law, 979, 983, 1106, 1189

property, 929, 932

identity value, 425, 535, 536,
561, 890–892, 917, 933,
936, 939, 941, 1270

IdentityT, 1508, 1523, 1524,
1526, 1530, 1534, 1538,
1541, 1544, 1589, 1600

idiom, 1139

if expression, 155, 156, 360,
361, 363, 377–380, 509,

510, 783, 805
immutability, 504, 511, 643,

683
imperative programming,

783, 1149
import, 109, 155, 163, 246,

765, 767, 787, 825, 850,
855

import
hiding, 1469, 1866
qualified, 768, 1244
qualified as, 769, 850, 1244

import syntax, 1583, 1587
indentation, 59, 60
indexing, 121, 577, 796, 1748
infinite list, 1733
infix operator, 51, 53, 68, 79,

185, 194, 202, 678, 1712
infix operator

associativity, 53–55, 194,
195

precedence, 53, 54, 195
prefix, 52, 82, 110, 115
sectioning, see sectioning

infix, definition, 96
infixl, 54
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infixr, 55, 1776
:info, 135
INI, 1444
INLINABLE, 1717
INLINE, 1776
inlining, 1670, 1672, 1787
input, 3
input/output, see I/O
instance, 140, 146, 257
instance, 260
instance, orphan, see orphan

instance
InstanceSigs, 1343, 1515, 1516,

1531
Int, 138, 141, 616, 1693
Int versus Integer, 1719
Int32, 1368
Int8, 142, 616, 629
Integer, 128, 138, 140, 143,

895, 1488
Integer, Monoid, 895, 896
integer, 68, 140
Integral, 274, 275
Integral functions, 274
interface, 249
intersperse, 791

IntMap, 1741
IO (), 103, 300, 776, 779,

1031, 1158
IO, 103, 299, 301, 774, 781,

782, 837, 1031, 1032,
1149, 1154, 1224, 1233,
1235, 1244, 1505, 1522,
1573, 1597, 1759, 1782,
1784, 1825, 1841

IO

Applicative, 1075, 1801,
1802

Functor, 1031, 1157, 1800
Monad, 1149, 1804
as State, 1785, 1786
associativity, 1806
exceptions, 1833
sharing, 1664
unsafe functions, 1809

IO action, 301, 1161, 1255,
1787, 1789

IO, definition, 323
IO Monad, the, 1784
IOException, 1828, 1831
IRC, 540, 591
irrefutable pattern,
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1686–1688, 1694
isomorphism, 885
IsString, 1239, 1241

JavaScript, 1488
join, see Monad, 1148, 1154,

1160, 1209, 1296, 1529,
1536, 1539, 1543, 1801

join, IO, 1804
JSON, 676, 677, 1397, 1425,

1476, 1481, 1488
JSON parsing, 1227

key-value pair, see Map (type)
keyword

~, 1688, 1694
!, 1691, 1739
*, 598, 966
--, 65
->, 192, 966
::, 99, 106, 196, 720
<-, 781
=>, 190
=, 45
@, 693
#, 625, 1786
_, 137, 345

as, 769, 1244
case , see case expression,

see case expression
class, 305, 960
data, 135, 174, 593
deriving, 257, 609
do, 104, 775, 779
forall, 1818
hiding, 1469, 1866
if-then-else, 156
if, 156
import, 765, 767
infixl, 54, 1712
infixr, 55, 1776
instance, 251, 260, 261
let, 45, 85
let, in, 61
module, 751
newtype, 620
qualified, 768, 769, 1244
type, 620, 633
where, 85, 88, 261, 961
|, 134, 593

kind, 597–599, 603, 674, 681,
720, 722, 723, 725, 726,
966, 971, 978, 989
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kind inference, 970

Kleisli composition, 1202,
1203, 1209

lambda, 3, 31, 195

lambda calculus, 2, 32, 43,
48, 180, 192, 298, 427,
1161, 1798

lambda expression, 1761

lambda term, 7

language extension

BangPatterns, 1689

DeriveGeneric, 874

ExistentialQuantification,
1819

GADTs, 1819

GeneralizedNewtypeDeriving,
624, 626

InstanceSigs, 1343, 1515,
1516, 1531

NegativeLiterals, 631

NoImplicitPrelude, 766

NoMonomorphismRestriction,
226

OverloadedStrings, 1214,
1239, 1416, 1469, 1485,

1598, 1605, 1767
QuasiQuotes, 1433, 1485,

1873
RankNTypes, 1035
RecordWildCards, 1873
StrictData, 1693
Strict, 1693
TypeApplications, 964

Last (newtype), 910, 912
laws, 904
laws

Applicative, 1106
Functor, 979, 982
Monad, 1188
Monoid, 904
Traversable, 1307
mathematical, 955

laziness, 1630, 1632, see also
nonstrictness

leaf, 682
length, 167, 186, 215, 490,

494–496, 535, 544, 1275
let, 45, 59, 85, 86, 108, 224,

335, 338, 1685
let expression, 86, 338
let versus where, 85
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lexing, 1460, 1461
library, 759, 761, 764
library

aeson, 1476
attoparsec, 1425
bytestring, 1241, 1476, 1769
checkers, 1115, 1191
containers, 849, 1738
criterion, 1709
hspec, 822
http-client, 1842
network, 1866
parsec, 1468
parsers, 1412, 1426
QuickCheck, 871, 1012, 1115
random, 792, 1367
scientific, 139, 145
scotty, 1247, 1256, 1576
snap, 1224
sqlite-simple, 1875
text, 1223, 1241, 1763, 1774
time, 1789
transformers, 1378, 1564,

1585, 1598
trifecta, 1415, 1425, 1468
uuid, 1223

vector, 1290, 1748
wreq, 1300

lift, see MonadTrans, 1589,
1608

liftA2, 1229, 1231
lifting, 977, 981, 1032, 1054,

1055, 1059, 1150, 1221,
1229, 1331, 1511, 1574,
1575, 1580, 1582, 1588

lifting
definition, 1048

liftIO, 1253, 1597, 1608
liftM, 1151
lines, 793
List, 592, 597, 678–680, 726,

727
list

Applicative, 1061, 1068,
1069

Monad, 1163
Monoid, 1265
datatype, 459, 527, 528
empty, 536
infinite, 542, 543, 561, 576
structure, 486, 487,

494–496, 507, 529
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type constructor, 165

list comprehension, 477–479,
482, 512

list comprehension, with
condition, 478, 479, 482

list functions, 119

list monoid, 1120

list syntax, 165, 460

lists, 98–100, 105, 112, 113,
119, 165, 464, 500, 503,
891, 893, 1260, 1567,
1695, 1738, 1745, 1747,
1748, 1752

ListT, 1567

logging, 1566

lookup, 1072, 1356

loop fusion, see fusion

LTS Haskell, 754, 755

Main, 89, 1832, 1880

:main, 1837

main, 102–104, 1243, 1256,
1788, 1835, 1880

main, with arguments, 1836

many, see Alternative

Map (type), 850, 853, 1073,

1219, 1738, 1739, 1741,
1748

map, 500, 502, 506–508, 533,
534, 962, 1725

mapM_, 1836
mapM, 1289
mappend, 891, 893, 896, 899,

1216
mappend

infix, 901, 1215, 1219
Marlow, Simon, 1792, 1814
marshalling, 1475, 1476, 1486,

see also serialization
marshalling, definition, 1501
max, 286
maxBound, 143
maximum, 1277
Maybe, 128, 433–435, 462, 463,

705, 706, 708, 722, 724,
725, 727, 802, 805, 844,
871, 910, 1062, 1224,
1255, 1270, 1404, 1604,
1608, 1831

Maybe

Applicative, 1066, 1075,
1083, 1097, 1172
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Functor, 1015
Monad, 1166, 1172, 1174
Monoid, 1066

MaybeT, 1506, 1548, 1552, 1589,
1591, 1601, 1606

mconcat, 901, 1214
memoization, 1632
memory, 143, 1731, 1733, 1736
memory leak, 1566, 1693
memory leak, definition,

1627
mempty, 891, 893, 902, 1268,

1272, 1419
min, 286
minBound, 143
minimal complete instance,

258, 1285, 1427
minimum, 1277
mod, 69, 71
mod, difference from rem, 75
module, 58, 107, 109, 117,

246, 751, 753
module

definition, 239
export, 762
import, 765

modules, 175
Monad, 775, 779, 1142–1144,

1197, 1224, 1233, 1235,
1252, 1327, 1328, 1341,
1345, 1353, 1366, 1516,
1526, 1543, 1563, 1784,
1788, 1798

Monad

(>>), 1402
fail, 1422
IO, 1804
Reader, 1348
composition, 1200
laws, 1188

monad, 828, 839, 866, 1617
monad transformer, 1216,

1235, 1256, 1355, 1378,
1505, 1506, 1508, 1518,
1520, 1523, 1541–1544,
1547, 1571, 1576, 1591,
1595, 1604

monad transformer,
definition, 1362

monad, definition, 1209
MonadFail, 1422
MonadIO, 1597, 1598, 1600
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MonadTrans, 1574, 1575, 1582,
1589, 1591

Monoid, 891, 892, 902, 942,
1197, 1215, 1218, 1226,
1262, 1263, 1265

Monoid

Bool, 909, 930, 932
Integer, 895
Maybe, 910–912

Monoid, of functions, 1218
monoid, 888, 890, 892, 893,

897, 902, 903, 909,
1064, 1071, 1110, 1133,
1152, 1213, 1221, 1233,
1260, 1262, 1263

monoid
commutative, 902
definition, 955

monoidal functor, 1053,
1059, 1066, 1110

monomorphism restriction,
226, 1317

Morse code, 1292
mtl (library), 1383
mutable state, 1760
mutable vector, 1757, 1758

mutation, 1366, 1757, 1759,
1761, 1762

MVar, 1792, 1806, 1808

named entities, 175

natural transformation,
1034, 1038, 1132

negate, 77

negation, 84

NegativeLiterals, 630, 631

negative number, 76

nesting, 15, 42, 1161, 1787,
1790, 1798, 1804

network-uri (library), 1252

network (library), 1234, 1866,
1868

network interface, 1475

newtype, 306, 349, 350, 591,
620–622, 624, 810, 897,
898, 908, 911, 919, 1334,
1338, 1507, 1508, 1578,
1595, 1749, 1775

nf, 1712

NICTA, 1563

nil, 434

NoImplicitPrelude, 766
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NoMonomorphismRestriction,
226

non-exhaustive patterns,
267–269, 385

NonEmpty, 463, 937, 939
nonstrict evaluation, 460,

485–488, 500, 507
nonstrictness, 47, 196, 508,

542, 546, 561, 1150, 1630,
1632, 1633, 1635,
1657–1659, 1672, 1694,
1851, 1853

nonstrictness, sharing, 1664
normal form, 20, 21, 42, 49,

490–492, 499, 637, 639,
640, 1712, 1720, 1727,
1747

normal order, 29, 31, 33
not, 135
null, 1274
nullary, 593, 596, 611, 618
nullary constructor, 729
nullary type, 720
Num, 139, 146, 188, 249, 252,

273, 276, 1240
Num functions, 273

number, 47

numeric literal, 41, 183, 188,
215, 219, 249, 345, 623,
1240

numeric type, 137

O’Sullivan, Bryan, 1709

Only, 1879

operator, 51, 890

operator

infix, see infix operator

operator, definition, 96

optimization, 181, 1753

Ord, 148, 150, 251, 261, 272,
284, 286, 289, 290, 292,
293, 312, 369, 371, 682,
851, 1741

Ord functions, 284

Ordering, 286

orphan instance, 919,
921–923, 928

otherwise, 381, 382, 385

overflow, 141, 143

OverloadedStrings, 1214, 1239,
1241, 1243, 1416, 1469,
1485, 1598, 1605, 1767
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package, 753
parallelism, 1708
param, 1249
parameter, 7, 45, 46, 195, 209,

330–334, 438, 721
parameter, definition, 95
parametric polymorphism,

174, 209–211, 213, 239,
310

parametricity, 211, 213, 239,
314, 1039

parentheses, 54, 56, 79, 82,
84, 196, 367, 390, 392,
551, 707

parse error, 62, 64, 66, 826
parsec (library), 1425, 1465,

1468, 1470
Parser (type), 1403, 1422
parser, 1226, 1227, 1250, 1399,

1500, 1565
parser

Hutton-Meijer, 1405
parser combinator, 1399
parser combinator

definition, 1501
parsers (library), 1426, 1429

Parsing (typeclass), 1427
parsing, 1396, 1398, 1401,

1460, 1461, 1465, 1468,
1474, 1486

parsing, backtracking, see
backtracking

partial application, 83, 196,
197, 202, 204, 1007, 1319

partial function, 122, 265,
266, 268, 292, 304, 347,
361, 432, 433

pattern match
non-exhaustive, 347, 348

pattern matching, 137, 164,
232, 344–347, 349, 350,
352–357, 361, 363, 375,
460, 463, 494, 496, 503,
545, 621, 647, 710, 713,
719, 1031, 1224, 1527,
1644, 1654, 1686, 1850

pattern matching
definition, 406
lazy, 1688

penguins, 355
Peyton-Jones, Simon, 1149
phantom type, 597, 601, 912,
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1025
pipe, 134, 381, 477, 527, 593,

594
pipes (library), 1567, 1766
pointer, 898, 1749
pointfree, 392–394, 399,

400, 1673, 1684, 1736
pointfree

definition, 416
polymorphic literal, 1239
polymorphism, 113, 142, 152,

183, 208, 211, 216, 217,
283, 284, 310, 334, 488,
1047, 1317, 1521, 1662,
1681

polymorphism
ad hoc, see constrained

polymorphism
constrained, see

constrained
polymorphism

definition, 174, 239
higher-kinded, 749
parametric, see

parametric
polymorphism

pragma, 624, 625
pragma

INLINABLE, 1717
LANGUAGE, 624
MINIMAL, 1261, 1285
UNPACK, 1739

precedence, 53, 55, 76, 79,
389, 1712

prefix, 51
Prelude, 155, 495, 766, 767,

1262, 1283, 1295
primary key, 1875, 1877
primitive type, 1785, 1786
principal type, 239
print it, 288
print, 101, 288, 289, 298, 299,

301, 396, 397, 784
Product (newtype), 896, 898,

901
Product (type), 644, 651, 1272
product, 459, 460, 612, 613
product, 1278
product type, 161, 354, 594,

615, 631–635, 649, 650,
798, 867

product type, definition, 526
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profiling, 1727, 1729, 1731,
1733, 1737

prompt, 41
property test, 927
property testing, definition,

885
pseudorandom, 837, 1367,

1369
puppies, 384
pure, 1054, 1144, 1197
pure, IO, 1803
purity, 3, 298, 1798, 1799,

1825
putStr, 101
putStrLn, 101, 784, 1157

quantification
existential, see existential

quantification
universal, 1819

QuasiQuotes, 1433, 1485, 1873
queue, 1778
QuickCheck, 821, 833, 835, 871,

927, 928, 930, 1010,
1012, 1115, 1199, 1308

random (function), 787, 1370

random (library), 792, 1367
random number generation,

1223, 1244, 1367, 1382
random values, 793, 837
randomRIO, 795, 797
range syntax, 203, 465, 467,

470, 493, 494
RankNTypes, 1034, 1035
Rational, 139, 145
Read, 251, 303, 304, 1250
Read, is not good, 303, 304
read, 1031
Reader, 989, 1224, 1325, 1327,

1330, 1334, 1335, 1337,
1340, 1341, 1522, 1564,
1566, 1569, 1619

Reader

Functor, 1336
Monad, 1348

ReaderT, 1354, 1355, 1557, 1561,
1564, 1566, 1569, 1585,
1619, 1676, 1808

readFile, 1766
Real, 275
RealWorld, 1785, 1786
record
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accessor, 635, 665, 1544
syntax, 591, 635, 901

record type, 591
RecordWildCards, 1873
recursion, 420, 421, 428, 439,

494, 500, 504, 534, 535
recursion

definition, 455
guarded, 1724
tail, 587

recursive function, 436, 438,
441, 443–445, 576

recursive function
evaluation, 425, 440, 446

recursive type, 682
Redis, 1246, 1255
reduce, 3
reducible expression, 42, 48,

49
reduction, 41, 47, 80
referential transparency, 3,

1757, 1760, 1799, 1841
referential transparency, IO,

1799
refutable pattern, 1686
regular expression, 1461

:reload, 47

remainder, 68

REPL, 36, 41, 47, 54

replicate, 1854

replicateM, 1245

return, 781, 782, 839, 864,
1032, 1144, 1189, 1591

runtime, 605, 620, 1824

RWST, 1565

scan, 549, 573, 574, 576

Schönfinkel, Moses, 15

Scientific, 139, 145, 1488

scope, 40, 87, 99, 108, 117, 119,
155, 223, 335, 338, 339,
608, 751, 765

scope

definition, 129

lexical, 337, 339

scotty (web framework),
1214, 1215, 1244, 1247,
1256, 1569, 1576, 1584,
1587, 1595, 1598, 1604,
1609, 1622

sectioning, 81, 83, 202, 204

semantics, 77
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semantics
IO, 1806
Haskell, 25, 1798
program, 1799

Semigroup, 936, 937, 939, 942
semigroup, 888, 936
semigroup, definition, 955
seq, 1639, 1640, 1643, 1655,

1689, 1693
Sequence (type), 1738, 1744,

1745, 1747, 1748
sequence, 1290, 1294, 1296,

1298
sequenceA, 1285, 1289–1291,

1308, see also
Traversable

sequencing, 1144, 1149, 1154,
1161, 1227, 1787, see
Monad, 1790

serialization, 296, 303, 1397,
1475, 1486, 1491, 1501

server, 1861, 1867
Set (type), 1738, 1741
set, 133
set theory, 133, 615
Setup.hs, 846

shadowing, 336–339
sharing, 1664, 1668–1670,

1672, 1677, 1681–1685,
1733, 1734, 1783, 1786,
1788, 1790, 1791

sharing, IO, 1789, 1791, 1796
Show, 136, 251, 261, 265, 288,

289, 296, 297, 299,
301–303, 396, 731, 830,
1815

Show functions, 297
show, 798
side effect, see effects
Simons, 651
smart constructor, 1234
snap (web framework), 1224
snd, 162
snoc, 1776
Snoyman, Michael, 1842
socket, 1234, 1863, 1867, 1869
some, see Alternative

SomeException, 1817–1819,
1823, 1824, 1838

source code, 45
spine, 464, 465, 485–487, 494,

531, 545
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spine
definition, 529
recursion, 541, 542, 544,

547, 557, 559–561
spine strict, 490, 494
splitAt, 469, 471
:sprint, 1660, 1676, 1679
SQLite, 1872, 1877, 1881
sqlite-simple (library), 1875,

1879
ST, 1366, 1758–1760, 1762,

1782, 1785, 1788
Stack, 103, 752, 753, 755, 1239,

1712, 1880
stack.yaml, 755
Stack commands, 754, 784,

846, 1826
Stack commands

build, 755, 760, 824, 827,
833, 1579, 1712, 1887

clean, 1716
exec, 756, 760, 776, 859,

1869
ghci, 36, 755, 824, 862,

1579, 1881
ghci with options, 766

ghc, 1710, 1712, 1729, 1836
init, 824
install, 139
new, 784, 1863
setup, 755
compile a binary, 1836

Stackage, 754
StackOverflow (exception),

1838
State#, 1786
State, 1354, 1366, 1367, 1371,

1378, 1404, 1406, 1564,
1566, 1759, 1761, 1784,
1785

state, 1365, 1371
StateT, 1406, 1561, 1563, 1564,

1566, 1587
static typing, 181
StdGen, 1368
stdin, 1809
stdout, 1809
streaming, 1566, 1567
Strict, 1693
StrictData, 1693
strictness, 488, 494, 497, 508,

538, 545, 561, 1217, 1631,
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1637–1639, 1654, 1655,
1657, 1661, 1691, 1695,
1701

String, 99, 100, 106, 113, 119,
126, 128, 259, 289, 296,
297, 301, 303, 304, 482,
1239, 1669, 1670, 1762,
1766

String, definition, 128
strings, 98, 100, 105
subclass, 212
Sum (newtype), 896, 898, 1219
Sum (type), 644, 652, 1272
sum, 497, 534, 1278
sum type, 134, 152, 350, 353,

459, 503, 594, 607, 615,
616, 627, 628, 638, 640,
649, 652, 665, 709, 716,
869, 871

sum type, definition, 526
superclass, 146, 212, 293, 323,

1143
syntactic sugar, 77, 100, 180,

464, 774, 1154
syntactic sugar, definition,

96

syntax, 59

System.Environment, 1835

System F, 180

tail, 120, 727

tail call, definition, 587

take, 120, 469, 470, 509, 544,
578

takeWhile, 469, 472

TCP, 1863

Template Haskell, 1435

term level, 133, 152, 161, 175

terminate, 41, 431

testing, 181

testing

property, 820, 833, 861,
862, 873

spec, 820, 822, 828

unit, 819

Text, 1223, 1239, 1247, 1253,
1256, 1670, 1762–1764,
1766, 1775

text (library), 1223, 1241,
1763, 1774

thread, 1855, 1857

threadDelay, 1840
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throw, 1840, 1841
throwIO, 1838, 1840–1842,

1845
thunk, 1628, 1631, 1660, 1662,

1670, 1685, 1693
tie fighter, 1054
tilde, 1688, 1694
time (library), 1789
ToJSON, 1486
token (parsing), 1444, 1460
tokenize, 1460, 1461, 1465
tokenizer, definition, 1501
toList, 1273
top level, 106–108, 117
total function, 433
trace, 1665, 1677
transformer stack, 1363
transformers (library), 1378,

1383, 1564, 1566, 1569,
1585, 1598, 1610, 1619

Traversable, 1283, 1284, 1306
Traversable laws, 1307
Traversable naturality law,

1307
traverse, 857, 1285, 1287,

1289, 1291, 1292, 1295,

1296, 1299, 1307, 1836
tree, binary, see binary tree
trifecta (library), 1400, 1415,

1425, 1465, 1468, 1469
Trivial (type), 258, 259, 596,

597
try (exceptions), 1832, 1833
try (parsing), 1444, 1473
tuple, 161, 198, 256, 356–358,

445, 471, 480, 613, 632,
633, 640, 721, 989, 1006,
1064, 1229, 1306

tuple
Applicative, 1064
Functor, 1064
constructor, 164
definition, 172
single element, 1879
syntax, 161, 164
typeclass instances, 1306

tuple functions, 162, 163
Turing completeness, 421
twitter-conduit (library), 1831
two’s complement, 143
type, 98, 100, 101, 132, 133,

249, 591
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type
concrete, see concrete

type
definition, 129
higher-kinded, see

higher-kinded
lifted, 723
static, 605
unlifted, 723

type alias, 100, 165, 442, 622,
624, 633, 639, 651, 654,
707, 715, 717, 1224, see
also type synonym

type alias, definition, 174
type argument, 459,

594–597, 606, 608, 609,
613, 619, 633, 650, 674,
680, 681, 721, 722, 725,
729, 1509, 1521

type assignment, 142, 196,
279

type constant, 720, 973
type constructor, 112,

133–135, 152, 179, 184,
260, 361, 593, 595, 596,
599, 638, 720–724, 728,

748, 974, 979, 1039, 1050,
1507, 1509, 1511, 1521

type constructor
definition, 173
infix, 679

type declaration, 106
type defaulting, 142, 146,

279–281, 929, 1481, 1681,
1719

type error, 114
type families, 596
type inference, 109, 180, 217,

218, 224, 279, 680, 1719
type inference, definition,

239
type level, 175
type parameter, 161
type signature, 39, 99, 100,

106, 112, 133, 181, 196,
222, 436, 442, 445, 598,
603, 720, 1718

type signature
how to read, 111, 148, 185

type synonym, 106, 442, 443,
1578, see also type alias

type theory, 615
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type variable, 112, 176, 210,
211, 215, 239, 334, 594,
597, 600, 601

Typeable, 1815, 1823, 1824
TypeApplications, 964, 1068
typechecking, 181
typeclass, 114, 136, 140, 146,

187, 209, 249, 258, 306,
532, 624, 890, 892, 922,
979, 1466

typeclass
definition, 172, 239
dispatched by type, 304,

307, 309
unique pairing, 1039

typeclass constraint, 146, 148,
183, 187, 190, 211, 215,
219, 223, 256, 271, 272,
275, 279, 281, 292, 293,
310, 312–314, 731, 912,
1029, 1054, 1143, 1662,
1673, 1675, 1676, 1679,
1681

typeclass declaration, 305,
307, 960

typeclass deriving, 257, see

also deriving

typeclass hierarchy, 252

typeclass inheritance, 212,
275, 276

typeclass inheritance,
definition, 323

typeclass instance, 249–251,
253, 257–261, 263, 264,
270–272, 289–292, 302,
304–306, 308, 609, 622,
624, 625, 836

typeclass instance

Show, 799

how to read, 262

unique, 923

typeclass instance,
definition, 323

types vs terms, 209, 211, 249,
310, 595, 596, 605, 651

unary, 596, 612, 613, 619, 620

unconditional case, 269

uncurry, 198, 199, 201

uncurry, 1358

undefined, 236, 468, 487,
495, 508, 543, 545, 546,
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1531, 1658

underscore, 137, 269,
345–347, 354, 375, 496,
503, 801

unfold, 742

Unicode, 100, 1253, 1769, 1771

unit, 299, 301, 782, 839

unit testing, definition, 885

unmarshalling, 1484, see also
serialization

unmarshalling, definition,
1501

UNPACK, 1739

unsafePerformIO, 1807, 1808

URL shortener, 1237

UTC time, 1789

UTF-16, 1764, 1767, 1769

UTF-8, 1253, 1256, 1415, 1764,
1769, 1773–1775, 1874

utf8-string (library), 1774

uuid (library), 1223

Validation, 1132, 1133, 1186

value, 3, 41, 45, 47, 99, 133,
135, 330–333, 595, 599,
600, 604, 618, 1676

value, definition, 96

variable, 3, 7, 9, 44, 46, 99,
176, 330, 334

variable

bound, 7, 11, 13

free, 13, 15, 21

naming conventions, 176

single letter, 177

type, see type variable

Vector, 1290, 1741, 1748, 1750,
1752, 1756

Vector, mutable, 1757, 1758

vector, 1767

vector (library), 1290, 1748,
1754

vector

batch updates, 1756

boxed, 1749

slicing, 1750

unboxed, 1749

Vigenère cipher, 692, 1809

Wadler, Philip, 209, 249

Wall, 268

-Wall, 267

warning, 268, 269, 348
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warning

non-exhaustive patterns,
267, 348

out of range, 142

pattern match overlap,
346

shadowing, 348

weak head normal form, 49,
490, 491, 493, 494, 499,
1217, 1640, 1643, 1654,
1661, 1663, 1712, 1713,
1720, 1721, 1725

web application, 1214, 1215,
1225, 1249

web framework, see scotty

web server, 1256

where, 85, 86, 88, 108, 117, 224,
261, 362, 384

whitespace, 59
whnf, see weak head normal

form
whnf, 1712
Windows, 1861
Word8, 1767
words, 794
wreq (library), 1300
writeFile, 1826, 1829
Writer, 1564, 1566
WriterT, 1564, 1566

XML, 1397
xmonad, 1216, 1220

Y combinator, 421, 428

zip, 514, 1121
zipList, 1120, 1123
zipWith, 515, 806, 1152
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